Araştırma Makalesi
BibTex RIS Kaynak Göster

Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN ve VN Kaplamasının, Yapısal ve Mekanik Özelliklerinin Araştırılması

Yıl 2022, , 255 - 262, 30.12.2022
https://doi.org/10.46460/ijiea.1126287

Öz

Co-Cr-Mo alaşımları uzun yıllardan beri biyomedikal uygulamalarda kullanılmaktadır. Ancak malzemelerin vücut içerisinde hem tribolojik, hem de korozif ortamlara maruz kalması ve vücuda zararlı iyon salınımı gibi olumsuz özellikleri sebebiyle yüzey özelliklerinin geliştirilmesi önem arz etmektedir. Bu çalışmada fiziksel buhar biriktirme (PVD) manyetik alanda sıçratma tekniği kullanılarak Co-Cr-Mo alaşımı yüzeyine TiN-NbN ve VN esaslı biyouyumlu nitrür kaplama büyütüldü. Büyütülen kaplamanın yapısal ve morfolojik özellikleri XRD ve SEM analizi ile, kimyasal kompozisyonu EDS analizi ile gerçekleştirildi. Kaplama ve taban malzemenin korozyon davranışı potansiyodinamik polarizasyon testi ile %3.5'lik bir NaCl çözeltisiyle belirlendi. Son olarak çizilme testi ile kaplamanın yüzeye yapışma (adezyon) mukavemeti incelendi. Elde edilen veriler ışığında kaplamanın yüzeyde homojen bir dağılım gösterdiği görüldü. Korozyon testi sonucunda üretilen nitrür esaslı kaplama korozyon direncini yaklaşık olarak 2,5 kat arttırmıştır. Elde edilen kaplamanın korozyon sonrası SEM görüntüsü de korozyon hasarının önemli oranda engellendiğini göstermektedir. Kaplamanın çizilme testi sonuçları ise kaplamanın kritik yapışma mukavemeti değerinin yaklaşık 42 mN olduğunu göstermiştir. Daha düşük yükler ile yapılan testlerde sürtünme katsayısı ve sürtünme kuvvetinde önemli bir artış gözlemlenmemiştir. Bu veriler ışığında Co-Cr-Mo alaşımı yüzeyinde elde edilen TiN, NbN ve VN esaslı kaplama biyomedikal uygulamalarda kullanılabilecek uygun bir adaydır

