Araştırma Makalesi
BibTex RIS Kaynak Göster

Alt-6 5G Kablosuz Uygulamaları için Değiştirilmiş Apollonian Fraktalı Kullanan Bir MIMO Anten

Yıl 2025, Cilt: 10 Sayı: 1, 23 - 30, 24.07.2025
https://doi.org/10.19072/ijet.1543054

Öz

Bu makalede, 5G Kablosuz iletişim için modifiye edilmiş bir Apollon fraktal şekli kullanılarak dört elemanlı çok girişli çok çıkışlı (MIMO) bir anten tasarlanmıştır. Önerilen MIMO anteni, en uygun konumlara yerleştirilmiş dört adet yayıcı Apollon fraktal elemanı ve alt katmanda kısmi bir toprak düzlemi içermektedir. Her bir ışıma elemanı, empedans uyumunu iyileştirmek için çeyrek dalga transformatörlü bir mikroşerit beslemeden oluşur. Apollonian fraktal şekilli MIMO anteni 3,3-3,8 GHz'de çalışır ve S11'in -10 dB'den az olduğu ve -20 dB'nin altında düşük karşılıklı bağlantının olduğu bir empedans bant genişliği elde eder. Ayrıca, Apollonian fraktal şekilli MIMO antenin performans parametreleri, zarf korelasyon katsayısı ve kanal kapasitesi gibi S-parametrelerine dayalı olarak değerlendirilmiştir. Deneysel ölçümler, zarf korelasyon katsayısının 0,05'ten düşük olduğunu, kanal kapasite kaybının ise 0,6'nın altında olduğunu ve simülasyon sonuçlarıyla makul bir uyum gösterdiğini ortaya koymaktadır.

Kaynakça

  • [1] E. Dahlman, S. Parkvall, and J. Sköld, 5G Nr: The next Generation Wireless Access Technology. Amsterdam: Academic Press, 2018.
  • [2] H. Holma, A. Toskala, and T. Nakamura, 5G Technology: 3GPP New Radio. Hoboken, NJ: John Wiley & Sons, Inc, 2020.
  • [3] M. Enescu, 5G New Radio: A Beam-Based Air Interface. Hoboken, NJ, USA: Wiley, 2020.
  • [4] J. Malik, A. Patnaik, and M. V. Kartikeyan, Compact Antennas for High Data Rate Communication: Ultra-Wideband (UWB) and Multiple-Input-Multiple-Output (MIMO) Technology. Cham: Springer International Publishing: Imprint : Springer, 2018.
  • [5] R. Gurjar, D. K. Upadhyay, B. K. Kanaujia, and K. Sharma, “A novel compact self‐similar fractal UWB MIMO antenna,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 29, no. 3, Dec. 2018. doi:10.1002/mmce.21632
  • [6] A. Bhattacharya, B. Roy, S. K. Chowdhury, and A. K. Bhattacharjee, “Computational and experimental analysis of a low-profile, isolation-enhanced, band-notch UWB-MIMO antenna,” Journal of Computational Electronics, vol. 18, no. 2, pp. 680–688, Feb. 2019. doi:10.1007/s10825-019-01309-3
  • [7] S. Das, K. Chattopadhyay, and S. R. Bhadra Chaudhuri, “Bandwidth enhancement of a wide slot antenna using fractal geometry for UWB application with multiple notched bands,” Wireless Personal Communications, vol. 110, no. 2, pp. 677–698, Sep. 2019. doi:10.1007/s11277-019-06749-5
  • [8] S. Tripathi, A. Mohan, and S. Yadav, “Performance study of a fractal UWB MIMO antenna for on-body WBAN applications,” Analog Integrated Circuits and Signal Processing, vol. 95, no. 2, pp. 249–258, Feb. 2018. doi:10.1007/s10470-018-1138-0
  • [9] M. Mungan, “Apollonian networks: Simultaneously scale-free, Small World, euclidean, space filling, and with matching graphs,” Physical Review Letters, vol. 106, no. 2, Jan. 2011. doi:10.1103/physrevlett.106.029802
  • [10] C. A. Balanis, Antenna Theory Analysis and Design Constantine A. Balanis Aut. Hoboken, N.J: Wiley, 2016.
  • [11] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electronics Letters, vol. 39, no. 9, pp. 705–707, May 2003. doi:10.1049/el:20030495
  • [12] M. Ameen, O. Ahmad, and R. K. Chaudhary, “Single split-ring resonator loaded self-decoupled dual-polarized MIMO antenna for mid-band 5G and C-band applications,” AEU - International Journal of Electronics and Communications, vol. 124, p. 153336, Sep. 2020. doi: 10.1016/j.aeue.2020.153336
  • [13] L. Malviya, R. K. Panigrahi, and M. V. Kartikeyan, “MIMO antennas with diversity and mutual coupling reduction techniques: A Review,” International Journal of Microwave and Wireless Technologies, vol. 9, no. 8, pp. 1763–1780, May 2017. doi:10.1017/s1759078717000538
  • [14] Y. Sharma, D. Sarkar, K. Saurav, and K. V. Srivastava, “Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1163–1166, 2017. doi:10.1109/lawp.2016.2626394
  • [15] W. A. E. Ali and A. A. Ibrahim, “A compact double-sided MIMO antenna with an improved isolation for UWB applications,” AEU - International Journal of Electronics and Communications, vol. 82, pp. 7–13, Dec. 2017. doi: 10.1016/j.aeue.2017.07.031
  • [16] L. Malviya, R. K. Panigrahi, and M. V. Kartikeyan, “A low profile planar MIMO antenna with Polarization Diversity for LTE 1800/1900 applications,” Microwave and Optical Technology Letters, vol. 59, no. 3, pp. 533–538, Jan. 2017. doi:10.1002/mop.30329
  • [17] K. Srivastava, A. Kumar, B. K. Kanaujia, S. Dwari, and S. Kumar, “A CPW-fed UWB MIMO antenna with integrated GSM band and dual band notches,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 29, no. 1, Oct. 2018. doi:10.1002/mmce.21433
  • [18] M. N. Hasan, S. Chu, and S. Bashir, “A DGS monopole antenna loaded with u‐shape stub for UWB MIMO applications,” Microwave and Optical Technology Letters, vol. 61, no. 9, pp. 2141–2149, May 2019. doi:10.1002/mop.31877

