Araştırma Makalesi
BibTex RIS Kaynak Göster

Clairaut and Einstein conditions for locally conformal Kaehler submersions

Yıl 2023, Cilt: 1 Sayı: 1, 28 - 39, 21.06.2023
https://doi.org/10.26650/ijmath.2023.00003

Öz

In the present paper, we study Clairaut submersions and Einstein conditions whose total manifolds are locally conformal Kaehler manifolds. We first give a necessary and sufficient condition for a curve to be geodesic on total manifold of a locally conformal Kaehler submersion. Then, we investigate conditions for a locally conformal Kaehler submersion to be a Clairaut submersion.We find the Ricci and scalar curvature formulas between any fiber of the total manifold and the base manifold of a locally conformal Kaehler submersion and give necessary and sufficient conditions for the total manifold of a locally conformal Kaehler submersion to be Einstein. Finally, we obtain some formulas for sectional and holomorphic sectional curvatures for a locally conformal Kaehler submersion.

Kaynakça

  • Allison, D., 1996, Lorentzian Clairaut submersions, Geom. Dedicata, 63(3), 309-319. google scholar
  • Bishop, R.L., 1972, Clairaut submersions, differential geometry (in Honor of Kentaro Yano), Tokyo, Kinokuniya, 21-31. google scholar
  • Çimen Ç., Pirinççi B., Taştan H.M., Ulusoy D., 2023, On locally conformal Kaehler submersions (Submitted). google scholar
  • Dragomir, S., Ornea, L., 1998, Locally conformal Kahler geometry, Birkhauser: Boston, Basel, Berlin. google scholar
  • Falcitelli, M., Lanus, S., Pastore, A.M., 2004, Riemannian Submersion and Related Topics, World Scientific Publishing Co. Pte. Ltd.: Singapore Gray, A., 1967, Pseudo-Riemannian Almost Product Manifolds and Submersions, Journal of Mathematics and Mechanics, (16)7, 715-737. google scholar
  • Gündüzalp, Y., 2020, Clairaut anti-invariant submersions from locally product Riemannian manifolds, Beitr. Algebra Geom., 61, 605-614. google scholar
  • Lee, J., Park, J.H., Şahin, B., Song, D.Y., 2015, Einstein conditions for the base space of anti-invariant Riemannian submersions and Clairaut submersions, Taiwanese J. Math., 19(4), 1145-1160. google scholar
  • Marrero, J.C., Rocha, J., 1994, Locally conformal Kaehler submersions, Geom. Dedicata, 52(3), 271-289. google scholar
  • O’Neill, B., 1966, The fundamental equations of a submersion, Mich. Math. J., 13, 458-469, google scholar
  • O’Neill, B. 1967 Submersions and Geodesics, Duke Math. J., 34(2), 363-373. google scholar
  • Şahin, B., 2017, Riemannian submersions, Riemannian maps in Hermitian geometry, and their application, Elsiever. google scholar
  • Taştan, H.M., Gerdan S., 2016, Clairaut anti-invariant submersions from Sasakian and Kenmotsu manifolds, Mediterr. J. Math., 14(6), 234-251. google scholar
  • Taştan, H.M., Gerdan Aydın, S., 2019, Clairaut anti-invariant submersions from cosymplectic manifolds, Honam Math. J., 41(4), 707-724. google scholar
  • Vaisman, I., 1980, Some curvature properties of locally conformal Kaehler manifolds, Trans. Amer. Math. Soc., 259, 439-447. google scholar
  • Watson, B., 1976, Almost Hermitian submersions, J. Differ. Geom., 11(1), 147-165. google scholar
Yıl 2023, Cilt: 1 Sayı: 1, 28 - 39, 21.06.2023
https://doi.org/10.26650/ijmath.2023.00003