Destekleyen Kurum

YOK

Proje Numarası

YOK

Kaynakça

  • [1] J. Rituerto Sin, X. Hu, N. Emami, Tribology, corrosion and tribocorrosion of metal on metal implants, Tribol. - Mater. Surfaces Interfaces. (2013). doi:10.1179/1751584X13Y.0000000022.
  • [2] W.Q. Toh, X. Tan, A. Bhowmik, E. Liu, S.B. Tor, Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review, Materials (Basel). (2017). doi:10.3390/ma11010030.
  • [3] A.J. Smith, P. Dieppe, K. Vernon, M. Porter, A.W. Blom, Failure rates of stemmed metal-on-metal hip replacements: Analysis of data from the National Joint Registry of England and Wales, Lancet. (2012). doi:10.1016/S0140-6736(12)60353-5.
  • [4] J. Drummond, P. Tran, C. Fary, Metal-on-Metal Hip Arthroplasty: A Review of Adverse Reactions and Patient Management, J. Funct. Biomater. (2015). doi:10.3390/jfb6030486.
  • [5] Q. Chen, G.A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R Reports. (2015). doi:10.1016/j.mser.2014.10.001.
  • [6] D. Dowson, C. Hardaker, M. Flett, G.H. Isaac, A hip joint simulator study of the performance of metal-on-metal joints: Part I: The role of materials, in: J. Arthroplasty, 2004. doi:10.1016/j.arth.2004.09.015.
  • [7] M.T. Mathew, M.A. Wimmer, Tribocorrosion in artificial joints: In vitro testing and clinical implications, in: Bio-Tribocorrosion Biomater. Med. Implant., 2013. doi:10.1533/9780857098603.3.341.
  • [8] H.C. Amstutz, M.J. Le Duff, Hip resurfacing: History, current status, and future, HIP Int. (2015). doi:10.5301/hipint.5000268.
  • [9] Y. Okazaki, E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials. (2005). doi:10.1016/j.biomaterials.2004.02.005.
  • [10] K.L. Wapner, Implications of metallic corrosion in total knee arthroplasty, Clin. Orthop. Relat. Res. (1991). doi:10.1097/00003086-199110000-00004.
  • [11] D.B. McGregor, R.A. Baan, C. Partensky, J.M. Rice, J.D. Wilbourn, Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies - A report of an IARC Monographs Programme Meeting, in: Eur. J. Cancer, 2000. doi:10.1016/S0959-8049(99)00312-3.
  • [12] A. Mazzonello, J. Buhagiar, R. Chetcuti, P.A. Dearnley, A. Valsesia, P. Colpo, B. Mallia, A tribocorrosion appraisal of a dual layer PVD coated CoCrMo alloy tribopair, Surf. Coatings Technol. (2022). doi:10.1016/j.surfcoat.2022.128341.
  • [13] L. Blunt, P. Bills, X. Jiang, C. Hardaker, G. Chakrabarty, The role of tribology and metrology in the latest development of bio-materials, Wear. (2009). doi:10.1016/j.wear.2008.04.015.
  • [14] A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C.L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, B. Saramago, A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surf. Coatings Technol. (2009). doi:10.1016/j.surfcoat.2009.06.010.
  • [15] S. Yang, D. Camino, A.H.S. Jones, D.G. Teer, Deposition and tribological behaviour of sputtered carbon hard coatings, Surf. Coatings Technol. (2000). doi:10.1016/S0257-8972(99)00634-9.
  • [16] M. Hoseini, A. Jedenmalm, A. Boldizar, Tribological investigation of coatings for artificial joints, Wear. (2008). doi:10.1016/j.wear.2007.07.003.
  • [17] P.E. Hovsepian, D.B. Lewis, W.D. Münz, Recent progress in large scale manufacturing of multilayer/superlattice hard coatings, Surf. Coatings Technol. (2000). doi:10.1016/S0257-8972(00)00959-2.
  • [18] P.E. Hovsepian, W.-D. Münz, Synthesis, Structure, and Applications of Nanoscale Multilayer/Superlattice Structured PVD Coatings, in: Nanostructured Coatings, 2007. doi:10.1007/0-387-48756-5_14.
  • [19] Y. Chen, T. Guo, J. Wang, X. Pang, L. Qiao, Effects of orientation on microstructure and mechanical properties of TiN/AlN superlattice films, Scr. Mater. (2021). doi:10.1016/j.scriptamat.2021.113951.
  • [20] P.E. Hovsepian, A.P. Ehiasarian, Y. Purandare, A.A. Sugumaran, T. Marriott, I. Khan, Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering, J. Mater. Sci. Mater. Med. (2016). doi:10.1007/s10856-016-5751-0.
  • [21] G.W. Blunn, R. Ferro De Godoy, J. Meswania, T.W.R. Briggs, P. Tyler, R. Hargunani, H. Wilson, I. Khan, T. Marriott, M.J. Coathup, A novel ceramic coating for reduced metal ion release in metal-on-metal hip surgery, J. Biomed. Mater. Res. - Part B Appl. Biomater. (2019). doi:10.1002/jbm.b.34268.
  • [22] Y. Sun, P.A. Dearnley, Tribocorrosion Behavior of Duplex S/Cr(N) and S/Cr(C) Coatings on CoCrMo Alloy in 0.89 % NaCl Solution, J. Bio- Tribo-Corrosion. (2015). doi:10.1007/s40735-014-0002-8.
  • [23] G.A. Zhang, P.X. Yan, P. Wang, Y.M. Chen, J.Y. Zhang, Influence of nitrogen content on the structural, electrical and mechanical properties of CrNx thin films, Mater. Sci. Eng. A. (2007). doi:10.1016/j.msea.2007.01.149.
  • [24] L. Shan, Y.R. Zhang, Y.X. Wang, J.L. Li, X. Jiang, J.M. Chen, Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater, Trans. Nonferrous Met. Soc. China (English Ed. (2016). doi:10.1016/S1003-6326(16)64104-3.
  • [25] P.M. Perillo, Properties of CrN Coating Prepared by Physical Vapour Deposition, Am. J. Mater. Sci. Appl. (2015).
  • [26] F. Cai, Q. Yang, X. Huang, R. Wei, Microstructure and corrosion behavior of CrN and CrSiCN coatings, J. Mater. Eng. Perform. (2010). doi:10.1007/s11665-009-9534-3.
  • [27] R. Chetcuti, P.A. Dearnley, A. Mazzonello, J. Buhagiar, B. Mallia, Tribocorrosion response of duplex layered CoCrMoC/CrN and CrN/CoCrMoC coatings on implant grade 316LVM stainless steel, Surf. Coatings Technol. (2020). doi:10.1016/j.surfcoat.2019.125313.
  • [28] Z. Peng, H. Miao, L. Qi, S. Yang, C. Liu, Hard and wear-resistant titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma, Acta Mater. (2003). doi:10.1016/S1359-6454(03)00119-8.
  • [29] J.R. Goldberg, J.L. Gilbert, The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys, Biomaterials. (2004). doi:10.1016/S0142-9612(03)00606-9.

