Araştırma Makalesi
BibTex RIS Kaynak Göster

Ti6Al4V Malzemesinin Mikro Frezeleme İşleminde Sonlu Elemanlar Yöntemi İle Kriyojenik Soğutmanın Etkisinin İncelenmesi

Yıl 2021, Cilt: 5 Sayı: 2, 93 - 100, 31.12.2021
https://doi.org/10.46460/ijiea.948297

Öz

Bu çalışmada, Ti6Al4V alaşımının mikro frezelemede 50,100,150 m/s kesme hızlarında ve 1,2,3 μm/dev ilerleme hızında kuru, sıvı soğutma sıvısı ve LN2 bazlı kriyojenik soğutma uygulamalarının kesme sıcaklıklarına etkileri karşılaştırılmıştır. Farklı parametrelerde, takım, iş parçası-kesme kenarları kriyojenik mikro frezeleme kesim bölgeleri simüle edilmiş ve sıcaklıklar gözlemlenmiştir. Kriyojenik soğutma, kuru ve kesme sıvısı uygulamalarında görülen takım aşınmaları, talaş oluşumu, gerinim, gerilmeler ve kesme kuvvetleri Sonlu Elemanlar yöntemi ile yorumlanmıştır. Ayrıca, bu çalışmada, Arbitrary Lagrange-Eulerian (ALE) simülasyonlarına dayalı bir ağ modeli ve malzeme plastisite ve kırılma kriteri için Johnson-Cook Plastisite modeli kullanılmıştır. Sonuç olarak, 100 m/dk kesme hızında, iş parçası ve kesici kenarlar üzerinde kriyojenik soğutmanın kesme sıcaklığının %57 oranında azalmasına neden olduğu ve ayrıca iç takım kriyojenik üzerinde %54 daha düşük takım aşınması gözlemlendiği belirtilmiştir. 15 iş parçası-kesme kenarlarında kesme gerilmeleri kuru kesmeye göre azaldığı görülmüştür.

Destekleyen Kurum

İnönü üniversitesi BAP birimi

Proje Numarası

FYL-2021-2405

Teşekkür

İnönü üniversitesi BAP birimine desteklerinden dolayı teşekkür ederim.

