Investigation Of Current-Voltage Measurements of GaAs /AlxGa1−XAs Multiple Quantum Wells with Metal Organic Vapour Phase Epitaxy
Yıl 2021,
, 45 - 48, 28.06.2021
Aslan Türkoğlu
,
Yüksel Ergün
Öz
In this study, we have investigated the temperature dependence of Current-Voltage measurements of GaAs /AlGaAs multi-quantum well. Our sample, which consists of inclined layers between the 10 periods GaAs /Al_0.25 Ga_0.75 As quantum wells and n^+-GaAs contact layers in the central region, was grown by the Metal Organic Vapor Phase Epitaxy technique. We have found that tunneling current is effective at low temperatures (<85 K) and high voltages as well as thermal current at high temperatures (> 125 K) and low voltages. In addition, in the intermediate temperature region (65 K
Kaynakça
- [1].Rafol, D., Cho, E., Lim, W., 2007. Characterization of very large format 1Kx1K LWIR QWIP focal plane array. Proceedings Volume 6678, Infrared Spaceborne Remote Sensing and Instrumentation XV; 66780X, San Diego, California, United States.
- [2].Robo, J., Costard, E, Truffer, J., Nedelcu, A., Marcadet, X., Bois, P., 2009. QWIP focal plane arrays performances from MWIR up to VLWIR.
- [3].Proceedings Volume 7298, Infrared Technology and Applications XXXV; 72980F, San Diego, California, United States.
- [4].Reibel, Y., Rubaldo, L., Manissadjian, A., Billon-Lanfrey, D., Rothman, J., de Borniol, E., Destéfanis, G., Costard, E., 2012. High-performance MCT and QWIP IR detectors at Sofradir. Electro-Optical and Infrared Systems: Technology and Applications IX. Proceedings of the SPIE, Volume 8541, article id. 85410A, 11., Edinburgh, United Kingdom.
- [5].Gunapala, SD., Bandara, SV., Liu, JK., Mumolo, JM., Rafol, SB., Ting, DZ., Soibel, A., Hill, C., 2014. IEEE Journal of Selected Topics in Quantum Electronics. 20 (6) :3802312.
- [6].Martijn, H., Gamfeldt, A., Asplund, C., Smuk, S., Kataria, H., Costard, E., 2016. QWIPs at IR nova, a status update. Proceedings of SPIE. 9819: 981918.
- [7].Rogalski, A., 1997. Comparison of the performance of quantum well and conventional bulk infrared photodetectors. Infrared Phys. and Tech. 38 29.
- [8].Razeghi, M., Erdtmann, M., Jelen C., Guastavinos, F., Brown G.J., Park, Y.S., 2001. Development of quantum well infrared photodetectors at the Center for Quantum Devices. Infrared Phys. and Tech. 42 135.
- [9].Perera, A. G. U., Shen, W. Z., Matsik, S. G., 1998. GaAs/AlGaAs quantum well photodetectors with a cutoff wavelength at 28 μm. Appl. Phys. Lett. 72, 1596.
- [10].Levine, B. F., 1993. Quantum‐well infrared photodetectors. Journal of Applied Physics 74, R1.
- [11].Esaki L., Tsu, R., 1969. Superlattices and Negative Conductivity in Semiconductors, Res. Note, RC-2414.
- [12].Chang, L.L., Esaki, L., Tsu, R., 1974. Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 593.
- [13].Esaki, L., Sakaki, H., 1977. IBM Technical Disclosure Bulletin, 20, 2456.
- [14].Chiu, L. C., Smith, J. S., Margalit, S., Yariv, A., 1983. Internal photoemission from quantum well heterojunction superlattices by phononless free‐carrier absorption. Appl. Phys. Lett. 43, 331.
- [15].Coon, D. D., Karunasiri, R. P. G. 1984. New mode of IR detection using quantum wells. Appl. Phys. Lett. 45, 649.
- [16].West, C., Eglash, S. J., 1985. First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 46, 1156.
- [17].Levine, B. F., Malik, R. J., Walker, J., Choi, K. K., Bethea, C. G., Kleinman, D. A., Vandenberg, J. M. 1987. New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices. Appl. Phys. Lett. 50, 273.
- [18].Choi, K.K, Levine, B.F., Bethea, C.G, 1987. Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain. Phys. Rev. B 35 4172.
- [19].Vuong, T. H. H., Tsui, D. C., 1989. Transport through InGaAs‐InP superlattices grown by chemical beam epitaxy. Journal of Applied Physics 66, 3688.