Investigation of the Structural and Mechanical Properties of TiN, NbN, and VN Coating Deposition on the Co-Cr-Mo Alloy by Magnetron Sputtering

Yıl 2022, , 255 - 262, 30.12.2022
https://doi.org/10.46460/ijiea.1126287

Öz

Co-Cr-Mo alloys have been used in biomedical applications for many years. However, it is important to improve the surface properties of materials due to their harmful properties, such as exposure to tribological and corrosive environments in the body and the release of toxic ions in the body. In this study, TiN-NbN and VN-based biocompatible nitride coating was grown on the Co-Cr-Mo alloy surface using the physical vapor deposition (PVD) magnetron sputtering. The structural and morphological properties of the grown coating were determined by SEM analysis, EDS, and XRD analysis. The corrosion behavior of the coating and substrate was determined by the potentiodynamic polarization test in a 3.5% NaCl solution. Finally, the adhesion strength of the coating to the surface was examined with the scratch test. In the light of the data obtained, it was seen that the coating showed a homogeneous distribution on the surface. The nitride-based coating produced as a result of the corrosion test increased the corrosion resistance approximately 2.5 times. The post-corrosion SEM image of the obtained coating also shows that corrosion damage is significantly prevented. The scratch test results of the coating showed that the critical bond strength value of the coating was approximately 42 mN. No significant increase in friction coefficient and friction force was observed in the tests performed with lower loads. In the light of these data, TiN, NbN, and VN-based coating obtained on the surface of Co-Cr-Mo alloy is a suitable candidate for biomedical applications.

