Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications

Yıl 2025, Cilt: 9 Sayı: 2, 149 - 154, 29.12.2025
https://doi.org/10.46460/ijiea.1689650

Öz

Presented report, Cu2CoSnS4 (CCTS) semiconductor was growth on glass substrate by using chemical routes. The physical properties of sample were qualified by using XRD Raman spectrometer, SEM with EDS, UV-Vis spectrometer and AFM. The XRD measurement confirmed that the CCTS has stannite crystal structure with a preferential orientation throughout the (112) direction. The Raman measurement verified the presence of characteristic peak which occurred at 320 cm-1 correspond A1 vibrational mode. The EDS spectrum with mapping revealed the existence of the elements ( S, Sn, Co, Cu) in compound and these elements homogeneously distrubuted on the surfaces of the sample. The combination of AFM and SEM characterization highlighted the structural integrity of the CCTS thin film. Optical absorbance analyses showed the band gap value of sample (~1.33 eV) was suitable for solar cell applications. Besides, ıt could be said that fabricated device n-ITO/p-CCTS/Ag was convenient to use in renewable energy applications. These findings open up the possibility to explore new generation materials which have abundant elements in earth crust without any dangerous and rare/costly elements such as selenium, gallium, and indium.

Etik Beyan

Ethics committee approval is not required

Kaynakça

  • Maldar, P.S, Gaikwad, M.A., Mane, A.A., Nikam, S.S., Desai, S.P., Giri, S.D., Sarkar, A., & Moholkar, A.V. (2017). Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Solar Energy, 158, 89-99.
  • Hossain, M.I. (2012). Prospects of CZTS solar cells from the perspective of material properties, fabrication methods and current research challenges. Chalcogenide Letters., 9(6), 231-242.
  • Ghos, A, Biswas, A., Thangavel, R., &, Udayabhanu, G. (2016). Photo-electrochemical properties and electronic band structure of kesterite copper chalcogenide Cu2–II–Sn–S4 (II ¼ Fe, Co, Ni) thin films. RSC Advances., 6(98), 96025-96034.
  • Kaushik, D. K., Rao, T. N., & Subrahmanyam, A. (2017). Studies on the disorder in DC magnetron sputtered Cu2ZnSnS4 (CZTS) thin films grown in sulfide plasma’,’ Surfaces and Coating Technology., 314, 85-91.
  • Vanalakar, S.A., Agawane, G.L., Shin, S.W., Suryawanshi, M.P., Gurav, K.V., Jeong, K.S., Patil, P.S., Jeong, C.W., Kim, J.Y., Kim, J.H. (2015). A review pulsed laser deposited CZTS thin films for solar cell applications. Journal of Alloys and Compounds, 619, 109-121.
  • Shimamune, Y., Jimbo, K. Nishida, G. Murayama, M., Takeuchi, A., & Katagiri, H. (2017). Cu2ZnSnS4 formation by co-evaporation and subsequent annealing in S-flux using molecular beam epitaxy system. Thin Solid Films, 638, 312-317.
  • Tumbul, A. Aslan, F. Goktas, A., & Mutlu, I. H. (2019). All solution processed superstrate type Cu2ZnSnS4 (CZTS) thin film solar cell : effect of absorber layer thickness. Journal of Alloys and Compounds, 781, 280–288.
  • Tumbul, A. Göktaş, A. Zarbali, M. Z., & Aslan, F. (2018). Structural, morhological and optical properties of vacuum-free processed CZTS thin film absorbers. Material Research Express, 5, 066408.
  • Ma, S., Sui, J., Cao, L., Li, Y., Dong, H., Zhang, Q., & Dong, L. (2015). Sythesis of Cu2ZnSnS4 thin films through chemical successive ionic layer adsorption and reactions, Applied Surface Science, 349, 430–436.
  • Senguler, G. Y., Narin, E. K., Lisesivdin, S. B., Serin T. (2013). Effect of sulfur concentration on structural, optical and electrical properties of the Cu2CoSnS4 absorber film for photovoltaic devices, Physica B, 648,414-424.
  • Ashfag, A., Jacob, J., Mahmood, K., Mehboob, K., Ikram, S., Ali, A., Amin, N., Hussain, S., Rehman, U. (2021). Effect of sulfur amount during post-growth sulfurization process on the structural, morphological and thermoelectric properties of sol-gel grown quaternary chalcogenide Cu2CoSnS4 thin films. Physica B:Condensed Matter, 602, 412497.
