Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 4 Sayı: 1, 1 - 8, 29.06.2020
https://doi.org/10.46460/ijiea.707142

Öz

Destekleyen Kurum

Selçuk Üniversitesi

Proje Numarası

BAP 17201017

Kaynakça

  • [1] Wang, C., Du, J., Wang, S., Li, Y., Chen, X., Jing, X., Wei, Y., Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning, Materials Letters 59, 3046-3049, 2005.
  • [2] Mazinani, S., Ajji, A., Dubois, C., Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat, Polymer, 50: 3329-3342, 2009.
  • [3] Sichani, G.N., Morshed, M., Amirnasr, M., Abedi, D., In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles, Journal of Applied Polymer Science, 116, 1021-1029, 2010.
  • [4] Jeong, L., Park, W.H., Preparation and characterization of gelatin nanofibers containing silver nanoparticles, International Journal of Molecular Sciences, 15, 6857-6879, 2014.
  • [5] Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63, 2223-2253, 2003.
  • [6] Li, D., Xia, Y., Electrospinning of nanofibers: reinventing the wheel?, Advanced Materials, 16, 1151-1170, 2004.
  • [7] Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges D., Ma, Y., Hu, A., Electrospinning of nanofibers and their applications for energy devices, Journal of Nanomaterials, Volume 2015, 20 pages, 2015.
  • [8] Ding, B., Yu, J., Electrospun nanofibers for energy and environmental applications, Springer, 2014.
  • [9] Ramakrishna, S., An introduction to electrospinning and nanofibers, World Scientific, 2005.
  • [10] Frenot A., Chronakis, I.S., Polymer nanofibers assembled by electrospinning, Current Opinion in Colloid & Interface Science, 8, 64-75, 2003.
  • [11] Karakaş, H., Electrospinning of Nanofibers and There Applications, Istanbul Technical University, Textile Technologies and Design Faculty, 2015.
  • [12] Fong, H., Chun, I, Reneker, D., Beaded nanofibers formed during electrospinning, Polymer, 40, 4585-4592, 1999.
  • [13] McKee, M.G., Wilkes, G.L., Colby, R.H., Long T.E., Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters, Macromolecules, 37, 1760-1767, 2004.
  • [14] Tański, T., Matysiak, W, Hajduk, B., Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles, Beilstein Journal of Nanotechnology, 7, 1141-1155, 2016.
  • [15] Rujitanaroj, Po., Pimpha, N., Supaphol, P., Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles, Journal of Applied Polymer Science, 116, 1967-1976, 2010.
  • [16] Luoh, R., Hahn, H.T., Electrospun nanocomposite fiber mats as gas sensors, Composites Science and Technology, 66, 2436-2441, 2006.
  • [17] Deng, C., Gong, P., He, Q., Cheng, J., He, C., Shi, L., Zhu D., Lin T., Highly fluorescent TPA-PBPV nanofibers with amplified sensory response to TNT, Chemical Physics Letters, 483, 219-223. 2009.
  • [18] Wang, X., Lin, T., Needleless electrospinning of nanofibers: Technology and applications, CRC Press, 2013.
  • [19] Lee, D.Y., Kim, B.Y., Lee, S.J., Lee M.H., Song Y.S., Lee, J.Y., Titania nanofibers prepared by electrospinning, Korean Physical Society, 48 (6), 1686-1690, 2006.
  • [20] Ra, E.J., An, K.H., Kim, K.K., Jeong, S.Y., Lee, Y.H., Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chemical Physics Letters, 413, 188-193, 2005.
  • [21] Kim, C., Kim, J.S., Lee, W.J., Kim, H.S., Edie, D.D., Yang, K. S., Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC, Journal of the Korean Electrochemical Society, 5, 117-124, 2002.
  • [22] Panapoy, M, Dankeaw A., Ksapabutr, B., Electrical conductivity of PAN-based carbon nanofibers prepared by electrospinning method, Thammasat Int. J. Sc. Tech., 13, 11-17, 2008.
  • [23] Hong, K.H., Oh, K.W., Kang, T.J., Preparation of conducting nylon-6 electrospun fiber webs by the in situ polymerization of polyaniline, Journal of Applied Polymer Science, 96, 983-991, 2005.
  • [24] Chronakis, I.S., Grapenson, S., Jakob., A., Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties, Polymer, 47, 1597-1603, 2006.
  • [25] Dong, H., Prasad, S., Nyame, V., Jones, W.E., Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates, Chemistry of Materials, 16, 371-373, 2004.
  • [26] Laforgue, A., Robitaille, L., Mokrini, A., Ajji, A., Fabrication and characterization of ionic conducting nanofibers, Macromolecular Materials and Engineering, 292, 1229-1236, 2007.
  • [27] Sundaray, B., Choi, A., Park, Y.W., Highly conducting electrospun polyaniline-polyethylene oxide nanofibrous membranes filled with single-walled carbon nanotubes, Synthetic Metals, 160, 984-988, 2010.
  • [28] Kang, S.J., Kocabas, C., Ozel, T., Shim, M., Pimparkar, N., Alam, M. A., Rotkin, S.V., RogersJ. A., High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nature Nanotechnology, 2, 230-236, 2007.
  • [29] Nair, S., Natarajan, S., Kim, S.H., Fabrication of electrically conducting polypyrrole‐poly (ethylene oxide) composite nanofibers, Macromolecular Rapid Communications, 26, 1599-1603, 2005.
  • [30]Chhatbar, M.U., Meena, R., Prasad, K., Siddhanta, A.K., Agar/sodium alginate-graft-polyacrylonitrile, a stable hydrogel system, Indian Journal of Chemistry, 48A, 1085-1090, 2009.
  • [31] Rajendran, S., Kannan, R, Mahendran, O., Study on Li ion conduction behaviour of the plasticized polymer electrolytes based on polyacrylonitrile, Materials Letters, 48: 331-335, 2001.
  • [32] Zussman, E., Chen, X., Ding, W., Calabri, L., Dikin, D.A., Quintana J.P., Ruoff, R.S., Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers, Carbon, 43, 2175-2185, 2005.
  • [33] Robinson, J.W., Frame, E.S, Frame II, G.M., Undergraduate instrumental analysis, CRC press, 2014.
  • [34] Mohamed, S.A., Al-Ghamdi, A., Sharma, G., El Mansy, M.K., Journal of Advanced Research, 5, 79-86, 2014.
  • [35]Khan, W.S, Ceylan, M., Jabarrania, A., Saeednia, L., Asmatulu, R., Chemical and thermal ınvestigations of electrospun polyacrylonitrile nanofibers incorporated with various nanoscale inclusions, Journal of Thermal Engineering, 3, 1374-1389, 2017.
  • [36]Lafuma, A., Quéré, D., Superhydrophobic states, Nature Materials, 2, 457-460, 2003.
  • [37] Yuan, Y., Lee, T.R., Contact angle and wetting properties, Surface Science Techniques, Springer, 3-34, 2013.
  • [38]Liu, Y., Chen, X., Xin, J., Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach, Nanotechnology, 17 (13), 3259-3263, 2006.
  • [39] Gao, L., McCarthy, T.J., A perfectly hydrophobic surface (θA/θR= 180/180), Journal of the American Chemical Society, 128, 9052-9053, 2006.

Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles

Yıl 2020, Cilt: 4 Sayı: 1, 1 - 8, 29.06.2020
https://doi.org/10.46460/ijiea.707142

Öz

In this study, pure polyacrylonitrile nanofibers in the diameter range of 200-500 nm and PAN / Cu composite nanofibers in 200-600 nm diameter range were produced at applied voltage of 15 kV. The distribution of fiber diameters, the dynamic viscosities of the solutions and the electrical conductivity (EC) of the produced fibers have been examined as a function of copper nanoparticles content (1%, 3% and 5% by weight). Results showed that the dynamic viscosity of the electrospinning solution is an important parameter on the nanofiber morphology as well as on the nanofiber diameter distribution. Taken together, the data analysis showed that the highest EC value was 38x10-2 S/cm, which was obtained from nanofibers produced by electrospinning solution containing %1 Cu nanoparticle having a dynamic viscosity value of 577.7 mPa.s. The addition of Cu nanoparticles increased the EC of pure PAN nanofibers by a factor of 2.37. In addition, further analysis of pure PAN nanofibers and %1 Cu/PAN nanofibers have been performed by XRD, contact angle and TGA devices. Results showed that the TGA degradation curves of both pure PAN and Cu-based PAN nanofibers presented the same behavior. In DSC analysis, the glass transition temperature of pure PAN nanofibers was observed at 112 °C, while no glass transition temperature was observed for PAN nanofibers containing 1% Cu.