Proje Numarası

YOK

Kaynakça

  • [1] J. Rituerto Sin, X. Hu, N. Emami, Tribology, corrosion and tribocorrosion of metal on metal implants, Tribol. - Mater. Surfaces Interfaces. (2013). doi:10.1179/1751584X13Y.0000000022.
  • [2] W.Q. Toh, X. Tan, A. Bhowmik, E. Liu, S.B. Tor, Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review, Materials (Basel). (2017). doi:10.3390/ma11010030.
  • [3] A.J. Smith, P. Dieppe, K. Vernon, M. Porter, A.W. Blom, Failure rates of stemmed metal-on-metal hip replacements: Analysis of data from the National Joint Registry of England and Wales, Lancet. (2012). doi:10.1016/S0140-6736(12)60353-5.
  • [4] J. Drummond, P. Tran, C. Fary, Metal-on-Metal Hip Arthroplasty: A Review of Adverse Reactions and Patient Management, J. Funct. Biomater. (2015). doi:10.3390/jfb6030486.
  • [5] Q. Chen, G.A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R Reports. (2015). doi:10.1016/j.mser.2014.10.001.
  • [6] D. Dowson, C. Hardaker, M. Flett, G.H. Isaac, A hip joint simulator study of the performance of metal-on-metal joints: Part I: The role of materials, in: J. Arthroplasty, 2004. doi:10.1016/j.arth.2004.09.015.
  • [7] M.T. Mathew, M.A. Wimmer, Tribocorrosion in artificial joints: In vitro testing and clinical implications, in: Bio-Tribocorrosion Biomater. Med. Implant., 2013. doi:10.1533/9780857098603.3.341.
  • [8] H.C. Amstutz, M.J. Le Duff, Hip resurfacing: History, current status, and future, HIP Int. (2015). doi:10.5301/hipint.5000268.
  • [9] Y. Okazaki, E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials. (2005). doi:10.1016/j.biomaterials.2004.02.005.
  • [10] K.L. Wapner, Implications of metallic corrosion in total knee arthroplasty, Clin. Orthop. Relat. Res. (1991). doi:10.1097/00003086-199110000-00004.
  • [11] D.B. McGregor, R.A. Baan, C. Partensky, J.M. Rice, J.D. Wilbourn, Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies - A report of an IARC Monographs Programme Meeting, in: Eur. J. Cancer, 2000. doi:10.1016/S0959-8049(99)00312-3.
  • [12] A. Mazzonello, J. Buhagiar, R. Chetcuti, P.A. Dearnley, A. Valsesia, P. Colpo, B. Mallia, A tribocorrosion appraisal of a dual layer PVD coated CoCrMo alloy tribopair, Surf. Coatings Technol. (2022). doi:10.1016/j.surfcoat.2022.128341.
  • [13] L. Blunt, P. Bills, X. Jiang, C. Hardaker, G. Chakrabarty, The role of tribology and metrology in the latest development of bio-materials, Wear. (2009). doi:10.1016/j.wear.2008.04.015.
  • [14] A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C.L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, B. Saramago, A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications, Surf. Coatings Technol. (2009). doi:10.1016/j.surfcoat.2009.06.010.
  • [15] S. Yang, D. Camino, A.H.S. Jones, D.G. Teer, Deposition and tribological behaviour of sputtered carbon hard coatings, Surf. Coatings Technol. (2000). doi:10.1016/S0257-8972(99)00634-9.
  • [16] M. Hoseini, A. Jedenmalm, A. Boldizar, Tribological investigation of coatings for artificial joints, Wear. (2008). doi:10.1016/j.wear.2007.07.003.
  • [17] P.E. Hovsepian, D.B. Lewis, W.D. Münz, Recent progress in large scale manufacturing of multilayer/superlattice hard coatings, Surf. Coatings Technol. (2000). doi:10.1016/S0257-8972(00)00959-2.
  • [18] P.E. Hovsepian, W.-D. Münz, Synthesis, Structure, and Applications of Nanoscale Multilayer/Superlattice Structured PVD Coatings, in: Nanostructured Coatings, 2007. doi:10.1007/0-387-48756-5_14.
  • [19] Y. Chen, T. Guo, J. Wang, X. Pang, L. Qiao, Effects of orientation on microstructure and mechanical properties of TiN/AlN superlattice films, Scr. Mater. (2021). doi:10.1016/j.scriptamat.2021.113951.
  • [20] P.E. Hovsepian, A.P. Ehiasarian, Y. Purandare, A.A. Sugumaran, T. Marriott, I. Khan, Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering, J. Mater. Sci. Mater. Med. (2016). doi:10.1007/s10856-016-5751-0.
  • [21] G.W. Blunn, R. Ferro De Godoy, J. Meswania, T.W.R. Briggs, P. Tyler, R. Hargunani, H. Wilson, I. Khan, T. Marriott, M.J. Coathup, A novel ceramic coating for reduced metal ion release in metal-on-metal hip surgery, J. Biomed. Mater. Res. - Part B Appl. Biomater. (2019). doi:10.1002/jbm.b.34268.
  • [22] Y. Sun, P.A. Dearnley, Tribocorrosion Behavior of Duplex S/Cr(N) and S/Cr(C) Coatings on CoCrMo Alloy in 0.89 % NaCl Solution, J. Bio- Tribo-Corrosion. (2015). doi:10.1007/s40735-014-0002-8.
  • [23] G.A. Zhang, P.X. Yan, P. Wang, Y.M. Chen, J.Y. Zhang, Influence of nitrogen content on the structural, electrical and mechanical properties of CrNx thin films, Mater. Sci. Eng. A. (2007). doi:10.1016/j.msea.2007.01.149.
  • [24] L. Shan, Y.R. Zhang, Y.X. Wang, J.L. Li, X. Jiang, J.M. Chen, Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater, Trans. Nonferrous Met. Soc. China (English Ed. (2016). doi:10.1016/S1003-6326(16)64104-3.
  • [25] P.M. Perillo, Properties of CrN Coating Prepared by Physical Vapour Deposition, Am. J. Mater. Sci. Appl. (2015).
  • [26] F. Cai, Q. Yang, X. Huang, R. Wei, Microstructure and corrosion behavior of CrN and CrSiCN coatings, J. Mater. Eng. Perform. (2010). doi:10.1007/s11665-009-9534-3.
  • [27] R. Chetcuti, P.A. Dearnley, A. Mazzonello, J. Buhagiar, B. Mallia, Tribocorrosion response of duplex layered CoCrMoC/CrN and CrN/CoCrMoC coatings on implant grade 316LVM stainless steel, Surf. Coatings Technol. (2020). doi:10.1016/j.surfcoat.2019.125313.
  • [28] Z. Peng, H. Miao, L. Qi, S. Yang, C. Liu, Hard and wear-resistant titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma, Acta Mater. (2003). doi:10.1016/S1359-6454(03)00119-8.
  • [29] J.R. Goldberg, J.L. Gilbert, The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys, Biomaterials. (2004). doi:10.1016/S0142-9612(03)00606-9.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Taha Çağrı Şenocak 0000-0002-0043-5253

