Araştırma Makalesi
BibTex RIS Kaynak Göster

Venom Peptides of Echis carinatus against SARS-CoV-2: Effective Inhibition of Human ACE2 Receptor and MPro Spike Protein

Yıl 2023, Cilt: 6 Sayı: 3, 311 - 321, 20.12.2023
https://doi.org/10.38001/ijlsb.1338631

Öz

The search for effective inhibitors against SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has led to the exploration of diverse compound libraries. Molecular docking and virtual screening techniques have been employed to identify potential drug candidates. Natural products, known for their wide variety and reduced toxicity, have gained significant attention in these screenings. Snake venom proteins, characterized by their diverse biological activities and unique molecular structures, offer a promising avenue for the discovery of bioactive molecules with therapeutic potential. In this study, we focused on the investigation of snake venom proteins isolated from Echis carinatus, specifically Schistatin (SCH), phospholipase A2 (PLA2), Disintegrin (DS), and Echistatin (ECH) for their potential as inhibitors against SARS-CoV-2. Through molecular docking analysis, the binding interactions between these venom proteins and key SARS-CoV-2 targets, the main protease (Mpro), and the ACE2 receptor were examined. Results revealed that PLA2 exhibited the most favorable binding affinity to both Mpro and ACE2, surpassing the reference drug ritonavir (RTV). SCH, DS, and ECH also demonstrated promising binding affinities with both targets. This study sheds light on the unexplored potential of snake venom proteins, specifically PLA2, SCH, DS, and ECH from E. carinatus venom, as inhibitors against SARS-CoV-2. Further experimental investigations are warranted to validate their antiviral activities and assess their therapeutic potential in combating COVID-19. The exploration of snake venom proteins presents an intriguing avenue for the discovery of novel drug candidates with broad applications in the treatment of various diseases, including viral infections such as COVID-19.

Kaynakça

  • 1. Hashmi, S.U. et al., Functional venomics of the Big-4 snakes of Pakistan. Toxicon, 2020. 179: p. 60-71.
  • 2. Kochar, D.K., et al., Rediscovery of severe saw-scaled viper (Echis sochureki) envenoming in the Thar Desert Region of Rajasthan, India. Wilderness & Environmental Medicine, 2007. 18(2): p. 75-85.
  • 3. Samy, R., et al., “Snake Venom Proteins and Peptides as Novel Antibiotics Against Microbial Infections,” Current Proteomics, 2013. 10(1): p. 10-28.
  • 4. Borkow, G. and M. Ovadia, “Inhibition of Sendai virus by various snake venom,” Life sciences, 1992. 51(16), 1261-1267.
  • 5. Borkow, G. and M. Ovadia, Echinhibin-1 - an inhibitor of Sendai virus isolated from the venom of the snake Echis coloratus. Antiviral Research, 1994. 23(2): p. 161-176.
  • 6. Borkow, G. and M. Ovadia, Selective lysis of virus-infected cells by cobra snake cytotoxins: A sendai virus, human erythrocytes, and cytotoxin model. Biochemical and Biophysical Research Communications, 264(1): p. 63-68.
  • 7. Zhang, J.J., et al., Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clinical Reviews in Allergy & Immunology, 64(1): p. 90-107.
  • 8. Ziegler, C.G.K., et al., SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020. 181(5): p. 1016-1035.
  • 9. Ahmad, S., et al., Structure-based virtual screening identifies multiple stable binding sites at the RecA domains of SARS-CoV-2 helicase enzyme. Molecules, vol. 26, no. 5, 2021. 26(5): p. 1446.
  • 10. Hall, D.C. and H.F. Ji, A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel medicine and infectious disease, 2020. 35: p. 101646.
  • 11. Fuzimoto, A.D. and C. Isidoro, The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic?. Journal of traditional and complementary medicine, 2020. 10(4): p. 405-419.
  • 12. Atanasov, A.G., et al., Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2020. 20(3): p. 200-216.
  • 13. Pražnikar, Z. J., T. Petan, and J. Pungerčar, A neurotoxic secretory phospholipase A2 induces apoptosis in motoneuron-like cells. Annals of the New York Academy of Sciences, 2009. 1152(1): p. 215-224.
  • 14. Sant’Ana C. D., et al., Antiviral and antiparasite properties of an l-amino acid oxidase from the Snake Bothrops jararaca: Cloning and identification of a complete cDNA sequence. Biochemistry Pharmacolology, 2008. 76(2).
  • 15. Cherifi, F., Laraba-Djebari, F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein Journal, 2021. 40: p. 799–841.
  • 16. Estevão-Costa, M.I., et al., Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. International Journal of Biochemistry and Cell Biology, 2018. 104: p. 94-113.
  • 17. Kemparaju, K., B. Nijaguna Prasad, and V.T. Gowda, Purification of a basic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) venom: characterization of antigenic, catalytic and pharmacological properties. Toxicon, 1994. 32(10): p. 1187-1196.
  • 18. Utkin, Y., et al., Antiviral Effects of Animal Toxins: Is There a Way to Drugs?. International Journal of Molecular Sciences, 2022. 23(7): p. 3634.
  • 19. Hubbard, S. et al., Contortrostatin, a homodimeric disintegrin isolated from snake venom inhibits herpes simplex virus entry and cell fusion. Antiviral Therapy, 2012. 17(7): p. 1319-1326.
  • 20. Gan, Z.R., et al., Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. Journal of Biological Chemistry, 1988. 263(36): p. 19827-19832.

