Araştırma Makalesi
BibTex RIS Kaynak Göster

Nitrogen-Doped Carbon Quantum Dots-Gellan Gum As An Innovative Self-Healable Hydrogel Composite

Yıl 2022, , 581 - 590, 15.12.2022
https://doi.org/10.38001/ijlsb.1143572

Öz

Tension sensors can be widely applied to detect body movements and monitor physiological signals. Hydrogels with conductive properties draw attention among the studies in this field. However, their application is limited because hydrogels can be easily damaged during use. In this study, a self-healing conductive hydrogel was produced by adding nitrogen-doped carbon quantum dots (NCQDs) to gellan gum (GG) polymer. The self-healing property of the hydrogen bonds in the prepared polymeric matrix network to a certain extent and the conductivity were supported by the addition of NCQDs. The electrical recovery process of the hydrogel in the 1, 2, and 3 cutting/healing cycles was illustrated by a visually designed LED bulb serial circuit. As a result of connecting the obtained 3D hydrogel to a real-time resistance change measurement system, the resistance changes in the cutting/healing cycles were monitored. The duration of the total cut-healing process, including cut and contact time, was 2.12 s. In addition, a free-standing gel bridge was formed after joining the two cut pieces of cylindrical hydrogels. Due to the resulting hydrogel composite properties, it has promising potential in various applications such as personal health diagnosis, human activity monitoring, and human-motion sensors.

Destekleyen Kurum

Sakarya University

Proje Numarası

2019-6-23-223

Teşekkür

This work was supported by the Scientific Research Projects Commission of Sakarya University (Project number: 2019-6-23-223).

Kaynakça

  • [1] A.M.V. Mohan, V. Rajendran, R.K. Mishra, M. Jayaraman, Recent advances and perspectives in sweat based wearable electrochemical sensors, TrAC Trends Anal. Chem. 131 (2020) 116024.
  • [2] C. Lu, J. Qiu, W. Zhao, E. Sakai, G. Zhang, A tough hydrogel with fast self-healing and adhesive performance for wearable sensors, Colloids Surfaces A Physicochem. Eng. Asp. 632 (2022) 127793.
  • [3] J. Wang, T. Dai, Y. Lin, H. Jia, Q. Ji, G. Yuan, Polysaccharide-based high-strength, self-healing and ultra-sensitive wearable sensors, Ind. Crops Prod. 178 (2022) 114618.
  • [4] Y. Jia, L. Zhang, M. Qin, Y. Li, S. Gu, Q. Guan, Z. You, Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics, Chem. Eng. J. 430 (2022) 133081.
  • [5] R. Raho, E. Scarpa, A.N. D’Angelo, D. Desmaele, F. Raheli, A. Qualtieri, F. Rizzi, M. De Vittorio, Reusable flexible dry electrodes for biomedical wearable devices, Sensors Actuators A Phys. 333 (2022) 113157.
  • [6] W. Liu, D. Ao, C. Liu, X. Wang, S. Dong, H. Ren, A. Xia, G. Tan, A novel anisotropic saturation magnetization phenomenon in flexible Mn-doped BiFeO3 thin films for wearable device, J. Magn. Magn. Mater. 551 (2022) 169134.
  • [7] H. Wang, Z. Li, M. Zuo, X. Zeng, X. Tang, Y. Sun, L. Lin, Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding, Carbohydr. Polym. 280 (2022) 119018.
  • [8] J. Wang, T. Dai, H. Wu, M. Ye, G. Yuan, H. Jia, Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors, Compos. Sci. Technol. 221 (2022) 109345.
  • [9] C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun, Q. Gao, C. Gao, R. Liu, Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics, Nano Energy. 95 (2022) 106991.
  • [10] T. Distler, A.R. Boccaccini, 3D printing of electrically conductive hydrogels for tissue engineering and biosensors – A review, Acta Biomater. 101 (2020) 1–13.
  • [11] R. Guan, F. Zou, D. Li, W. Liu, C. Wu, Understanding the sensitivity of thin-film graphene/polymer nanocomposite strain sensors to ultrasonic waves: Analytical and experimental analysis, Compos. Sci. Technol. 216 (2021) 109079.
  • [12] V. Sankar, K. Balasubramaniam, R. Sundara, Insights into the effect of polymer functionalization of multiwalled carbon nanotubes in the design of flexible strain sensor, Sensors Actuators A Phys. 322 (2021) 112605.
  • [13] C.I. Idumah, Novel trends in conductive polymeric nanocomposites, and bionanocomposites, Synth. Met. 273 (2021) 116674.
  • [14] X. Liu, J. Liu, B. Zheng, L. Yan, J. Dai, Z. Zhuang, J. Du, Y. Guo, D. Xiao, N-Doped carbon dots: green and efficient synthesis on a large-scale and their application in fluorescent pH sensing, NewJ. Chem. 41 (2017) 10607–10612.