Proje Numarası

BAP 17201017

Kaynakça

  • [1] Wang, C., Du, J., Wang, S., Li, Y., Chen, X., Jing, X., Wei, Y., Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning, Materials Letters 59, 3046-3049, 2005.
  • [2] Mazinani, S., Ajji, A., Dubois, C., Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat, Polymer, 50: 3329-3342, 2009.
  • [3] Sichani, G.N., Morshed, M., Amirnasr, M., Abedi, D., In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles, Journal of Applied Polymer Science, 116, 1021-1029, 2010.
  • [4] Jeong, L., Park, W.H., Preparation and characterization of gelatin nanofibers containing silver nanoparticles, International Journal of Molecular Sciences, 15, 6857-6879, 2014.
  • [5] Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63, 2223-2253, 2003.
  • [6] Li, D., Xia, Y., Electrospinning of nanofibers: reinventing the wheel?, Advanced Materials, 16, 1151-1170, 2004.
  • [7] Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges D., Ma, Y., Hu, A., Electrospinning of nanofibers and their applications for energy devices, Journal of Nanomaterials, Volume 2015, 20 pages, 2015.
  • [8] Ding, B., Yu, J., Electrospun nanofibers for energy and environmental applications, Springer, 2014.
  • [9] Ramakrishna, S., An introduction to electrospinning and nanofibers, World Scientific, 2005.
  • [10] Frenot A., Chronakis, I.S., Polymer nanofibers assembled by electrospinning, Current Opinion in Colloid & Interface Science, 8, 64-75, 2003.
  • [11] Karakaş, H., Electrospinning of Nanofibers and There Applications, Istanbul Technical University, Textile Technologies and Design Faculty, 2015.
  • [12] Fong, H., Chun, I, Reneker, D., Beaded nanofibers formed during electrospinning, Polymer, 40, 4585-4592, 1999.
  • [13] McKee, M.G., Wilkes, G.L., Colby, R.H., Long T.E., Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters, Macromolecules, 37, 1760-1767, 2004.
  • [14] Tański, T., Matysiak, W, Hajduk, B., Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles, Beilstein Journal of Nanotechnology, 7, 1141-1155, 2016.
  • [15] Rujitanaroj, Po., Pimpha, N., Supaphol, P., Preparation, characterization, and antibacterial properties of electrospun polyacrylonitrile fibrous membranes containing silver nanoparticles, Journal of Applied Polymer Science, 116, 1967-1976, 2010.
  • [16] Luoh, R., Hahn, H.T., Electrospun nanocomposite fiber mats as gas sensors, Composites Science and Technology, 66, 2436-2441, 2006.
  • [17] Deng, C., Gong, P., He, Q., Cheng, J., He, C., Shi, L., Zhu D., Lin T., Highly fluorescent TPA-PBPV nanofibers with amplified sensory response to TNT, Chemical Physics Letters, 483, 219-223. 2009.
  • [18] Wang, X., Lin, T., Needleless electrospinning of nanofibers: Technology and applications, CRC Press, 2013.
  • [19] Lee, D.Y., Kim, B.Y., Lee, S.J., Lee M.H., Song Y.S., Lee, J.Y., Titania nanofibers prepared by electrospinning, Korean Physical Society, 48 (6), 1686-1690, 2006.
  • [20] Ra, E.J., An, K.H., Kim, K.K., Jeong, S.Y., Lee, Y.H., Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chemical Physics Letters, 413, 188-193, 2005.
  • [21] Kim, C., Kim, J.S., Lee, W.J., Kim, H.S., Edie, D.D., Yang, K. S., Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC, Journal of the Korean Electrochemical Society, 5, 117-124, 2002.
  • [22] Panapoy, M, Dankeaw A., Ksapabutr, B., Electrical conductivity of PAN-based carbon nanofibers prepared by electrospinning method, Thammasat Int. J. Sc. Tech., 13, 11-17, 2008.
  • [23] Hong, K.H., Oh, K.W., Kang, T.J., Preparation of conducting nylon-6 electrospun fiber webs by the in situ polymerization of polyaniline, Journal of Applied Polymer Science, 96, 983-991, 2005.
  • [24] Chronakis, I.S., Grapenson, S., Jakob., A., Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties, Polymer, 47, 1597-1603, 2006.
  • [25] Dong, H., Prasad, S., Nyame, V., Jones, W.E., Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates, Chemistry of Materials, 16, 371-373, 2004.
  • [26] Laforgue, A., Robitaille, L., Mokrini, A., Ajji, A., Fabrication and characterization of ionic conducting nanofibers, Macromolecular Materials and Engineering, 292, 1229-1236, 2007.
  • [27] Sundaray, B., Choi, A., Park, Y.W., Highly conducting electrospun polyaniline-polyethylene oxide nanofibrous membranes filled with single-walled carbon nanotubes, Synthetic Metals, 160, 984-988, 2010.
  • [28] Kang, S.J., Kocabas, C., Ozel, T., Shim, M., Pimparkar, N., Alam, M. A., Rotkin, S.V., RogersJ. A., High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nature Nanotechnology, 2, 230-236, 2007.
  • [29] Nair, S., Natarajan, S., Kim, S.H., Fabrication of electrically conducting polypyrrole‐poly (ethylene oxide) composite nanofibers, Macromolecular Rapid Communications, 26, 1599-1603, 2005.
  • [30]Chhatbar, M.U., Meena, R., Prasad, K., Siddhanta, A.K., Agar/sodium alginate-graft-polyacrylonitrile, a stable hydrogel system, Indian Journal of Chemistry, 48A, 1085-1090, 2009.
  • [31] Rajendran, S., Kannan, R, Mahendran, O., Study on Li ion conduction behaviour of the plasticized polymer electrolytes based on polyacrylonitrile, Materials Letters, 48: 331-335, 2001.
  • [32] Zussman, E., Chen, X., Ding, W., Calabri, L., Dikin, D.A., Quintana J.P., Ruoff, R.S., Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers, Carbon, 43, 2175-2185, 2005.
  • [33] Robinson, J.W., Frame, E.S, Frame II, G.M., Undergraduate instrumental analysis, CRC press, 2014.
  • [34] Mohamed, S.A., Al-Ghamdi, A., Sharma, G., El Mansy, M.K., Journal of Advanced Research, 5, 79-86, 2014.
  • [35]Khan, W.S, Ceylan, M., Jabarrania, A., Saeednia, L., Asmatulu, R., Chemical and thermal ınvestigations of electrospun polyacrylonitrile nanofibers incorporated with various nanoscale inclusions, Journal of Thermal Engineering, 3, 1374-1389, 2017.
  • [36]Lafuma, A., Quéré, D., Superhydrophobic states, Nature Materials, 2, 457-460, 2003.
  • [37] Yuan, Y., Lee, T.R., Contact angle and wetting properties, Surface Science Techniques, Springer, 3-34, 2013.
  • [38]Liu, Y., Chen, X., Xin, J., Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach, Nanotechnology, 17 (13), 3259-3263, 2006.
  • [39] Gao, L., McCarthy, T.J., A perfectly hydrophobic surface (θA/θR= 180/180), Journal of the American Chemical Society, 128, 9052-9053, 2006.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Olivier Mpukuta 0000-0003-2071-840X

