Araştırma Makalesi
BibTex RIS Kaynak Göster

Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması

Yıl 2022, Cilt: 6 Sayı: 1, 42 - 47, 28.06.2022
https://doi.org/10.46460/ijiea.1019012

Öz

Bu çalışmada Güç Kalitesi (GK) bozulumu sinyallerinin sınıflandırılması için bir yöntem uygulanmıştır. Ayrık Dalgacık Dönüşümü (ADD), gürültü içeren GK sinyallerine uygulanarak sinyaller ayrıştırılmıştır. Daha sonra sinyallerin farklı entropi değerleri kullanılarak 80 farklı sınıflandırma özelliği elde edilmiştir. Bu 80 özelliğin hepsinin sınıflandırma için kullanılması yöntemin eğitim/test sürelerinin uzamasına yol açmaktadır. Bu yüzden bütün sınıflandırma özellikleri arasında etkili özelliklerin belirlenmesi gereklidir. Bu çalışmada Kazanç Oranı (KO) özellik seçme yöntemi ve K-En Yakın Komşu Algoritması (K-EYK) ile etkili 10 sınıflandırma özelliği belirlenmiştir. Belirlenen 10 sınıflandırma özelliği ile K-EYK eğitilmiş ve test edilmiştir. Benzetim sonuçları gerçekleştirilen yöntemin sınıflandırma için etkili olduğunu göstermiştir. Aynı zamanda benzetim sonuçları seçilen parametreler için KO ile belirlenen 10 sınıflandırma özelliğinin, 80 sınıflandırma özelliğine göre daha kısa sürede daha yüksek bir sınıflandırma başarısı sağladığını göstermiştir

Kaynakça

  • [1] Uyar, M., Yildirim, S., & Gencoglu, M. T. (2008). An effective wavelet-based feature extraction method for classification of power quality disturbance signals. Electric power systems Research, 78(10), 1747-1755.
  • [2] Ray, P. K., Mohanty, S. R., Kishor, N., & Catalão, J. P. (2013). Optimal feature and decision tree-based classification of power quality disturbances in distributed generation systems. IEEE Transactions on Sustainable Energy, 5(1), 200-208.
  • [3] Abdoos, A. A., Mianaei, P. K., & Ghadikolaei, M. R. (2016). Combined VMD-SVM based feature selection method for classification of power quality events. Applied Soft Computing, 38, 637-646.
  • [4] Sahani, M., & Dash, P. K. (2018). Automatic power quality events recognition based on Hilbert Huang transform and weighted bidirectional extreme learning machine. IEEE Transactions on Industrial Informatics, 14(9), 3849-3858.
  • [5]Akmaz,D.(2021, June). The Effect of Different Entropy Values on the Success of the K Nearest Neighbors Algorithm for Classification of Power Quality Disturbances, 4th International Conference on Data Science and Applications (ICONDATA’21), June 4-5, 2021, Istanbul, TURKEY.
  • [6] Erişti, H., Yıldırım, Ö., Erişti, B., & Demir, Y. (2013). Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines. International Journal of Electrical Power & Energy Systems, 49, 95-103.
  • [7] Vijayarani, S., & Muthulakshmi, M. (2013). Comparative analysis of bayes and lazy classification algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 2(8), 3118-3124.
  • [8] Choudhury, S., & Bhowal, A. (2015, May). Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. In 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM) (pp. 89-95). IEEE.
  • [9] Karegowda, A. G., Manjunath, A. S., & Jayaram, M. A. (2010). Comparative study of attribute selection using gain ratio and correlation based feature selection. International Journal of Information Technology and Knowledge Management, 2(2), 271-277.
  • [10] Moravej, Z., Abdoos, A. A., & Pazoki, M. J. E. P. C. (2009). Detection and classification of power quality disturbances using wavelet transform and support vector machines. Electric Power Components and Systems, 38(2), 182-196.

Recognition of Power Quality Events Using Wavelet Transform, K-Nearest Neighbor Algorithm and Gain Ratio Feature Selection Method

Yıl 2022, Cilt: 6 Sayı: 1, 42 - 47, 28.06.2022
https://doi.org/10.46460/ijiea.1019012