Kaynakça

  • 1-Khorasani AM, Goldberg M, Doeven EH, Littlefair G. Titanium in biomedical applications—properties and fabrication: a review. Journal of Biomaterials and Tissue Engineering. 2015 Aug 1;5(8):593-619.
  • 2- Chae J, Park SS, Freiheit T. Investigation of micro-cutting operations. International Journal of Machine Tools and Manufacture. 2006 Mar 1;46(3-4):313-32.
  • 3- Özel T, Bártolo PJ, Ceretti E, Gay JD, Rodriguez CA, Da Silva JV, editors. Biomedical devices: design, prototyping, and manufacturing. John Wiley & Sons; 2016 Oct 24.
  • 4- Robinson GM, Jackson MJ. A review of micro and nanomachining from a materials perspective. Journal of Materials Processing Technology. 2005 Aug 30;167(2-3):316-37.
  • 5- Ezugwu EO, Wang ZM. Titanium alloys and their machinability—a review. Journal of materials processing technology. 1997 Aug 15;68(3):262-74.
  • 6-Robinson GM, Jackson MJ, Whitfield MD. A review of machining theory and tool wear with a view to developing micro and nano machining processes. Journal of Materials Science. 2007 Mar 1;42(6):2002-15.
  • 7-Dadgari A, Huo D, Swailes D. Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V. Nanotechnology and Precision Engineering. 2018 Dec 1;1(4):218-25.
  • 8- Vazquez E, Gomar J, Ciurana J, Rodríguez CA. Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V. Journal of Cleaner Production. 2015 Jan 15;87:906-13.
  • 9- Su Y, He N, Li L, Li XL. An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear. 2006 Oct 20;261(7-8):760
  • 10- Debnath S, Reddy MM, Yi QS. Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of cleaner production. 2014 Nov 15;83:33-47.
  • 11- Pervaiz S, Deiab I, Rashid A, Nicolescu M. Minimal quantity cooling lubrication in turning of Ti6Al4V: influence on surface roughness, cutting force and tool wear. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2017 Jul;231(9):1542-58.
  • 12- Park KH, Suhaimi MA, Yang GD, Lee DY, Lee SW, Kwon P. Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing. 2017 Jan 1;18(1):5-14
  • 13- Aramcharoen A, Chuan SK. An experimental investigation on cryogenic milling of Inconel 718 and its sustainability assessment. Procedia Cirp. 2014 Jan 1;14(1):529-34.
  • 14--Shah P, Khanna N. Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribology International. 2020 Mar 20:106314.
  • 15- Veiga C, Davim JP, Loureiro AJ. Review on machinability of titanium alloys: the process perspective. Rev. Adv. Mater. Sci. 2013 Jan;34(2):148-64.
  • 16- Rotella G, Dillon OW, Umbrello D, Settineri L, Jawahir IS. The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. The International Journal of Advanced Manufacturing Technology. 2014 Mar 1;71(1-4):47-55.
  • 17- Benardos PG, Vosniakos GC. Predicting surface roughness in machining: a review. International journal of machine tools and manufacture. 2003 Jun 1;43(8):833-44.
  • 18- Jawahir IS, Attia H, Biermann D, Duflou J, Klocke F, Meyer D, Newman ST, Pusavec F, Putz M, Rech J, Schulze V. Cryogenic manufacturing processes. CIRP annals. 2016 Jan 1;65(2):713-36.
  • 19- Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS. Recent advances in modelling of metal machining processes. CIRP Annals. 2013 Jan 1;62(2):695-718.
  • 20- Caudill J, Schoop J, Jawahir IS. Numerical modeling of cutting forces and temperature distribution in high speed cryogenic and flood-cooled milling of Ti-6Al-4V. Procedia CIRP. 2019 Jan 1;82:83-8
  • 21- Davoudinejad A, Li D, Zhang Y, Tosello G. Optimization of corner micro end milling by finite element modelling for machining thin features. Procedia CIRP. 2019 Jan 1;82:362-7.
  • 22- Attanasio A, Abeni A, Özel T, Ceretti E. Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. The International Journal of Advanced Manufacturing Technology. 2019 Jan 16;100(1-4):25-35.
  • 23- Umbrello D, Bordin A, Imbrogno S, Bruschi S. 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti6Al4V alloy. CIRP Journal of Manufacturing Science and Technology. 2017 Aug 1;18:92-100.
  • 24-Pashaki PV, Pouya M. Investigation of high-speed cryogenic machining based on finite element approach. Latin American Journal of Solids and Structures. 2017 Mar;14(4):629-42.
  • 25- Özel T, Olleak A, Thepsonthi T. Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Production Engineering. 2017 Oct 1;11(4-5):435-44.
  • 26- Imbrogno S, Sartori S, Bordin A, Bruschi S, Umbrello D. Machining simulation of Ti6Al4V under dry and cryogenic conditions. Procedia CIRP. 2017 Jan 1;58:475-80.
  • 27-Mamedov A, Lazoglu I. Thermal analysis of micro milling titanium alloy Ti–6Al–4V. Journal of Materials Processing Technology. 2016 Mar 1;229:659-67.
  • 28- Tounsi N, El-Wardany T. Finite element analysis of chip formation and residual stresses induced by sequential cutting in side milling with microns to sub-micron uncut chip thickness and finite cutting edge radius. Advances in Manufacturing. 2015 Dec 1;3(4):309-22.
  • 29- Rao B, Dandekar CR, Shin YC. An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology. 2011 Feb 1;211(2):294-304.
  • 30- Ortiz-de-Zarate G, Madariaga A, Garay A, Azpitarte L, Sacristan I, Cuesta M, Arrazola PJ. Experimental and FEM analysis of surface integrity when broaching Ti64. Procedia Cirp. 2018 Jan 1;71:466-71.
  • 31- Calamaz M, Coupard D, Girot F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. International Journal of Machine Tools and Manufacture. 2008 Mar 1;48(3-4):275-88.
  • 32- Hong SY, Ding Y,Jeong W-c, Friction and cutting forces in cryogenic machining of Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 2001. 41(15): p. 2271-2285
  • 33- Johnson GR. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. Proc. 7th Inf. Sympo. Ballistics. 1983:541-7.
  • 34- ]Lee W-S,Lin C-F, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering: A, 1998. 241(1-2): p. 48-59.
  • 35-Rotella G., Umbrello D., Finite element modelling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. CIRP Annals - Manufacturing Technology 63 (1) (2014) 69-72.
  • 36- Pu Z., Umbrello D., Dillon Jr. O.W., Jawahir I.S., Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ31B Mg Alloy. Procedia CIRP (13) (2014) 282-287
  • 37- Umbrello D, Caruso S, Imbrogno S. Finite element modelling of microstructural changes in dry and cryogenic machining AISI 52100 steel. Materials Science and Technology. 2016 Jul 23;32(11):1062-70.
  • 38- Shen GE, Gandhi A, Arici O, Sutherland JW. A model for workpiece temperatures during peripheral milling including the effect of cutting fluids. TRANSACTIONS-NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTION OF SME. 2001:265-72.
  • 39- Lee WS, Lin CF. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests. Journal of Materials Processing Technology. 1998 Mar 1;75(1-:127-36.
  • 40- Usui E, Shirakashi T, Kitagawa T. Analytical prediction of three dimensional cutting process—Part 3: Cutting temperature and crater wear of carbide tool.
  • 41- Davoudinejad A, Chiappini E, Tirelli S, Annoni M, Strano M. Finite element simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti–6Al–4V. Procedia manufacturing. 2015 Jan 1;1:728-39

Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material

Yıl 2021, Cilt: 5 Sayı: 2, 93 - 100, 31.12.2021
https://doi.org/10.46460/ijiea.948297

Öz

In this study, the effects of dry, liquid coolant and LN2-based cryogenic cooling applications on cutting temperatures at 50,100,150 m/s cutting speeds and 1,2,3 μm/dev feed rate were compared in micro-milling of Ti6Al4V alloy . At different parameters, internal and workpiece-cutting edges cryogenic (wacec) micro-milling cutting zones are simulated temperatures were observed. Cryogenic cooling, dry and liquid coolant applications perceived that tool wear, chip formation, strain, stresses, and shear forces interpreted with the FEM. Also, a mesh model based on Arbitrary Lagrangian-Eulerian (ALE) simulations and the Johnson-Cook Plasticity model for material plasticity failure criterion are used in this study. As a result, indicated that at the cutting velocity of 100 m/min, cryogenic cooling on the workpiece and cutting edges has caused into decreasing %57 of cutting temperature also by %54 lower tool wear was observed on the internal tool cryogenic, by %15 the shear stresses decrease on wacec in comparison with the dry cutting.

Proje Numarası

FYL-2021-2405

Kaynakça

  • 1-Khorasani AM, Goldberg M, Doeven EH, Littlefair G. Titanium in biomedical applications—properties and fabrication: a review. Journal of Biomaterials and Tissue Engineering. 2015 Aug 1;5(8):593-619.
  • 2- Chae J, Park SS, Freiheit T. Investigation of micro-cutting operations. International Journal of Machine Tools and Manufacture. 2006 Mar 1;46(3-4):313-32.
  • 3- Özel T, Bártolo PJ, Ceretti E, Gay JD, Rodriguez CA, Da Silva JV, editors. Biomedical devices: design, prototyping, and manufacturing. John Wiley & Sons; 2016 Oct 24.
  • 4- Robinson GM, Jackson MJ. A review of micro and nanomachining from a materials perspective. Journal of Materials Processing Technology. 2005 Aug 30;167(2-3):316-37.
  • 5- Ezugwu EO, Wang ZM. Titanium alloys and their machinability—a review. Journal of materials processing technology. 1997 Aug 15;68(3):262-74.
  • 6-Robinson GM, Jackson MJ, Whitfield MD. A review of machining theory and tool wear with a view to developing micro and nano machining processes. Journal of Materials Science. 2007 Mar 1;42(6):2002-15.
  • 7-Dadgari A, Huo D, Swailes D. Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V. Nanotechnology and Precision Engineering. 2018 Dec 1;1(4):218-25.
  • 8- Vazquez E, Gomar J, Ciurana J, Rodríguez CA. Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V. Journal of Cleaner Production. 2015 Jan 15;87:906-13.
  • 9- Su Y, He N, Li L, Li XL. An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear. 2006 Oct 20;261(7-8):760
  • 10- Debnath S, Reddy MM, Yi QS. Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of cleaner production. 2014 Nov 15;83:33-47.
  • 11- Pervaiz S, Deiab I, Rashid A, Nicolescu M. Minimal quantity cooling lubrication in turning of Ti6Al4V: influence on surface roughness, cutting force and tool wear. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2017 Jul;231(9):1542-58.
  • 12- Park KH, Suhaimi MA, Yang GD, Lee DY, Lee SW, Kwon P. Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing. 2017 Jan 1;18(1):5-14
  • 13- Aramcharoen A, Chuan SK. An experimental investigation on cryogenic milling of Inconel 718 and its sustainability assessment. Procedia Cirp. 2014 Jan 1;14(1):529-34.
  • 14--Shah P, Khanna N. Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribology International. 2020 Mar 20:106314.
  • 15- Veiga C, Davim JP, Loureiro AJ. Review on machinability of titanium alloys: the process perspective. Rev. Adv. Mater. Sci. 2013 Jan;34(2):148-64.
  • 16- Rotella G, Dillon OW, Umbrello D, Settineri L, Jawahir IS. The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. The International Journal of Advanced Manufacturing Technology. 2014 Mar 1;71(1-4):47-55.
  • 17- Benardos PG, Vosniakos GC. Predicting surface roughness in machining: a review. International journal of machine tools and manufacture. 2003 Jun 1;43(8):833-44.
  • 18- Jawahir IS, Attia H, Biermann D, Duflou J, Klocke F, Meyer D, Newman ST, Pusavec F, Putz M, Rech J, Schulze V. Cryogenic manufacturing processes. CIRP annals. 2016 Jan 1;65(2):713-36.
