Araştırma Makalesi
BibTex RIS Kaynak Göster

ASSOCIATING DIGITAL TRANSFORMATION, DIGITAL GAP, ECONOMIC DEVELOPMENT, CO2 EMISSIONS AND RENEWABLE ENERGY IN AEE AND CIS COUNTRIES

Yıl 2025, Cilt: 21 Sayı: 1, 251 - 279, 26.03.2025

Öz

Greenhouse gas emissions, digital transformation, and renewable energy are among the most critical issues in the global economy. Investigating the effects of these issues on the world is critically important in protecting the green environment together with the United Nations (UN) Sustainable Development Goals. Therefore, the study aims to examine the complex relationship between digital transformation, digital divide and renewable energy and CO2 emissions in the transition economies of Advanced Emerging Economies (AEE) and Commonwealth of Independent States (CIS) in the period 2000-2023. In the study, the Feasible Least Squares (FGLS) method was used in the first stage, while the DEA-based Malmquist Index (MI) method was used together with Data Envelopment Analysis (DEA). For FGLS, it was determined that renewable energy had an inverted U-shaped effect on CO2 emissions. However, while digital transformation and renewable energy use reduce CO2 emissions, it was determined that the digital divide had a negative effect. MI calculations, it was determined that ESE countries had high efficiency in reducing CO2 emissions and the digital divide compared to CIS countries. The results of the study are an important guide for policy makers in the sustainable economic development process.