  • Ahmed, M. A., Bakr, N. A., Kamil, A. A. (2019). Synthesis and characterization chemically sprayed Cu2CoSnS4 thin films. Chalcogenide Letters, 16(5), 231-239
  • Tumbul, A. (2020). Improving grain size and surface roughness of chemically derived Cu2CoSnS4 (CCTS) solar absorber material by controlling of Cu/Co ratios, Ceramics International, 46 (1), 289-296.
  • Tumbul, A., Aslan, E., Göktaş, A., Mutlu, I. H., Arslan, F., & Aslan, F. (2024). Chemically derived quinary Cu2Co1-xNaxSnS4 photon absrober material and its photocatalytic application, Applied Physics A, 130:225.
  • Hammami, H., Marzougui, M., Oueslati, H., Rabeh, M. B., & Kanzari, M. (2020). Synhtesis, Growth, and Characterization of Cu2CoSnS4 thin film via Thermal Evaporeted Method. Optik, 227(201), 1-11.
  • Ennaoui, A., Lux-steiner, M., Weber, A., Abou-Ras, D., Kötschau, I., Schock, H. W., Schurr, R., Hölzing, A., Jost, S., Hock, R., Vob, T., Schulze, J., Kirbs, A. (2009). Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 517(7), 2511-2514.
  • Zhang, Q. Deng, H., Chen, L., Tao, J.,Yu, J., Yang, P., & Chu, J. (2017). Effect of sulfurization on the structural and optical properties of Cu2CdSnS4 thin films prepared by direct liquid method. Materials Letters, 193, 206-209.
  • Yin, L., Cheng, G., Feng, Y., Li, Z., Yang, C., & Xiao, X. (2015). Limitation factor for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization, RSC Advance, 5(50), 40369–40374,
  • Ma, S., Sui, J., Cao, L., Li, Y., Dong, H., Zhang, Q., & Dong, L. (2015). Sythesis of Cu2ZnSnS4 thin films through chemical successive ionic layer adsorption and reactions, Applied Surface Science, 349, 430-436.
  • Nichols, G., Byard, S., Bloxham, M. J., Botteril, J., Dawson, N. J., Dennis, A., Diart, V., North, N. C., & Sherwood, J.D. (2002). A Review of the Terms Agglomerate and Aggregate with a Recommendation for Nomenclature Used in Powder and Particle Characterization, Journal of Pharmaceutical. Sciences, 91(10), 2103-2109.
  • Hussein, H., & Yazdani, A. (2019). Spin-coated Cu2CrSnS4 thin film: A potantiel candidate for thin film solar cells, Materials Science in Semiconductor Processing, 91, 58-65.
  • Stefan, T. (2025). Nanoscale surface morphology of Cu2CdSnS4 quaternary alloy nanostructures synthesized by spin coating technique and deposited with ultrasonic treatment, Applied Surface Science, 691, 162662.
  • Kamoun, N., Bouzouita, H., & Rezig, B. (2007). Fabrication and characterization of Cu2ZnSnS4 thin film deposited by spray pyrolysis technique, Thin Solid Films, 515(15), 5949-5952.
  • Makula, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis Spectra, The Journal of Physical Chemistry Letters, 9(23), 6814-6817.
  • Maldar, P. S., Mane, A. A., Nikam, S. S., Giri, S. D., Sarkar, A., & Moholkar, A. V. (2017). Temperature dependent properties of spray deposited Cu2CoSnS4 (CCTS) thin films, Journal of Materials Science : Materials in Electronics, 28(24), 18891-18896.
  • Cui, Y., Deng, R., Wang, G., & Pan, D. (2012). A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals, Journal of Materials Chemistry, 22(43), 23136-23140.
  • Harrathi, F., Bitri, N., Aubry, E., Briois, P. (2024). Synthesis of Cu2CoSnS4 chalcogenide thin films by spray pyrolysis and efficient Au/p-CCTS/n-SnO2 diode for solar cells applications. J. Mater Sci:Mater Electron, 35(270), 1-16.
  • El, K., A., Elhaj, D., A., Drissi, S., Abali, A., Agdad, A., Dads, H., A., Nkhaili, L., Mansouri, A., E., Chaib, H., Assali, K., E., Outzourhit, A. (2022). Structural, optical and electrical properties of Cu2CoSnS4 thin film solar cells prepared by facile sol-gel route. Thin Solid Films, 758:139430.
  • Dridi, S., Bitri,, N., Aubry, E., Mahjoubi, S., Briois, P. (2024). Comparative study of Cu2XSnS4 (X=Ni, Co, Mn or Fe) films sythesized by spray pyrolysis under air atmosphere, as suitable absorber layers for photovoltaic applications. Journal of Alloys and Compounds, 976:172976.