  • 19- Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS. Recent advances in modelling of metal machining processes. CIRP Annals. 2013 Jan 1;62(2):695-718.
  • 20- Caudill J, Schoop J, Jawahir IS. Numerical modeling of cutting forces and temperature distribution in high speed cryogenic and flood-cooled milling of Ti-6Al-4V. Procedia CIRP. 2019 Jan 1;82:83-8
  • 21- Davoudinejad A, Li D, Zhang Y, Tosello G. Optimization of corner micro end milling by finite element modelling for machining thin features. Procedia CIRP. 2019 Jan 1;82:362-7.
  • 22- Attanasio A, Abeni A, Özel T, Ceretti E. Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. The International Journal of Advanced Manufacturing Technology. 2019 Jan 16;100(1-4):25-35.
  • 23- Umbrello D, Bordin A, Imbrogno S, Bruschi S. 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti6Al4V alloy. CIRP Journal of Manufacturing Science and Technology. 2017 Aug 1;18:92-100.
  • 24-Pashaki PV, Pouya M. Investigation of high-speed cryogenic machining based on finite element approach. Latin American Journal of Solids and Structures. 2017 Mar;14(4):629-42.
  • 25- Özel T, Olleak A, Thepsonthi T. Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Production Engineering. 2017 Oct 1;11(4-5):435-44.
  • 26- Imbrogno S, Sartori S, Bordin A, Bruschi S, Umbrello D. Machining simulation of Ti6Al4V under dry and cryogenic conditions. Procedia CIRP. 2017 Jan 1;58:475-80.
  • 27-Mamedov A, Lazoglu I. Thermal analysis of micro milling titanium alloy Ti–6Al–4V. Journal of Materials Processing Technology. 2016 Mar 1;229:659-67.
  • 28- Tounsi N, El-Wardany T. Finite element analysis of chip formation and residual stresses induced by sequential cutting in side milling with microns to sub-micron uncut chip thickness and finite cutting edge radius. Advances in Manufacturing. 2015 Dec 1;3(4):309-22.
  • 29- Rao B, Dandekar CR, Shin YC. An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology. 2011 Feb 1;211(2):294-304.
  • 30- Ortiz-de-Zarate G, Madariaga A, Garay A, Azpitarte L, Sacristan I, Cuesta M, Arrazola PJ. Experimental and FEM analysis of surface integrity when broaching Ti64. Procedia Cirp. 2018 Jan 1;71:466-71.
  • 31- Calamaz M, Coupard D, Girot F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. International Journal of Machine Tools and Manufacture. 2008 Mar 1;48(3-4):275-88.
  • 32- Hong SY, Ding Y,Jeong W-c, Friction and cutting forces in cryogenic machining of Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 2001. 41(15): p. 2271-2285
  • 33- Johnson GR. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. Proc. 7th Inf. Sympo. Ballistics. 1983:541-7.
  • 34- ]Lee W-S,Lin C-F, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering: A, 1998. 241(1-2): p. 48-59.
  • 35-Rotella G., Umbrello D., Finite element modelling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. CIRP Annals - Manufacturing Technology 63 (1) (2014) 69-72.
  • 36- Pu Z., Umbrello D., Dillon Jr. O.W., Jawahir I.S., Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ31B Mg Alloy. Procedia CIRP (13) (2014) 282-287
  • 37- Umbrello D, Caruso S, Imbrogno S. Finite element modelling of microstructural changes in dry and cryogenic machining AISI 52100 steel. Materials Science and Technology. 2016 Jul 23;32(11):1062-70.
  • 38- Shen GE, Gandhi A, Arici O, Sutherland JW. A model for workpiece temperatures during peripheral milling including the effect of cutting fluids. TRANSACTIONS-NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTION OF SME. 2001:265-72.
  • 39- Lee WS, Lin CF. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests. Journal of Materials Processing Technology. 1998 Mar 1;75(1-:127-36.
  • 40- Usui E, Shirakashi T, Kitagawa T. Analytical prediction of three dimensional cutting process—Part 3: Cutting temperature and crater wear of carbide tool.
  • 41- Davoudinejad A, Chiappini E, Tirelli S, Annoni M, Strano M. Finite element simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti–6Al–4V. Procedia manufacturing. 2015 Jan 1;1:728-39
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Akif Oymak 0000-0001-8251-3106