Kaynakça

  • Abbas, Q., Yao, H. X., Shahbaz, M., Ramzan, M., & Fatima, S. (2023). How renewable energy and digitalization affect CO2 emissions? The mediating role of public debt in emerging economies. The Mediating Role of Public Debt in Emerging Economies.
  • Adebayo, T. S., Ullah, S., Kartal, M. T., Ali, K., Pata, U. K., & Ağa, M. (2023). Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Science of the Total Environment, 859, 160181.
  • Asmild, M., Paradi, J. C., & Pastor, J. T. (2009). Centralized resource allocation BCC models. Omega, 37(1), 40-49.
  • Beier, G., Fritzsche, K., Kunkel, S., Matthess, M., Niehoff, S., Reißig, M., & van Zyl-Bulitta, V. (2020). Grüne digitalisierte Wirtschaft. Herausforderungen und Chancen für die Nachhaltigkeit (IASS Fact Sheet). IASS.
  • Ben Jebli, M., Ben Youssef, S., & Apergis, N. (2019). The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and trade. Latin American Economic Review, 28(1), 1-19.
  • Bhat, R., Verma, B. B., & Reuben, E. (2001). Data envelopment analysis (DEA). Journal of Health Management, 3(2), 309-328.
  • Bianchini, S., Damioli, G., & Ghisetti, C. (2023). The environmental effects of the “twin” green and digital transition in European regions. Environmental and Resource Economics, 84(4), 877-918.
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253.
  • Camanho, A. S., & Dyson, R. G. (2006). Data envelopment analysis and Malmquist indices for measuring group performance. Journal of Productivity Analysis, 26, 35-49.
  • Campoli, J. S., Junior, P. N. A., Kodama, T. K., Nagano, M. S., & Burnquist, H. L. (2024). G20 countries’ progress on the 7th SDG under circular economy DEA model. Environmental Science & Policy, 160, 103839.
  • Chang, Y. (2004). Bootstrap unit root tests in panels with cross-sectional dependency. Journal of Econometrics, 120(2), 263-293.
  • Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. M. (1997). Data envelopment analysis theory, methodology and applications. Journal of the Operational Research Society, 48(3), 332-333.
  • Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249-272.
  • Chudik, A., & Pesaran, M. H. (2013). Large panel data models with cross-sectional dependence: A survey. CAFE Research Paper, (13.15).
  • Cocchia, A. (2014). Smart and digital city: A systematic literature review. İçinde R. Dameri, & C. Rosenthal-Sabroux, (Ed.), Smart city: How to create public and economic value with high technology in urban space, 13-43.
  • Cole, M. A., Rayner, A. J., & Bates, J. M. (1997). The environmental Kuznets curve: An empirical analysis. Environment and development economics, 2(4), 401-416.
  • Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)–Thirty years on. European Journal of Operational Research, 192(1), 1-17.
  • Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software (Vol. 2, p. 489). New York: Springer.
  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Data envelopment analysis: History, models, and interpretations. Handbook on data envelopment analysis, 1-39.
  • Cui, L., Chen, L., & Yang, X. (2023). Evaluation and analysis of green efficiency of China's coastal ports under the" double carbon" goal: Two improved DEA models with CO2 emissions. Environment, Development and Sustainability, 1-30.
  • Çakmak, E., & Örkçü, H. H. (2016). Türkiye’deki illerin etkinliklerinin sosyo-ekonomik temel göstergelerle veri zarflama analizi kullanarak incelenmesi. Karabük Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(1), 30-48.
  • Daneeva, Y., Glebova, A., Daneev, O., & Zvonova, E. (2020, August). Digital transformation of oil and gas companies: Energy transition. İçinde Russian Conference on Digital Economy and Knowledge Management (RuDEcK 2020) (S. 199-205). Atlantis Press.
  • De Hoyos, R. E., & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-data models. The Stata Journal, 6(4), 482-496.
  • Dellnitz, A., Kleine, A., & Rödder, W. (2018). CCR or BCC: what if we are in the wrong model?. Journal of business economics, 88, 831-850.
  • Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94(1), 175-179.
  • Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175.
  • Dodman, D. (2009). Urban form, greenhouse gas emissions and climate vulnerability. İçinde Population dynamics and climate change (Vol. 2009, S. 64-79). London, UK: UNFPA-IIED.
  • Dong, F., Li, Y., Gao, Y., Zhu, J., Qin, C., & Zhang, X. (2022). Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resources, Conservation and Recycling, 177, 106002.
  • Doornik, J. A., Shephard, N., & Hendry, D. F. (2005). Parallel computation in econometrics: A simplified approach. İçinde Handbook of Parallel Computing and Statistics (S. 465-492). Chapman and Hall/CRC.
  • Ehrlich, P. R., & Holdren, J. P. (1971). Impact of population growth: Complacency concerning this component of man's predicament is unjustified and counterproductive. Science, 171(3977), 1212-1217.
  • Frisch, R. (1934). Circulation planning: Proposal for a national organization of a commodity and service exchange. Econometrica, Journal of the Econometric Society, 258-336.
  • Gao, D., Li, G., & Yu, J. (2022). Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities. Energy, 247, 123395.