Yenilenebilir Enerji Uygulamaları için Cu2CoSnS4 (CCTS) Soğurucu Malzeme Sentezi ve Karakterizasyonu

Yıl 2025, Cilt: 9 Sayı: 2, 149 - 154, 29.12.2025
https://doi.org/10.46460/ijiea.1689650

Öz

Bu çalışmada kimyasal kaplama tekniği kullanılarak Cu2CoSnS4 (CCTS) yarıiletken ince film sentezlenmiştir. Üretilen örneğin fiziksel özellikleri XRD, Raman Spektrometresi, SEM, EDS, AFM ve UV-Vis Spektrometresi kullanılarak incelenmiştir. X-ışını ölçümleri CCTS yarıiletkenin (112) tercihli yönelimli stanit kristal yapısında olduğunu göstermiştir. Ayrıca raman ölçümünden de 320 cm-1 konumundaki pikin CCTS yarıiletken malzemesinin A1 titreşim moduna ait olduğu doğrulanmıştır. Enerji Dağılımlı X-ışını vet haritalama teknikleri malzemenin yapısında bulunan Cu, Co, Sn, S elementlerinin ince film yüzeyine homojen bir şekilde dağıldıgını ortaya koymuştur. AFM ve SEM karakterizasyonu CCTS ince filmin yapısal bütünlügünün vurgulamıştır. Optik soğurma analizi ile CCTS ince filmin yasak enerji band değerinin yaklaşık 1.33 eV oldugunu ve bu değerin güneş hücresi uygulamaları için ideal olduğu gösterilmiştir. Bunun yanında üretilen n-ITO/p-CCTs/Ag cihazının yenilenebilir enerji uygulamaları için kullanılmaya elverişli oldugu söylenebilir. Bu bulgular; selenyum, galyum ve indiyum gibi tehlikeli, doğada az bulunan ve maliyetli elementler içermeyen, yeni nesil malzemelerin araştırılmasına olanak sağlamaktadır.