Erkan Bahçe 0000-0001-5389-5571

İbrahim Gezer 0000-0002-9874-116X

Proje Numarası FYL-2021-2405
Erken Görünüm Tarihi 30 Aralık 2021
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 5 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Oymak, M. A., Bahçe, E., & Gezer, İ. (2021). Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications, 5(2), 93-100. https://doi.org/10.46460/ijiea.948297
AMA Oymak MA, Bahçe E, Gezer İ. Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. ijiea, IJIEA. Aralık 2021;5(2):93-100. doi:10.46460/ijiea.948297
Chicago Oymak, Mehmet Akif, Erkan Bahçe, ve İbrahim Gezer. “Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material”. International Journal of Innovative Engineering Applications 5, sy. 2 (Aralık 2021): 93-100. https://doi.org/10.46460/ijiea.948297.
EndNote Oymak MA, Bahçe E, Gezer İ (01 Aralık 2021) Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications 5 2 93–100.
IEEE M. A. Oymak, E. Bahçe, ve İ. Gezer, “Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material”, ijiea, IJIEA, c. 5, sy. 2, ss. 93–100, 2021, doi: 10.46460/ijiea.948297.
ISNAD Oymak, Mehmet Akif vd. “Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material”. International Journal of Innovative Engineering Applications 5/2 (Aralık 2021), 93-100. https://doi.org/10.46460/ijiea.948297.
JAMA Oymak MA, Bahçe E, Gezer İ. Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. ijiea, IJIEA. 2021;5:93–100.
MLA Oymak, Mehmet Akif vd. “Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material”. International Journal of Innovative Engineering Applications, c. 5, sy. 2, 2021, ss. 93-100, doi:10.46460/ijiea.948297.
Vancouver Oymak MA, Bahçe E, Gezer İ. Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. ijiea, IJIEA. 2021;5(2):93-100.

This work is licensed under CC BY-NC 4.0