A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications

Yıl 2025, Cilt: 10 Sayı: 1, 23 - 30, 24.07.2025
https://doi.org/10.19072/ijet.1543054

Öz

In this paper, a quad-element multiple-input multiple-output (MIMO) antenna is designed using a modified Apollonian fractal shape for 5G Wireless communication. The proposed antenna comprises four radiating Apollonian fractal elements placed at optimal positions, along with a bottom layer incorporating a segmented ground plane. Each radiating element is composed of a microstrip feed with a quarter-wave transformer to improve impedance matching. The proposed Apollonian fractal-shaped MIMO antenna operates over the frequency range of 3.3–3.8 GHz, achieving an impedance bandwidth where S11 is less than -10 dB and mutual coupling below -20 dB. The envelope correlation coefficient (ECC) remains below 0.05, ensuring excellent diversity performance. Furthermore, the performance parameters of the Apollonian fractal- shaped MIMO antenna are evaluated based on S-parameters, such as the envelope correlation coefficient and channel capacity. Experimental measurements show that the ECC is lower than 0.05, while the channel capacity loss is below 0.6, reflecting reasonable agreement with the simulation results.

Kaynakça

  • [1] E. Dahlman, S. Parkvall, and J. Sköld, 5G Nr: The next Generation Wireless Access Technology. Amsterdam: Academic Press, 2018.
  • [2] H. Holma, A. Toskala, and T. Nakamura, 5G Technology: 3GPP New Radio. Hoboken, NJ: John Wiley & Sons, Inc, 2020.
  • [3] M. Enescu, 5G New Radio: A Beam-Based Air Interface. Hoboken, NJ, USA: Wiley, 2020.
  • [4] J. Malik, A. Patnaik, and M. V. Kartikeyan, Compact Antennas for High Data Rate Communication: Ultra-Wideband (UWB) and Multiple-Input-Multiple-Output (MIMO) Technology. Cham: Springer International Publishing: Imprint : Springer, 2018.
  • [5] R. Gurjar, D. K. Upadhyay, B. K. Kanaujia, and K. Sharma, “A novel compact self‐similar fractal UWB MIMO antenna,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 29, no. 3, Dec. 2018. doi:10.1002/mmce.21632
  • [6] A. Bhattacharya, B. Roy, S. K. Chowdhury, and A. K. Bhattacharjee, “Computational and experimental analysis of a low-profile, isolation-enhanced, band-notch UWB-MIMO antenna,” Journal of Computational Electronics, vol. 18, no. 2, pp. 680–688, Feb. 2019. doi:10.1007/s10825-019-01309-3
  • [7] S. Das, K. Chattopadhyay, and S. R. Bhadra Chaudhuri, “Bandwidth enhancement of a wide slot antenna using fractal geometry for UWB application with multiple notched bands,” Wireless Personal Communications, vol. 110, no. 2, pp. 677–698, Sep. 2019. doi:10.1007/s11277-019-06749-5
  • [8] S. Tripathi, A. Mohan, and S. Yadav, “Performance study of a fractal UWB MIMO antenna for on-body WBAN applications,” Analog Integrated Circuits and Signal Processing, vol. 95, no. 2, pp. 249–258, Feb. 2018. doi:10.1007/s10470-018-1138-0
  • [9] M. Mungan, “Apollonian networks: Simultaneously scale-free, Small World, euclidean, space filling, and with matching graphs,” Physical Review Letters, vol. 106, no. 2, Jan. 2011. doi:10.1103/physrevlett.106.029802
  • [10] C. A. Balanis, Antenna Theory Analysis and Design Constantine A. Balanis Aut. Hoboken, N.J: Wiley, 2016.
  • [11] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electronics Letters, vol. 39, no. 9, pp. 705–707, May 2003. doi:10.1049/el:20030495
  • [12] M. Ameen, O. Ahmad, and R. K. Chaudhary, “Single split-ring resonator loaded self-decoupled dual-polarized MIMO antenna for mid-band 5G and C-band applications,” AEU - International Journal of Electronics and Communications, vol. 124, p. 153336, Sep. 2020. doi: 10.1016/j.aeue.2020.153336