Oktay Yiğit 0000-0002-5904-5129

Proje Numarası YOK
Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 5 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Şenocak, T. Ç., & Yiğit, O. (2022). Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN ve VN Kaplamasının, Yapısal ve Mekanik Özelliklerinin Araştırılması. International Journal of Innovative Engineering Applications, 6(2), 255-262. https://doi.org/10.46460/ijiea.1126287
AMA Şenocak TÇ, Yiğit O. Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN ve VN Kaplamasının, Yapısal ve Mekanik Özelliklerinin Araştırılması. ijiea, IJIEA. Aralık 2022;6(2):255-262. doi:10.46460/ijiea.1126287
Chicago Şenocak, Taha Çağrı, ve Oktay Yiğit. “Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN Ve VN Kaplamasının, Yapısal Ve Mekanik Özelliklerinin Araştırılması”. International Journal of Innovative Engineering Applications 6, sy. 2 (Aralık 2022): 255-62. https://doi.org/10.46460/ijiea.1126287.
EndNote Şenocak TÇ, Yiğit O (01 Aralık 2022) Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN ve VN Kaplamasının, Yapısal ve Mekanik Özelliklerinin Araştırılması. International Journal of Innovative Engineering Applications 6 2 255–262.
IEEE T. Ç. Şenocak ve O. Yiğit, “Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN ve VN Kaplamasının, Yapısal ve Mekanik Özelliklerinin Araştırılması”, ijiea, IJIEA, c. 6, sy. 2, ss. 255–262, 2022, doi: 10.46460/ijiea.1126287.
ISNAD Şenocak, Taha Çağrı - Yiğit, Oktay. “Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN Ve VN Kaplamasının, Yapısal Ve Mekanik Özelliklerinin Araştırılması”. International Journal of Innovative Engineering Applications 6/2 (Aralık 2022), 255-262. https://doi.org/10.46460/ijiea.1126287.
JAMA Şenocak TÇ, Yiğit O. Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN ve VN Kaplamasının, Yapısal ve Mekanik Özelliklerinin Araştırılması. ijiea, IJIEA. 2022;6:255–262.
MLA Şenocak, Taha Çağrı ve Oktay Yiğit. “Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN Ve VN Kaplamasının, Yapısal Ve Mekanik Özelliklerinin Araştırılması”. International Journal of Innovative Engineering Applications, c. 6, sy. 2, 2022, ss. 255-62, doi:10.46460/ijiea.1126287.
Vancouver Şenocak TÇ, Yiğit O. Manyetik Alanda Sıçratma Tekniğiyle Co-Cr-Mo Alaşımı Yüzeyinde Büyütülen TiN, NbN ve VN Kaplamasının, Yapısal ve Mekanik Özelliklerinin Araştırılması. ijiea, IJIEA. 2022;6(2):255-62.