Öz

Kaynakça

  • Allison, D., 1996, Lorentzian Clairaut submersions, Geom. Dedicata, 63(3), 309-319. google scholar
  • Bishop, R.L., 1972, Clairaut submersions, differential geometry (in Honor of Kentaro Yano), Tokyo, Kinokuniya, 21-31. google scholar
  • Çimen Ç., Pirinççi B., Taştan H.M., Ulusoy D., 2023, On locally conformal Kaehler submersions (Submitted). google scholar
  • Dragomir, S., Ornea, L., 1998, Locally conformal Kahler geometry, Birkhauser: Boston, Basel, Berlin. google scholar
  • Falcitelli, M., Lanus, S., Pastore, A.M., 2004, Riemannian Submersion and Related Topics, World Scientific Publishing Co. Pte. Ltd.: Singapore Gray, A., 1967, Pseudo-Riemannian Almost Product Manifolds and Submersions, Journal of Mathematics and Mechanics, (16)7, 715-737. google scholar
  • Gündüzalp, Y., 2020, Clairaut anti-invariant submersions from locally product Riemannian manifolds, Beitr. Algebra Geom., 61, 605-614. google scholar
  • Lee, J., Park, J.H., Şahin, B., Song, D.Y., 2015, Einstein conditions for the base space of anti-invariant Riemannian submersions and Clairaut submersions, Taiwanese J. Math., 19(4), 1145-1160. google scholar
  • Marrero, J.C., Rocha, J., 1994, Locally conformal Kaehler submersions, Geom. Dedicata, 52(3), 271-289. google scholar
  • O’Neill, B., 1966, The fundamental equations of a submersion, Mich. Math. J., 13, 458-469, google scholar
  • O’Neill, B. 1967 Submersions and Geodesics, Duke Math. J., 34(2), 363-373. google scholar
  • Şahin, B., 2017, Riemannian submersions, Riemannian maps in Hermitian geometry, and their application, Elsiever. google scholar
  • Taştan, H.M., Gerdan S., 2016, Clairaut anti-invariant submersions from Sasakian and Kenmotsu manifolds, Mediterr. J. Math., 14(6), 234-251. google scholar
  • Taştan, H.M., Gerdan Aydın, S., 2019, Clairaut anti-invariant submersions from cosymplectic manifolds, Honam Math. J., 41(4), 707-724. google scholar
  • Vaisman, I., 1980, Some curvature properties of locally conformal Kaehler manifolds, Trans. Amer. Math. Soc., 259, 439-447. google scholar
  • Watson, B., 1976, Almost Hermitian submersions, J. Differ. Geom., 11(1), 147-165. google scholar
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Beran Pirinççi 0000-0002-4692-9590

Çağrıhan Çimen 0009-0000-6331-9615

Deniz Ulusoy 0000-0002-0742-4047

Yayımlanma Tarihi 21 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 1

Kaynak Göster

APA Pirinççi, B., Çimen, Ç., & Ulusoy, D. (2023). Clairaut and Einstein conditions for locally conformal Kaehler submersions. Istanbul Journal of Mathematics, 1(1), 28-39. https://doi.org/10.26650/ijmath.2023.00003
AMA Pirinççi B, Çimen Ç, Ulusoy D. Clairaut and Einstein conditions for locally conformal Kaehler submersions. Istanbul Journal of Mathematics. Haziran 2023;1(1):28-39. doi:10.26650/ijmath.2023.00003
Chicago Pirinççi, Beran, Çağrıhan Çimen, ve Deniz Ulusoy. “Clairaut and Einstein Conditions for Locally Conformal Kaehler Submersions”. Istanbul Journal of Mathematics 1, sy. 1 (Haziran 2023): 28-39. https://doi.org/10.26650/ijmath.2023.00003.
EndNote Pirinççi B, Çimen Ç, Ulusoy D (01 Haziran 2023) Clairaut and Einstein conditions for locally conformal Kaehler submersions. Istanbul Journal of Mathematics 1 1 28–39.
IEEE B. Pirinççi, Ç. Çimen, ve D. Ulusoy, “Clairaut and Einstein conditions for locally conformal Kaehler submersions”, Istanbul Journal of Mathematics, c. 1, sy. 1, ss. 28–39, 2023, doi: 10.26650/ijmath.2023.00003.
ISNAD Pirinççi, Beran vd. “Clairaut and Einstein Conditions for Locally Conformal Kaehler Submersions”. Istanbul Journal of Mathematics 1/1 (Haziran 2023), 28-39. https://doi.org/10.26650/ijmath.2023.00003.
JAMA Pirinççi B, Çimen Ç, Ulusoy D. Clairaut and Einstein conditions for locally conformal Kaehler submersions. Istanbul Journal of Mathematics. 2023;1:28–39.
MLA Pirinççi, Beran vd. “Clairaut and Einstein Conditions for Locally Conformal Kaehler Submersions”. Istanbul Journal of Mathematics, c. 1, sy. 1, 2023, ss. 28-39, doi:10.26650/ijmath.2023.00003.
Vancouver Pirinççi B, Çimen Ç, Ulusoy D. Clairaut and Einstein conditions for locally conformal Kaehler submersions. Istanbul Journal of Mathematics. 2023;1(1):28-39.