Echis carinatus'un SARS-CoV-2'ye Karşı Venom Peptitleri: İnsan ACE2 Reseptörü ve Mpro Proteininin Etkili İnhibisyonu

Yıl 2023, Cilt: 6 Sayı: 3, 311 - 321, 20.12.2023
https://doi.org/10.38001/ijlsb.1338631

Öz

COVID-19 pandemisinden sorumlu virüs olan SARS-CoV-2'ye karşı etkili inhibitör arayışı, çeşitli bileşiklerin keşfedilmesine yol açmıştır. Potansiyel ilaç adaylarını belirlemek için moleküler kenetleme ve sanal tarama teknikleri kullanılmıştır. Geniş çeşitliliği ve düşük toksisitesi ile bilinen doğal ürünler bu analizlerde büyük ilgi görmüştür. Çeşitli biyolojik aktiviteleri ve benzersiz moleküler yapıları ile karakterize edilen yılan zehiri proteinleri, terapötik potansiyele sahip biyoaktif moleküllerin keşfi için umut verici bir yol sunmaktadır. Bu çalışmada, Echis carinatus'tan izole edilen yılan zehri proteinlerinin, özellikle Schistatin (SCH), fosfolipaz A2 (PLA2), Disintegrin (DS) ve Echistatin'in (ECH) SARS-CoV-2'ye karşı inhibitör potansiyelleri açısından araştırılmasına odaklanılmıştır. Moleküler kenetleme analizi yoluyla, bu zehir proteinleri ile ana SARS-CoV-2 hedefleri, ana proteaz (Mpro) ve ACE2 reseptörü arasındaki bağlanma etkileşimleri incelenmiştir. Sonuçlar, PLA2'nin hem Mpro hem de ACE2'ye en uygun bağlanma afinitesini sergileyerek referans ilaç ritonavir'i (RTV) geride bıraktığını ortaya koymuştur. SCH, DS ve ECH ayrıca her iki hedefle umut verici bağlanma afiniteleri göstermiştir. Bu çalışma, yılan zehiri proteinlerinin, özellikle E. carinatus zehrinden elde edilen PLA2, SCH, DS ve ECH'nin SARS-CoV-2'ye karşı inhibitörler olarak keşfedilmemiş potansiyeline ışık tutabileceği görülmüştür. Antiviral aktivitelerini doğrulamak ve COVID-19 ile mücadelede terapötik potansiyellerini değerlendirmek için daha fazla deneysel araştırma yapılması gerekmektedir. Yılan zehri proteinlerinin keşfi, COVID-19 gibi viral enfeksiyonlar da dahil olmak üzere çeşitli hastalıkların tedavisinde geniş uygulamalara sahip yeni ilaç adaylarının keşfi için ilgi çekici bir yol sunmaktadır.