  • [13] L. Malviya, R. K. Panigrahi, and M. V. Kartikeyan, “MIMO antennas with diversity and mutual coupling reduction techniques: A Review,” International Journal of Microwave and Wireless Technologies, vol. 9, no. 8, pp. 1763–1780, May 2017. doi:10.1017/s1759078717000538
  • [14] Y. Sharma, D. Sarkar, K. Saurav, and K. V. Srivastava, “Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1163–1166, 2017. doi:10.1109/lawp.2016.2626394
  • [15] W. A. E. Ali and A. A. Ibrahim, “A compact double-sided MIMO antenna with an improved isolation for UWB applications,” AEU - International Journal of Electronics and Communications, vol. 82, pp. 7–13, Dec. 2017. doi: 10.1016/j.aeue.2017.07.031
  • [16] L. Malviya, R. K. Panigrahi, and M. V. Kartikeyan, “A low profile planar MIMO antenna with Polarization Diversity for LTE 1800/1900 applications,” Microwave and Optical Technology Letters, vol. 59, no. 3, pp. 533–538, Jan. 2017. doi:10.1002/mop.30329
  • [17] K. Srivastava, A. Kumar, B. K. Kanaujia, S. Dwari, and S. Kumar, “A CPW-fed UWB MIMO antenna with integrated GSM band and dual band notches,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 29, no. 1, Oct. 2018. doi:10.1002/mmce.21433
  • [18] M. N. Hasan, S. Chu, and S. Bashir, “A DGS monopole antenna loaded with u‐shape stub for UWB MIMO applications,” Microwave and Optical Technology Letters, vol. 61, no. 9, pp. 2141–2149, May 2019. doi:10.1002/mop.31877
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği, Antenler ve Yayılma, Kablosuz Haberleşme Sistemleri ve Teknolojileri (Mikro Dalga ve Milimetrik Dalga dahil)
Bölüm Araştırma Makalesi
Yazarlar

Abubeker A. Yussuf 0009-0001-1403-1049

Selçuk Paker Bu kişi benim

Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 30 Haziran 2025
Erken Görünüm Tarihi 23 Temmuz 2025
Yayımlanma Tarihi 24 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 1

Kaynak Göster

APA Yussuf, A. A., & Paker, S. (2025). A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications. International Journal of Engineering Technologies IJET, 10(1), 23-30. https://doi.org/10.19072/ijet.1543054
AMA Yussuf AA, Paker S. A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications. IJET. Temmuz 2025;10(1):23-30. doi:10.19072/ijet.1543054
Chicago Yussuf, Abubeker A., ve Selçuk Paker. “A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications”. International Journal of Engineering Technologies IJET 10, sy. 1 (Temmuz 2025): 23-30. https://doi.org/10.19072/ijet.1543054.
EndNote Yussuf AA, Paker S (01 Temmuz 2025) A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications. International Journal of Engineering Technologies IJET 10 1 23–30.
IEEE A. A. Yussuf ve S. Paker, “A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications”, IJET, c. 10, sy. 1, ss. 23–30, 2025, doi: 10.19072/ijet.1543054.
ISNAD Yussuf, Abubeker A. - Paker, Selçuk. “A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications”. International Journal of Engineering Technologies IJET 10/1 (Temmuz2025), 23-30. https://doi.org/10.19072/ijet.1543054.
JAMA Yussuf AA, Paker S. A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications. IJET. 2025;10:23–30.
MLA Yussuf, Abubeker A. ve Selçuk Paker. “A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications”. International Journal of Engineering Technologies IJET, c. 10, sy. 1, 2025, ss. 23-30, doi:10.19072/ijet.1543054.
Vancouver Yussuf AA, Paker S. A MIMO Antenna Utilizing Modified Apollonian Fractal for Sub-6 5G Wireless Applications. IJET. 2025;10(1):23-30.

ijet@gelisim.edu.tr

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)