YENİLİKÇİ KENDİNDEN İYİLEŞEN HİDROJEL KOMPOZİT OLARAK AZOT KATKILI KARBON KUANTUM DOTS-GELLAN GUM

Yıl 2022, , 581 - 590, 15.12.2022
https://doi.org/10.38001/ijlsb.1143572

Öz

Gerginlik sensörleri, vücut hareketlerini algılamak ve fizyolojik sinyalleri izlemek için yaygın olarak uygulanabilir. Bu alandaki çalışmalar arasında iletken özelliklere sahip hidrojeller dikkat çekmektedir. Ancak hidrojellerin kullanım sırasında kolayca zarar görmeleri nedeniyle uygulamaları sınırlıdır. Bu çalışmada, jellan zamkı (GG) polimerine nitrojen katkılı karbon kuantum noktaları (NCQD'ler) eklenerek kendi kendini iyileştiren iletken bir hidrojel üretildi. Hazırlanan polimerik matris ağındaki hidrojen bağlarının kendi kendini iyileştirme özelliği bir dereceye kadar ve iletkenlik NCQD'lerin eklenmesiyle desteklenmiştir. Hidrojelin 1, 2 ve 3 kesme/iyileştirme döngüsündeki elektriksel geri kazanım süreci, görsel olarak tasarlanmış bir LED ampul seri devresi ile gösterilmiştir. Elde edilen 3 boyutlu hidrojelin gerçek zamanlı direnç değişimi ölçüm sistemine bağlanması sonucunda kesme/iyileştirme döngülerindeki direnç değişimleri izlendi. Kesim ve temas süresi dahil toplam kesik-iyileşme sürecinin süresi 2.12 s idi. Ek olarak, iki kesilmiş silindirik hidrojel parçası birleştirildikten sonra serbest duran bir jel köprüsü oluşturulmuştur. Ortaya çıkan hidrojel kompozit özellikleri nedeniyle, kişisel sağlık teşhisi, insan aktivitesinin izlenmesi ve insan hareket sensörleri gibi çeşitli uygulamalarda umut verici bir potansiyele sahiptir.

Proje Numarası

2019-6-23-223

Kaynakça

  • [1] A.M.V. Mohan, V. Rajendran, R.K. Mishra, M. Jayaraman, Recent advances and perspectives in sweat based wearable electrochemical sensors, TrAC Trends Anal. Chem. 131 (2020) 116024.
  • [2] C. Lu, J. Qiu, W. Zhao, E. Sakai, G. Zhang, A tough hydrogel with fast self-healing and adhesive performance for wearable sensors, Colloids Surfaces A Physicochem. Eng. Asp. 632 (2022) 127793.
  • [3] J. Wang, T. Dai, Y. Lin, H. Jia, Q. Ji, G. Yuan, Polysaccharide-based high-strength, self-healing and ultra-sensitive wearable sensors, Ind. Crops Prod. 178 (2022) 114618.
  • [4] Y. Jia, L. Zhang, M. Qin, Y. Li, S. Gu, Q. Guan, Z. You, Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics, Chem. Eng. J. 430 (2022) 133081.
  • [5] R. Raho, E. Scarpa, A.N. D’Angelo, D. Desmaele, F. Raheli, A. Qualtieri, F. Rizzi, M. De Vittorio, Reusable flexible dry electrodes for biomedical wearable devices, Sensors Actuators A Phys. 333 (2022) 113157.
  • [6] W. Liu, D. Ao, C. Liu, X. Wang, S. Dong, H. Ren, A. Xia, G. Tan, A novel anisotropic saturation magnetization phenomenon in flexible Mn-doped BiFeO3 thin films for wearable device, J. Magn. Magn. Mater. 551 (2022) 169134.
  • [7] H. Wang, Z. Li, M. Zuo, X. Zeng, X. Tang, Y. Sun, L. Lin, Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding, Carbohydr. Polym. 280 (2022) 119018.
  • [8] J. Wang, T. Dai, H. Wu, M. Ye, G. Yuan, H. Jia, Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors, Compos. Sci. Technol. 221 (2022) 109345.
  • [9] C. Zhang, M. Wang, C. Jiang, P. Zhu, B. Sun, Q. Gao, C. Gao, R. Liu, Highly adhesive and self-healing γ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics, Nano Energy. 95 (2022) 106991.
  • [10] T. Distler, A.R. Boccaccini, 3D printing of electrically conductive hydrogels for tissue engineering and biosensors – A review, Acta Biomater. 101 (2020) 1–13.
  • [11] R. Guan, F. Zou, D. Li, W. Liu, C. Wu, Understanding the sensitivity of thin-film graphene/polymer nanocomposite strain sensors to ultrasonic waves: Analytical and experimental analysis, Compos. Sci. Technol. 216 (2021) 109079.
  • [12] V. Sankar, K. Balasubramaniam, R. Sundara, Insights into the effect of polymer functionalization of multiwalled carbon nanotubes in the design of flexible strain sensor, Sensors Actuators A Phys. 322 (2021) 112605.
  • [13] C.I. Idumah, Novel trends in conductive polymeric nanocomposites, and bionanocomposites, Synth. Met. 273 (2021) 116674.
  • [14] X. Liu, J. Liu, B. Zheng, L. Yan, J. Dai, Z. Zhuang, J. Du, Y. Guo, D. Xiao, N-Doped carbon dots: green and efficient synthesis on a large-scale and their application in fluorescent pH sensing, NewJ. Chem. 41 (2017) 10607–10612.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Serbülent Türk 0000-0003-4284-5397

Mahmut Özacar 0000-0002-1783-7275

Proje Numarası 2019-6-23-223
Yayımlanma Tarihi 15 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

EndNote Türk S, Özacar M (01 Aralık 2022) Nitrogen-Doped Carbon Quantum Dots-Gellan Gum As An Innovative Self-Healable Hydrogel Composite. International Journal of Life Sciences and Biotechnology 5 3 581–590.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366