Araştırma Makalesi
BibTex RIS Kaynak Göster

Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods

Yıl 2021, , 65 - 74, 31.12.2021
https://doi.org/10.46460/ijiea.929552

Öz

In this study, different control methods for controlling the position and angle values for the quadcopter (UAV) that take off and land vertically are simulated with MATLAB/Simulink. First of all, a mathematical model was created with the Newton-Euler method, taking into account the dynamics of the quadcopter system. The focus of the study is to investigate the appropriate control method for the position control of the quadcopter. For the linear model of the quadcopter system, PID, LQR and Adaptive Control methods, and for the nonlinear model of the quadcopter system. PD Control simulation has been done. The mentioned control methods have been applied to the system and the control of the movement of the system in each axis has been examined. The obtained results are compared with each other to see the performance of the controllers and the most appropriate control method for the quadcopter was determined with comparisons and tracking scenarios.

Kaynakça

  • Nguyen A.T., Mung N. X. ve Hong S.K, (2019), “Quadcopter Adaptive Trajectory Tracking Control”: A New Approach Via Backstepping Technique.
  • Hussein A., (2017) “Autopilot Design for a Quadcopter” American University of Beirut.
  • Dronecopter, http://www.turkiyegazetesi.com.tr/vozet.php, [Access June, 05th 2018]
  • Corrigan F, “How A Quadcopter Works With Propellers And Motors Explained”, Access May, 05th 2018, https://www.dronezon.com/
  • Bouabdallah S.,(2007) “Design And Control Of Quadrotors With Application To Autonomous Flaying, Swiss”, p.129
  • Hadi N., ve Ramz A,“Tuning of PID Controllers for Quadcopter System Using Hybrid Memory Based Gravitational Search Algorithm–Particle Swarm Optimization”. International Journal of Computer Applications 172, p.4 (August, 17th 2017): 9-18. https://doi.org/10.5120/ijca2017915125.
  • Ermeydan, A., 2015, “Bir Quadrotor’a Arıza Toleranslı Uçuş Kontrol Sistemi Tasarımı”, YL Tezi, Anadolu Üniv. FBE.
  • Karahan M., (2019) “Dört Rotorlu Bir İnsansız Hava Aracının Modellenmesi ve PID Kontrolcü Tasarımı”, YL Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi FBE”.
  • Coşkun İ. ve Terzioğlu H. (13–15 Mayıs 2009) “Gerçek Zamanda Değişen Parametreli PID Hız Kontrolü” 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye
  • Äström K.J., Hägglund T., (2000), “The Future Of PID Control, Control Engineering Practice” (9), 1163-1175.
  • Kuşçu H., Otomatik Kontrol (PID kontrol). http://hilmi.trakya.edu.tr
  • Olfati-Saber R., (2001). Nonlinear control of underactuated mechanical Systems with Application to Robotics and Aerospace Vehicles. Masters thesis, Massachusetts Institute of Technology, USA, p.32-47
  • Fernando H., De Silva, A., De Soysa, M., Munasinghe, S. ve Dilshan, K., (2013). Modelling, Simulation and Implementation of a Quadrotor UAV. IEEE 8th International Conference on Industrial and Information Systems, USA.
  • Oflaz, T., (2013). “Dört Rotorlu Hava Aracının İrtifa Denetimi İçin Doğrusal Olmayan Denetleyici Tasarımı ve Uygulaması. YL Tezi, Yıldız Teknik Üniversitesi, FBE, p. 32-45.
  • Kuzu F., (2018) “Dört Pervaneli (Quadcopter) İnsansız Hava Aracına Farklı Kontrol Yöntemlerinin Uygulanması” YL Tezi, Fırat Üniversitesi, FBE.
  • Lewis,F.L.,(2008),“Linear Quadratic Regulator (LQR) State Feedback Design”, http://www.uta.edu
  • Şen M. A., (2014) “İki Tekerlekli Robot İçin Bulanık Mantık Tabanlı Kontrolcü Tasarımı Ve Arı Algoritması Kullanarak Optimizasyonu” Selçuk Üniversitesi FBE, t.y., 85.
  • Aström K.J., “Adaptive Control Around 1960.; Control Systems Magazine, IEEE, 16, 44-49.
  • Mohammadi M. ve Shahri A.M., (2013)“Modelling and Decentralized Adaptive Tracking Control of a Quadrotor UAV”.
  • Kannan S.K., (2005) “Adaptive control of systems in cascade with saturation”, School of Aerospace Engineering Georgia Institute of Technology

Bir Quadcopterin PID, Adaptif Ve LQR Kontrol Yöntemleri Kullanılarak Yapılan Dinamik Analizi

Yıl 2021, , 65 - 74, 31.12.2021
https://doi.org/10.46460/ijiea.929552

Öz

Bu çalışmada, dikey iniş kalkış yapan quadcopter insansız hava aracı için konum ve açı değerlerinin kontrolü için farklı kontrol yöntemlerinin benzetim çalışmaları MATLAB/Simulink ortamında yapılmıştır. Bu amaçla ilk olarak quadcopter sisteminin dinamiği göz önüne alınarak Newton-Euler metodu ile matematiksel modeli oluşturulmuştur. Çalışmanın odak noktası quadcopterün konum kontrolü için uygun kontrol yönteminin araştırılmasıdır. Quadcopter sisteminin doğrusal modeli için PID, LQR ve Adaptif Kontrol yöntemleri, doğrusal olmayan modeli için ise PD Kontrol benzetim çalışmaları yapılmıştır. Sisteme bahsedilen kontrol yöntemleri uygulanmış ve sistemin her bir eksendeki hareketinin kontrolü incelenmiştir. Bu kontrolörlerden elde edilen sonuçlar karşılaştırılmıştır.