Öz

Bu çalışmada Güç Kalitesi (GK) bozulumu sinyallerinin sınıflandırılması için bir yöntem uygulanmıştır. Ayrık Dalgacık Dönüşümü (ADD), gürültü içeren GK sinyallerine uygulanarak sinyaller ayrıştırılmıştır. Daha sonra sinyallerin farklı entropi değerleri kullanılarak 80 farklı sınıflandırma özelliği elde edilmiştir. Bu 80 özelliğin hepsinin sınıflandırma için kullanılması yöntemin eğitim/test sürelerinin uzamasına yol açmaktadır. Bu yüzden bütün sınıflandırma özellikleri arasında etkili özelliklerin belirlenmesi gereklidir. Bu çalışmada Kazanç Oranı (KO) özellik seçme yöntemi ve K-En Yakın Komşu Algoritması (K-EYK) ile etkili 10 sınıflandırma özelliği belirlenmiştir. Belirlenen 10 sınıflandırma özelliği ile K-EYK eğitilmiş ve test edilmiştir. Benzetim sonuçları gerçekleştirilen yöntemin sınıflandırma için etkili olduğunu göstermiştir. Aynı zamanda benzetim sonuçları seçilen parametreler için KO ile belirlenen 10 sınıflandırma özelliğinin, 80 sınıflandırma özelliğine göre daha kısa sürede daha yüksek bir sınıflandırma başarısı sağladığını göstermiştir.

Kaynakça

  • [1] Uyar, M., Yildirim, S., & Gencoglu, M. T. (2008). An effective wavelet-based feature extraction method for classification of power quality disturbance signals. Electric power systems Research, 78(10), 1747-1755.
  • [2] Ray, P. K., Mohanty, S. R., Kishor, N., & Catalão, J. P. (2013). Optimal feature and decision tree-based classification of power quality disturbances in distributed generation systems. IEEE Transactions on Sustainable Energy, 5(1), 200-208.
  • [3] Abdoos, A. A., Mianaei, P. K., & Ghadikolaei, M. R. (2016). Combined VMD-SVM based feature selection method for classification of power quality events. Applied Soft Computing, 38, 637-646.
  • [4] Sahani, M., & Dash, P. K. (2018). Automatic power quality events recognition based on Hilbert Huang transform and weighted bidirectional extreme learning machine. IEEE Transactions on Industrial Informatics, 14(9), 3849-3858.
  • [5]Akmaz,D.(2021, June). The Effect of Different Entropy Values on the Success of the K Nearest Neighbors Algorithm for Classification of Power Quality Disturbances, 4th International Conference on Data Science and Applications (ICONDATA’21), June 4-5, 2021, Istanbul, TURKEY.
  • [6] Erişti, H., Yıldırım, Ö., Erişti, B., & Demir, Y. (2013). Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines. International Journal of Electrical Power & Energy Systems, 49, 95-103.
  • [7] Vijayarani, S., & Muthulakshmi, M. (2013). Comparative analysis of bayes and lazy classification algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 2(8), 3118-3124.
  • [8] Choudhury, S., & Bhowal, A. (2015, May). Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. In 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM) (pp. 89-95). IEEE.
  • [9] Karegowda, A. G., Manjunath, A. S., & Jayaram, M. A. (2010). Comparative study of attribute selection using gain ratio and correlation based feature selection. International Journal of Information Technology and Knowledge Management, 2(2), 271-277.
  • [10] Moravej, Z., Abdoos, A. A., & Pazoki, M. J. E. P. C. (2009). Detection and classification of power quality disturbances using wavelet transform and support vector machines. Electric Power Components and Systems, 38(2), 182-196.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Düzgün Akmaz 0000-0002-4183-6424

Erken Görünüm Tarihi 25 Haziran 2022
Yayımlanma Tarihi 28 Haziran 2022
Gönderilme Tarihi 4 Kasım 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster

APA Akmaz, D. (2022). Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması. International Journal of Innovative Engineering Applications, 6(1), 42-47. https://doi.org/10.46460/ijiea.1019012
AMA Akmaz D. Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması. ijiea, IJIEA. Haziran 2022;6(1):42-47. doi:10.46460/ijiea.1019012
Chicago Akmaz, Düzgün. “Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması Ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması”. International Journal of Innovative Engineering Applications 6, sy. 1 (Haziran 2022): 42-47. https://doi.org/10.46460/ijiea.1019012.
EndNote Akmaz D (01 Haziran 2022) Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması. International Journal of Innovative Engineering Applications 6 1 42–47.
IEEE D. Akmaz, “Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması”, ijiea, IJIEA, c. 6, sy. 1, ss. 42–47, 2022, doi: 10.46460/ijiea.1019012.
ISNAD Akmaz, Düzgün. “Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması Ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması”. International Journal of Innovative Engineering Applications 6/1 (Haziran 2022), 42-47. https://doi.org/10.46460/ijiea.1019012.
JAMA Akmaz D. Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması. ijiea, IJIEA. 2022;6:42–47.
MLA Akmaz, Düzgün. “Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması Ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması”. International Journal of Innovative Engineering Applications, c. 6, sy. 1, 2022, ss. 42-47, doi:10.46460/ijiea.1019012.
Vancouver Akmaz D. Güç Kalitesi Olaylarının Dalgacık Dönüşümü, K-En Yakın Komşu Algoritması ve Kazanç Oranı Özellik Seçme Yöntemi Kullanılarak Tanınması. ijiea, IJIEA. 2022;6(1):42-7.