Kaynakça

  • 1. Hashmi, S.U. et al., Functional venomics of the Big-4 snakes of Pakistan. Toxicon, 2020. 179: p. 60-71.
  • 2. Kochar, D.K., et al., Rediscovery of severe saw-scaled viper (Echis sochureki) envenoming in the Thar Desert Region of Rajasthan, India. Wilderness & Environmental Medicine, 2007. 18(2): p. 75-85.
  • 3. Samy, R., et al., “Snake Venom Proteins and Peptides as Novel Antibiotics Against Microbial Infections,” Current Proteomics, 2013. 10(1): p. 10-28.
  • 4. Borkow, G. and M. Ovadia, “Inhibition of Sendai virus by various snake venom,” Life sciences, 1992. 51(16), 1261-1267.
  • 5. Borkow, G. and M. Ovadia, Echinhibin-1 - an inhibitor of Sendai virus isolated from the venom of the snake Echis coloratus. Antiviral Research, 1994. 23(2): p. 161-176.
  • 6. Borkow, G. and M. Ovadia, Selective lysis of virus-infected cells by cobra snake cytotoxins: A sendai virus, human erythrocytes, and cytotoxin model. Biochemical and Biophysical Research Communications, 264(1): p. 63-68.
  • 7. Zhang, J.J., et al., Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clinical Reviews in Allergy & Immunology, 64(1): p. 90-107.
  • 8. Ziegler, C.G.K., et al., SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020. 181(5): p. 1016-1035.
  • 9. Ahmad, S., et al., Structure-based virtual screening identifies multiple stable binding sites at the RecA domains of SARS-CoV-2 helicase enzyme. Molecules, vol. 26, no. 5, 2021. 26(5): p. 1446.
  • 10. Hall, D.C. and H.F. Ji, A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel medicine and infectious disease, 2020. 35: p. 101646.
  • 11. Fuzimoto, A.D. and C. Isidoro, The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic?. Journal of traditional and complementary medicine, 2020. 10(4): p. 405-419.
  • 12. Atanasov, A.G., et al., Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2020. 20(3): p. 200-216.
  • 13. Pražnikar, Z. J., T. Petan, and J. Pungerčar, A neurotoxic secretory phospholipase A2 induces apoptosis in motoneuron-like cells. Annals of the New York Academy of Sciences, 2009. 1152(1): p. 215-224.
  • 14. Sant’Ana C. D., et al., Antiviral and antiparasite properties of an l-amino acid oxidase from the Snake Bothrops jararaca: Cloning and identification of a complete cDNA sequence. Biochemistry Pharmacolology, 2008. 76(2).
  • 15. Cherifi, F., Laraba-Djebari, F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein Journal, 2021. 40: p. 799–841.
  • 16. Estevão-Costa, M.I., et al., Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. International Journal of Biochemistry and Cell Biology, 2018. 104: p. 94-113.
  • 17. Kemparaju, K., B. Nijaguna Prasad, and V.T. Gowda, Purification of a basic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) venom: characterization of antigenic, catalytic and pharmacological properties. Toxicon, 1994. 32(10): p. 1187-1196.
  • 18. Utkin, Y., et al., Antiviral Effects of Animal Toxins: Is There a Way to Drugs?. International Journal of Molecular Sciences, 2022. 23(7): p. 3634.
  • 19. Hubbard, S. et al., Contortrostatin, a homodimeric disintegrin isolated from snake venom inhibits herpes simplex virus entry and cell fusion. Antiviral Therapy, 2012. 17(7): p. 1319-1326.
  • 20. Gan, Z.R., et al., Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. Journal of Biological Chemistry, 1988. 263(36): p. 19827-19832.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoinformatik ve Hesaplamalı Biyoloji (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Süleyman İlhan 0000-0002-6584-3979

Harika Atmaca 0000-0002-8459-4373

Erken Görünüm Tarihi 1 Aralık 2023
Yayımlanma Tarihi 20 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 3

Kaynak Göster

EndNote İlhan S, Atmaca H (01 Aralık 2023) Venom Peptides of Echis carinatus against SARS-CoV-2: Effective Inhibition of Human ACE2 Receptor and MPro Spike Protein. International Journal of Life Sciences and Biotechnology 6 3 311–321.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366