Kaynakça

  • Nguyen A.T., Mung N. X. ve Hong S.K, (2019), “Quadcopter Adaptive Trajectory Tracking Control”: A New Approach Via Backstepping Technique.
  • Hussein A., (2017) “Autopilot Design for a Quadcopter” American University of Beirut.
  • Dronecopter, http://www.turkiyegazetesi.com.tr/vozet.php, [Access June, 05th 2018]
  • Corrigan F, “How A Quadcopter Works With Propellers And Motors Explained”, Access May, 05th 2018, https://www.dronezon.com/
  • Bouabdallah S.,(2007) “Design And Control Of Quadrotors With Application To Autonomous Flaying, Swiss”, p.129
  • Hadi N., ve Ramz A,“Tuning of PID Controllers for Quadcopter System Using Hybrid Memory Based Gravitational Search Algorithm–Particle Swarm Optimization”. International Journal of Computer Applications 172, p.4 (August, 17th 2017): 9-18. https://doi.org/10.5120/ijca2017915125.
  • Ermeydan, A., 2015, “Bir Quadrotor’a Arıza Toleranslı Uçuş Kontrol Sistemi Tasarımı”, YL Tezi, Anadolu Üniv. FBE.
  • Karahan M., (2019) “Dört Rotorlu Bir İnsansız Hava Aracının Modellenmesi ve PID Kontrolcü Tasarımı”, YL Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi FBE”.
  • Coşkun İ. ve Terzioğlu H. (13–15 Mayıs 2009) “Gerçek Zamanda Değişen Parametreli PID Hız Kontrolü” 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye
  • Äström K.J., Hägglund T., (2000), “The Future Of PID Control, Control Engineering Practice” (9), 1163-1175.
  • Kuşçu H., Otomatik Kontrol (PID kontrol). http://hilmi.trakya.edu.tr
  • Olfati-Saber R., (2001). Nonlinear control of underactuated mechanical Systems with Application to Robotics and Aerospace Vehicles. Masters thesis, Massachusetts Institute of Technology, USA, p.32-47
  • Fernando H., De Silva, A., De Soysa, M., Munasinghe, S. ve Dilshan, K., (2013). Modelling, Simulation and Implementation of a Quadrotor UAV. IEEE 8th International Conference on Industrial and Information Systems, USA.
  • Oflaz, T., (2013). “Dört Rotorlu Hava Aracının İrtifa Denetimi İçin Doğrusal Olmayan Denetleyici Tasarımı ve Uygulaması. YL Tezi, Yıldız Teknik Üniversitesi, FBE, p. 32-45.
  • Kuzu F., (2018) “Dört Pervaneli (Quadcopter) İnsansız Hava Aracına Farklı Kontrol Yöntemlerinin Uygulanması” YL Tezi, Fırat Üniversitesi, FBE.
  • Lewis,F.L.,(2008),“Linear Quadratic Regulator (LQR) State Feedback Design”, http://www.uta.edu
  • Şen M. A., (2014) “İki Tekerlekli Robot İçin Bulanık Mantık Tabanlı Kontrolcü Tasarımı Ve Arı Algoritması Kullanarak Optimizasyonu” Selçuk Üniversitesi FBE, t.y., 85.
  • Aström K.J., “Adaptive Control Around 1960.; Control Systems Magazine, IEEE, 16, 44-49.
  • Mohammadi M. ve Shahri A.M., (2013)“Modelling and Decentralized Adaptive Tracking Control of a Quadrotor UAV”.
  • Kannan S.K., (2005) “Adaptive control of systems in cascade with saturation”, School of Aerospace Engineering Georgia Institute of Technology
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayhan Altınörs 0000-0003-2036-7080

Funda Kuzu 0000-0002-2979-513X

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 28 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Altınörs, A., & Kuzu, F. (2021). Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods. International Journal of Innovative Engineering Applications, 5(2), 65-74. https://doi.org/10.46460/ijiea.929552
AMA Altınörs A, Kuzu F. Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods. ijiea, IJIEA. Aralık 2021;5(2):65-74. doi:10.46460/ijiea.929552
Chicago Altınörs, Ayhan, ve Funda Kuzu. “Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods”. International Journal of Innovative Engineering Applications 5, sy. 2 (Aralık 2021): 65-74. https://doi.org/10.46460/ijiea.929552.
EndNote Altınörs A, Kuzu F (01 Aralık 2021) Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods. International Journal of Innovative Engineering Applications 5 2 65–74.
IEEE A. Altınörs ve F. Kuzu, “Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods”, ijiea, IJIEA, c. 5, sy. 2, ss. 65–74, 2021, doi: 10.46460/ijiea.929552.
ISNAD Altınörs, Ayhan - Kuzu, Funda. “Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods”. International Journal of Innovative Engineering Applications 5/2 (Aralık 2021), 65-74. https://doi.org/10.46460/ijiea.929552.
JAMA Altınörs A, Kuzu F. Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods. ijiea, IJIEA. 2021;5:65–74.
MLA Altınörs, Ayhan ve Funda Kuzu. “Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods”. International Journal of Innovative Engineering Applications, c. 5, sy. 2, 2021, ss. 65-74, doi:10.46460/ijiea.929552.
Vancouver Altınörs A, Kuzu F. Dynamic Analysis of a Quadcopter Using PID, Adaptive and LQR Control Methods. ijiea, IJIEA. 2021;5(2):65-74.

Cited By

Arduino Based Flight Control Card Design and Quadcopter Integration
Gazi University Journal of Science Part A: Engineering and Innovation
https://doi.org/10.54287/gujsa.1480315