Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 2 Sayı: 2, 95 - 108, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00020

Öz

Kaynakça

  • Akbilgic O., Akinci E. D., 2009, A Novel Regression Approach: Least Squares Ratio, Communications in Statistics-Theory and Methods, 38, 1539-1545. google scholar
  • Arslan, O., Billor, N., 2000, Robust Liu Estimator for Regression based on an M-estimator, Journal of Applied Statistics, 27, 1, 39-47. google scholar
  • Ertaş, H., Kaçzranlar, S., Güler, H., 2017, RobustLiu-typeestimator forregressionbasedon M-estimator, Communications in Statistics-Simulation and Computation, 46, 5, 3907-3932. google scholar
  • Filzmoser, P., Kurnaz, F. S., 2018, A robust Liu regression estimator, Communications in Statistics-Simulation and Computation, 47, 2, 432-443. google scholar
  • Hoerl A.E., Kennard R.W., 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 1, 55-67. google scholar
  • Jadhav, N. H., Kashid, D. N., 2016, Robust Linearized Ridge M-estimator for Linear Regression Model, Communication in Statistics-Simulation and Computation, 45, 3, 1001-1024. google scholar
  • Jadhav, N. H., Kashid, D. N., 2018, Ridge Least Squares Ratio Estimator For Linear Regression Model, International Journal of Agricultural & Statistical Sciences, 14, 2, 439-447. google scholar
  • Kan, B., Alpu, O., Yazici, B., 2013, Robust Ridge and Robust Liu Estimator for Regression based on the LTS Estimator, Journal of Applied Statistics, 40, 3, 644-655. google scholar
  • Kibria, B. G., 2003, Performance of some new ridge regression estimators, Communications in Statistics: Simulation and Computation, 32, 2, 419-435. google scholar
  • Liu, K., 1993, A new class of biased estimate in linear regression, Communications in Statistics-Theory and Methods, 22, 2, 393-402. google scholar
  • Maronna, R. A., Martin, R. D., Yohai, V. J., 2006, Robust Statistics Theory and Methods, Wiley, U.K. google scholar
  • Maronna, R.A., 2011, Robust ridge regression for high-dimensional data, Technometrics, 53, 1, 44-53. google scholar
  • McDonald G.C., Galarneau D.I., 1975, A Monte Carlo evaluation of some ridge-type estimators, Journal of the American Statistical Association, 70, 350, 407-416. google scholar
  • Montgomery, D. C., Peck, E. A., Vinig, G. G., 2001, Introduction to Linear Regression Analysis, 3th. Ed. John Wiley & Sons, Inc., USA. google scholar
  • Qasim, M., Amin, M., Omer, T., 2020). Performance of some new Liu parameters for the linear regression model, Communications in Statistics-Theory and Methods, 49, 17, 4178-4196. google scholar
  • Rousseeuw P.J., Leroy, A.M., 1987, Robust Regression and Outlier Detection, Wiley, New York. google scholar
  • Silvapulle, M. J., 1991, Robust Ridge Regression based on an M-estimator, Australian Journal of Statistics, 33, 3, 319-333. google scholar

A New Liu-Ratio Estimator For Linear Regression Models

Yıl 2024, Cilt: 2 Sayı: 2, 95 - 108, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00020

Öz

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables. Although there are various methods for estimating parameters, the most popular is the Ordinary Least Squares (OLS) method. However, in the presence of multicollinearity and outliers, the OLS estimator may give inaccurate values and also misleading inference results. There are many modified biased robust estimators for the simultaneous occurrence of outliers and multicollinearity in the data. In this paper, a new estimator called the Liu-Ratio Estimator (LRE), which can be used as an alternative to the Least Squares Ratio (LSR) estimator and the Ridge Ratio estimator (RRE), is proposed to mitigate the effect of 𝑦-direction outliers and multicollinearity in the data. The performance of the proposed estimator is examined in two Monte Carlo simulation studies in the presence of multicollinearity and 𝑦-direction outliers. According to the simulation results, LRE is a strong alternative to LSR and RRE in the presence of multicollinearity and 𝑦-direction outliers in the data.