Metal Organik Buhar Faz Epitaksisi ile Büyütülen GaAs /AlxGa1−xAs Çoklu Kuantum Kuyularının Akım-Voltaj Ölçümlerinin İncelenmesi
Yıl 2021,
, 45 - 48, 28.06.2021
Aslan Türkoğlu
,
Yüksel Ergün
Öz
Bu çalışmada, GaAs /AlGaAs çoklu kuantum kuyusunun Akım-Voltaj ölçümlerinin sıcaklığa bağlılığını inceledik. Merkez bölgesinde 10 adet GaAs /Al_0.25 Ga_0.75 As kuantum kuyusu ile n^+-GaAs kontak tabakaları arasında eğimli tabakalardan oluşan örneğimiz, Metal Organik Buhar Fazlı Epitaksi tekniği ile büyütülmüştür. Tünelleme akımının düşük sıcaklıklarda (<85 K) ve yüksek voltajlarda, termal akımın ise yüksek sıcaklıklarda (>125 K) ve düşük voltajlarda etkili olduğu gözlemlendi. Ayrıca, ara sıcaklık bölgesinde (65 K
Kaynakça
- [1].Rafol, D., Cho, E., Lim, W., 2007. Characterization of very large format 1Kx1K LWIR QWIP focal plane array. Proceedings Volume 6678, Infrared Spaceborne Remote Sensing and Instrumentation XV; 66780X, San Diego, California, United States.
- [2].Robo, J., Costard, E, Truffer, J., Nedelcu, A., Marcadet, X., Bois, P., 2009. QWIP focal plane arrays performances from MWIR up to VLWIR.
- [3].Proceedings Volume 7298, Infrared Technology and Applications XXXV; 72980F, San Diego, California, United States.
- [4].Reibel, Y., Rubaldo, L., Manissadjian, A., Billon-Lanfrey, D., Rothman, J., de Borniol, E., Destéfanis, G., Costard, E., 2012. High-performance MCT and QWIP IR detectors at Sofradir. Electro-Optical and Infrared Systems: Technology and Applications IX. Proceedings of the SPIE, Volume 8541, article id. 85410A, 11., Edinburgh, United Kingdom.
- [5].Gunapala, SD., Bandara, SV., Liu, JK., Mumolo, JM., Rafol, SB., Ting, DZ., Soibel, A., Hill, C., 2014. IEEE Journal of Selected Topics in Quantum Electronics. 20 (6) :3802312.
- [6].Martijn, H., Gamfeldt, A., Asplund, C., Smuk, S., Kataria, H., Costard, E., 2016. QWIPs at IR nova, a status update. Proceedings of SPIE. 9819: 981918.
- [7].Rogalski, A., 1997. Comparison of the performance of quantum well and conventional bulk infrared photodetectors. Infrared Phys. and Tech. 38 29.
- [8].Razeghi, M., Erdtmann, M., Jelen C., Guastavinos, F., Brown G.J., Park, Y.S., 2001. Development of quantum well infrared photodetectors at the Center for Quantum Devices. Infrared Phys. and Tech. 42 135.
- [9].Perera, A. G. U., Shen, W. Z., Matsik, S. G., 1998. GaAs/AlGaAs quantum well photodetectors with a cutoff wavelength at 28 μm. Appl. Phys. Lett. 72, 1596.
- [10].Levine, B. F., 1993. Quantum‐well infrared photodetectors. Journal of Applied Physics 74, R1.
- [11].Esaki L., Tsu, R., 1969. Superlattices and Negative Conductivity in Semiconductors, Res. Note, RC-2414.
- [12].Chang, L.L., Esaki, L., Tsu, R., 1974. Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24, 593.
- [13].Esaki, L., Sakaki, H., 1977. IBM Technical Disclosure Bulletin, 20, 2456.
- [14].Chiu, L. C., Smith, J. S., Margalit, S., Yariv, A., 1983. Internal photoemission from quantum well heterojunction superlattices by phononless free‐carrier absorption. Appl. Phys. Lett. 43, 331.
- [15].Coon, D. D., Karunasiri, R. P. G. 1984. New mode of IR detection using quantum wells. Appl. Phys. Lett. 45, 649.
- [16].West, C., Eglash, S. J., 1985. First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 46, 1156.
- [17].Levine, B. F., Malik, R. J., Walker, J., Choi, K. K., Bethea, C. G., Kleinman, D. A., Vandenberg, J. M. 1987. New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices. Appl. Phys. Lett. 50, 273.
- [18].Choi, K.K, Levine, B.F., Bethea, C.G, 1987. Periodic negative conductance by sequential resonant tunneling through an expanding high-field superlattice domain. Phys. Rev. B 35 4172.
- [19].Vuong, T. H. H., Tsui, D. C., 1989. Transport through InGaAs‐InP superlattices grown by chemical beam epitaxy. Journal of Applied Physics 66, 3688.