Kaynakça

  • Maldar, P.S, Gaikwad, M.A., Mane, A.A., Nikam, S.S., Desai, S.P., Giri, S.D., Sarkar, A., & Moholkar, A.V. (2017). Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Solar Energy, 158, 89-99.
  • Hossain, M.I. (2012). Prospects of CZTS solar cells from the perspective of material properties, fabrication methods and current research challenges. Chalcogenide Letters., 9(6), 231-242.
  • Ghos, A, Biswas, A., Thangavel, R., &, Udayabhanu, G. (2016). Photo-electrochemical properties and electronic band structure of kesterite copper chalcogenide Cu2–II–Sn–S4 (II ¼ Fe, Co, Ni) thin films. RSC Advances., 6(98), 96025-96034.
  • Kaushik, D. K., Rao, T. N., & Subrahmanyam, A. (2017). Studies on the disorder in DC magnetron sputtered Cu2ZnSnS4 (CZTS) thin films grown in sulfide plasma’,’ Surfaces and Coating Technology., 314, 85-91.
  • Vanalakar, S.A., Agawane, G.L., Shin, S.W., Suryawanshi, M.P., Gurav, K.V., Jeong, K.S., Patil, P.S., Jeong, C.W., Kim, J.Y., Kim, J.H. (2015). A review pulsed laser deposited CZTS thin films for solar cell applications. Journal of Alloys and Compounds, 619, 109-121.
  • Shimamune, Y., Jimbo, K. Nishida, G. Murayama, M., Takeuchi, A., & Katagiri, H. (2017). Cu2ZnSnS4 formation by co-evaporation and subsequent annealing in S-flux using molecular beam epitaxy system. Thin Solid Films, 638, 312-317.
  • Tumbul, A. Aslan, F. Goktas, A., & Mutlu, I. H. (2019). All solution processed superstrate type Cu2ZnSnS4 (CZTS) thin film solar cell : effect of absorber layer thickness. Journal of Alloys and Compounds, 781, 280–288.
  • Tumbul, A. Göktaş, A. Zarbali, M. Z., & Aslan, F. (2018). Structural, morhological and optical properties of vacuum-free processed CZTS thin film absorbers. Material Research Express, 5, 066408.
  • Ma, S., Sui, J., Cao, L., Li, Y., Dong, H., Zhang, Q., & Dong, L. (2015). Sythesis of Cu2ZnSnS4 thin films through chemical successive ionic layer adsorption and reactions, Applied Surface Science, 349, 430–436.
  • Senguler, G. Y., Narin, E. K., Lisesivdin, S. B., Serin T. (2013). Effect of sulfur concentration on structural, optical and electrical properties of the Cu2CoSnS4 absorber film for photovoltaic devices, Physica B, 648,414-424.
  • Ashfag, A., Jacob, J., Mahmood, K., Mehboob, K., Ikram, S., Ali, A., Amin, N., Hussain, S., Rehman, U. (2021). Effect of sulfur amount during post-growth sulfurization process on the structural, morphological and thermoelectric properties of sol-gel grown quaternary chalcogenide Cu2CoSnS4 thin films. Physica B:Condensed Matter, 602, 412497.
  • Ahmed, M. A., Bakr, N. A., Kamil, A. A. (2019). Synthesis and characterization chemically sprayed Cu2CoSnS4 thin films. Chalcogenide Letters, 16(5), 231-239
  • Tumbul, A. (2020). Improving grain size and surface roughness of chemically derived Cu2CoSnS4 (CCTS) solar absorber material by controlling of Cu/Co ratios, Ceramics International, 46 (1), 289-296.
  • Tumbul, A., Aslan, E., Göktaş, A., Mutlu, I. H., Arslan, F., & Aslan, F. (2024). Chemically derived quinary Cu2Co1-xNaxSnS4 photon absrober material and its photocatalytic application, Applied Physics A, 130:225.
  • Hammami, H., Marzougui, M., Oueslati, H., Rabeh, M. B., & Kanzari, M. (2020). Synhtesis, Growth, and Characterization of Cu2CoSnS4 thin film via Thermal Evaporeted Method. Optik, 227(201), 1-11.
  • Ennaoui, A., Lux-steiner, M., Weber, A., Abou-Ras, D., Kötschau, I., Schock, H. W., Schurr, R., Hölzing, A., Jost, S., Hock, R., Vob, T., Schulze, J., Kirbs, A. (2009). Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 517(7), 2511-2514.
  • Zhang, Q. Deng, H., Chen, L., Tao, J.,Yu, J., Yang, P., & Chu, J. (2017). Effect of sulfurization on the structural and optical properties of Cu2CdSnS4 thin films prepared by direct liquid method. Materials Letters, 193, 206-209.
  • Yin, L., Cheng, G., Feng, Y., Li, Z., Yang, C., & Xiao, X. (2015). Limitation factor for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization, RSC Advance, 5(50), 40369–40374,
  • Ma, S., Sui, J., Cao, L., Li, Y., Dong, H., Zhang, Q., & Dong, L. (2015). Sythesis of Cu2ZnSnS4 thin films through chemical successive ionic layer adsorption and reactions, Applied Surface Science, 349, 430-436.
  • Nichols, G., Byard, S., Bloxham, M. J., Botteril, J., Dawson, N. J., Dennis, A., Diart, V., North, N. C., & Sherwood, J.D. (2002). A Review of the Terms Agglomerate and Aggregate with a Recommendation for Nomenclature Used in Powder and Particle Characterization, Journal of Pharmaceutical. Sciences, 91(10), 2103-2109.
  • Hussein, H., & Yazdani, A. (2019). Spin-coated Cu2CrSnS4 thin film: A potantiel candidate for thin film solar cells, Materials Science in Semiconductor Processing, 91, 58-65.
  • Stefan, T. (2025). Nanoscale surface morphology of Cu2CdSnS4 quaternary alloy nanostructures synthesized by spin coating technique and deposited with ultrasonic treatment, Applied Surface Science, 691, 162662.
  • Kamoun, N., Bouzouita, H., & Rezig, B. (2007). Fabrication and characterization of Cu2ZnSnS4 thin film deposited by spray pyrolysis technique, Thin Solid Films, 515(15), 5949-5952.
  • Makula, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis Spectra, The Journal of Physical Chemistry Letters, 9(23), 6814-6817.
  • Maldar, P. S., Mane, A. A., Nikam, S. S., Giri, S. D., Sarkar, A., & Moholkar, A. V. (2017). Temperature dependent properties of spray deposited Cu2CoSnS4 (CCTS) thin films, Journal of Materials Science : Materials in Electronics, 28(24), 18891-18896.
  • Cui, Y., Deng, R., Wang, G., & Pan, D. (2012). A general strategy for synthesis of quaternary semiconductor Cu2MSnS4 (M = Co2+, Fe2+, Ni2+, Mn2+) nanocrystals, Journal of Materials Chemistry, 22(43), 23136-23140.
  • Harrathi, F., Bitri, N., Aubry, E., Briois, P. (2024). Synthesis of Cu2CoSnS4 chalcogenide thin films by spray pyrolysis and efficient Au/p-CCTS/n-SnO2 diode for solar cells applications. J. Mater Sci:Mater Electron, 35(270), 1-16.
  • El, K., A., Elhaj, D., A., Drissi, S., Abali, A., Agdad, A., Dads, H., A., Nkhaili, L., Mansouri, A., E., Chaib, H., Assali, K., E., Outzourhit, A. (2022). Structural, optical and electrical properties of Cu2CoSnS4 thin film solar cells prepared by facile sol-gel route. Thin Solid Films, 758:139430.
  • Dridi, S., Bitri,, N., Aubry, E., Mahjoubi, S., Briois, P. (2024). Comparative study of Cu2XSnS4 (X=Ni, Co, Mn or Fe) films sythesized by spray pyrolysis under air atmosphere, as suitable absorber layers for photovoltaic applications. Journal of Alloys and Compounds, 976:172976.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Karekterizasyonu
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Tumbul 0000-0003-3790-9667