Kaynakça

  • Akbilgic O., Akinci E. D., 2009, A Novel Regression Approach: Least Squares Ratio, Communications in Statistics-Theory and Methods, 38, 1539-1545. google scholar
  • Arslan, O., Billor, N., 2000, Robust Liu Estimator for Regression based on an M-estimator, Journal of Applied Statistics, 27, 1, 39-47. google scholar
  • Ertaş, H., Kaçzranlar, S., Güler, H., 2017, RobustLiu-typeestimator forregressionbasedon M-estimator, Communications in Statistics-Simulation and Computation, 46, 5, 3907-3932. google scholar
  • Filzmoser, P., Kurnaz, F. S., 2018, A robust Liu regression estimator, Communications in Statistics-Simulation and Computation, 47, 2, 432-443. google scholar
  • Hoerl A.E., Kennard R.W., 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 1, 55-67. google scholar
  • Jadhav, N. H., Kashid, D. N., 2016, Robust Linearized Ridge M-estimator for Linear Regression Model, Communication in Statistics-Simulation and Computation, 45, 3, 1001-1024. google scholar
  • Jadhav, N. H., Kashid, D. N., 2018, Ridge Least Squares Ratio Estimator For Linear Regression Model, International Journal of Agricultural & Statistical Sciences, 14, 2, 439-447. google scholar
  • Kan, B., Alpu, O., Yazici, B., 2013, Robust Ridge and Robust Liu Estimator for Regression based on the LTS Estimator, Journal of Applied Statistics, 40, 3, 644-655. google scholar
  • Kibria, B. G., 2003, Performance of some new ridge regression estimators, Communications in Statistics: Simulation and Computation, 32, 2, 419-435. google scholar
  • Liu, K., 1993, A new class of biased estimate in linear regression, Communications in Statistics-Theory and Methods, 22, 2, 393-402. google scholar
  • Maronna, R. A., Martin, R. D., Yohai, V. J., 2006, Robust Statistics Theory and Methods, Wiley, U.K. google scholar
  • Maronna, R.A., 2011, Robust ridge regression for high-dimensional data, Technometrics, 53, 1, 44-53. google scholar
  • McDonald G.C., Galarneau D.I., 1975, A Monte Carlo evaluation of some ridge-type estimators, Journal of the American Statistical Association, 70, 350, 407-416. google scholar
  • Montgomery, D. C., Peck, E. A., Vinig, G. G., 2001, Introduction to Linear Regression Analysis, 3th. Ed. John Wiley & Sons, Inc., USA. google scholar
  • Qasim, M., Amin, M., Omer, T., 2020). Performance of some new Liu parameters for the linear regression model, Communications in Statistics-Theory and Methods, 49, 17, 4178-4196. google scholar
  • Rousseeuw P.J., Leroy, A.M., 1987, Robust Regression and Outlier Detection, Wiley, New York. google scholar
  • Silvapulle, M. J., 1991, Robust Ridge Regression based on an M-estimator, Australian Journal of Statistics, 33, 3, 319-333. google scholar
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

İsmail Mütfü Giresunlu 0009-0006-8737-1016

Kadri Ulaş Akay 0000-0002-8668-2879

Esra Ertan 0000-0002-6020-8749

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 17 Eylül 2024
Kabul Tarihi 31 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

APA Giresunlu, İ. M., Akay, K. U., & Ertan, E. (2024). A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics, 2(2), 95-108. https://doi.org/10.26650/ijmath.2024.00020
AMA Giresunlu İM, Akay KU, Ertan E. A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics. Aralık 2024;2(2):95-108. doi:10.26650/ijmath.2024.00020
Chicago Giresunlu, İsmail Mütfü, Kadri Ulaş Akay, ve Esra Ertan. “A New Liu-Ratio Estimator For Linear Regression Models”. Istanbul Journal of Mathematics 2, sy. 2 (Aralık 2024): 95-108. https://doi.org/10.26650/ijmath.2024.00020.
EndNote Giresunlu İM, Akay KU, Ertan E (01 Aralık 2024) A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics 2 2 95–108.
IEEE İ. M. Giresunlu, K. U. Akay, ve E. Ertan, “A New Liu-Ratio Estimator For Linear Regression Models”, Istanbul Journal of Mathematics, c. 2, sy. 2, ss. 95–108, 2024, doi: 10.26650/ijmath.2024.00020.
ISNAD Giresunlu, İsmail Mütfü vd. “A New Liu-Ratio Estimator For Linear Regression Models”. Istanbul Journal of Mathematics 2/2 (Aralık 2024), 95-108. https://doi.org/10.26650/ijmath.2024.00020.
JAMA Giresunlu İM, Akay KU, Ertan E. A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics. 2024;2:95–108.
MLA Giresunlu, İsmail Mütfü vd. “A New Liu-Ratio Estimator For Linear Regression Models”. Istanbul Journal of Mathematics, c. 2, sy. 2, 2024, ss. 95-108, doi:10.26650/ijmath.2024.00020.
Vancouver Giresunlu İM, Akay KU, Ertan E. A New Liu-Ratio Estimator For Linear Regression Models. Istanbul Journal of Mathematics. 2024;2(2):95-108.