Kevser Dincer 0000-0001-6681-5294

İlkay Özaytekin 0000-0002-0352-9458

Proje Numarası BAP 17201017
Yayımlanma Tarihi 29 Haziran 2020
Gönderilme Tarihi 21 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Mpukuta, O., Dincer, K., & Özaytekin, İ. (2020). Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles. International Journal of Innovative Engineering Applications, 4(1), 1-8. https://doi.org/10.46460/ijiea.707142
AMA Mpukuta O, Dincer K, Özaytekin İ. Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles. ijiea, IJIEA. Haziran 2020;4(1):1-8. doi:10.46460/ijiea.707142
Chicago Mpukuta, Olivier, Kevser Dincer, ve İlkay Özaytekin. “Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles”. International Journal of Innovative Engineering Applications 4, sy. 1 (Haziran 2020): 1-8. https://doi.org/10.46460/ijiea.707142.
EndNote Mpukuta O, Dincer K, Özaytekin İ (01 Haziran 2020) Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles. International Journal of Innovative Engineering Applications 4 1 1–8.
IEEE O. Mpukuta, K. Dincer, ve İ. Özaytekin, “Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles”, ijiea, IJIEA, c. 4, sy. 1, ss. 1–8, 2020, doi: 10.46460/ijiea.707142.
ISNAD Mpukuta, Olivier vd. “Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles”. International Journal of Innovative Engineering Applications 4/1 (Haziran 2020), 1-8. https://doi.org/10.46460/ijiea.707142.
JAMA Mpukuta O, Dincer K, Özaytekin İ. Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles. ijiea, IJIEA. 2020;4:1–8.
MLA Mpukuta, Olivier vd. “Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles”. International Journal of Innovative Engineering Applications, c. 4, sy. 1, 2020, ss. 1-8, doi:10.46460/ijiea.707142.
Vancouver Mpukuta O, Dincer K, Özaytekin İ. Effect of Dynamic Viscosity on Nanofiber Diameters and Electrical Conductivity of Polyacrylonitrile Nanofibers Doped Nano-Cu Particles. ijiea, IJIEA. 2020;4(1):1-8.