Gönderilme Tarihi 2 Mayıs 2025
Kabul Tarihi 28 Temmuz 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Tumbul, A. (2025). Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications. International Journal of Innovative Engineering Applications, 9(2), 149-154. https://doi.org/10.46460/ijiea.1689650
AMA Tumbul A. Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications. ijiea, IJIEA. Aralık 2025;9(2):149-154. doi:10.46460/ijiea.1689650
Chicago Tumbul, Ahmet. “Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications”. International Journal of Innovative Engineering Applications 9, sy. 2 (Aralık 2025): 149-54. https://doi.org/10.46460/ijiea.1689650.
EndNote Tumbul A (01 Aralık 2025) Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications. International Journal of Innovative Engineering Applications 9 2 149–154.
IEEE A. Tumbul, “Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications”, ijiea, IJIEA, c. 9, sy. 2, ss. 149–154, 2025, doi: 10.46460/ijiea.1689650.
ISNAD Tumbul, Ahmet. “Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications”. International Journal of Innovative Engineering Applications 9/2 (Aralık2025), 149-154. https://doi.org/10.46460/ijiea.1689650.
JAMA Tumbul A. Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications. ijiea, IJIEA. 2025;9:149–154.
MLA Tumbul, Ahmet. “Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications”. International Journal of Innovative Engineering Applications, c. 9, sy. 2, 2025, ss. 149-54, doi:10.46460/ijiea.1689650.
Vancouver Tumbul A. Synthesis and Characterization of Cu2CoSnS4 (CCTS) Absorber Material for Renewable Energy Applications. ijiea, IJIEA. 2025;9(2):149-54.