  • Gao, J., Xu, N., & Zhou, J. (2023). Does digital transformation contribute to corporate carbon emissions reduction? Empirical evidence from China. Sustainability, 15(18), 13414.
  • Ghiyasi, M. (2015). On inverse DEA model: The case of variable returns to scale. Computers & Industrial Engineering, 87, 407-409.
  • Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50.
  • Gong, C., & Ribiere, V. (2021). Developing a unified definition of digital transformation. Technovation, 102, 102217.
  • Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111-120.
  • Gujarati, D. N., & Porter, D. C. (2012). Temel ekonometri (Ü. Şenesen & GG Şenesen, Çev.). İstanbul: Literatür Yayıncılık.
  • Gwelo, A. S. (2019). Principal components to overcome multicollinearity problem. Oradea Journal of Business and Economics, 4(1), 79-91.
  • Harris, R. D., & Tzavalis, E. (1999). Inference for unit roots in dynamic panels where the time dimension is fixed. Journal of econometrics, 91(2), 201-226.
  • Harris, R., & Sollis, R. (2003). Applied Time Series Modelling and Forecasting. England: John Wiley&Sonsltd.
  • Helsper, E. (2021). The digital disconnect: The social causes and consequences of digital inequalities. SAGE.
  • Hinings, B., Gegenhuber, T., & Greenwood, R. (2018). Digital innovation and transformation: An institutional perspective. Information and Organization, 28(1), 52-61.
  • Hofer, C. W. (1975). Toward a contingency theory of business strategy. Academy of Management Journal, 18(4), 784-810.
  • Hossin, M. A., Alemzero, D., Wang, R., Kamruzzaman, M. M., & Mhlanga, M. N. (2023). Examining artificial intelligence and energy efficiency in the MENA region: The dual approach of DEA and SFA. Energy Reports, 9, 4984-4994.
  • Hou, J., & Fu, Y. (2024). Study on the spillover effect of digital economy development on CO2 emissions. Frontiers in Energy Research, 12, 1358093.
  • Huang, C., Wang, C., Rani, T., & Rehman, S. A. U. (2024). Digitalization's role in shaping climate change, renewable energy, and technological innovation for achieving sustainable development in top Asian countries. Energy & Environment, 0958305X241258799.
  • Huang, S., Yang, L., Yang, C., Wang, D., & Li, Y. (2024). Obscuring effect of income inequality and moderating role of financial literacy in the relationship between digital finance and China's household carbon emissions. Journal of Environmental Management, 351, 119927.
  • IEEFA (2024). Enerji Ekonomisi ve Finansal Analiz Enstitüsü Raporu 2023. https://ieefa.org/reports?keys=&tid_1%5B6%5D=6&topic%5B584%5D=584&topic%5B590%5D=590 sayfasından erişilmiştir. Erişim Tarihi: 25.10.2024.
  • Ionaşcu, I., Ionaşcu, M., Nechita, E., Săcărin, M., & Minu, M. (2022). Digital transformation, financial performance and sustainability: Evidence for European Union listed companies. Amfiteatru Economic, 24(59), 94-109.
  • Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: An analytical framework and key issues for research. Energy policy, 28(9), 625-640.
  • Jensen, P. S., & Schmidt, T. D. (2011). Testing for cross-sectional dependence in regional panel data. Spatial Economic Analysis, 6(4), 423-450.
  • Ji, Y. B., & Lee, C. (2010). Data envelopment analysis. The Stata Journal, 10(2), 267-280.
  • Khan, M. A., Khan, M. Z., Zaman, K., & Naz, L. (2014). Global estimates of energy consumption and greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 29, 336-344.
  • Khan, S. (2024). Mapping the digital divide: Bridging ınequalities in access to ınformation and technology. Policy Journal of Social Science Review, 2(02), 48-55.
  • Khan, Y., Oubaih, H., & Elgourrami, F. Z. (2022). The effect of renewable energy sources on carbon dioxide emissions: Evaluating the role of governance, and ICT in Morocco. Renewable Energy, 190, 752-763.
  • Kmenta, J., & Klein, L. R. (1971). Elements of econometrics (Vol. 655). New York: Macmillan.
  • Kunkel, S., & Matthess, M. (2020). Digital transformation and environmental sustainability in industry: Putting expectations in Asian and African policies into perspective. Environmental science & policy, 112, 318-329.
  • Levin, A. & Lin, C.F. (1992). Unit root test in panel data: asymptotic and finite sample properties, University of California at San Diego, Discussion Paper 92-93.
  • Levin, A. & Lin, C.F. (1993). Unit root test in panel data: New results. University of California at San Diego, Discussion Paper, 93-56.
  • Li, B. (2024). Leading role of natural resources, eco-efficiency assessment, and energy transition in environmental sustainability: A depth of digital transformation. Resources Policy, 94, 105145.
  • Li, X., Liu, J., & Ni, P. (2021). The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability, 13(13), 7267.
  • Lim, S., & Zhu, J. (2015). DEA cross-efficiency evaluation under variable returns to scale. Journal of the Operational Research Society, 66(3), 476-487.
  • Lin, B., & Huang, C. (2023). Promoting variable renewable energy ıntegration: The moderating effect of digitalization. Applied Energy, 337, 1–10. https://doi.org/10.1016/j.apenergy.2023.120891
  • Lohwasser, J. (2023). STIRPAT analysis revisited-new insights and applications on the relationship of anthropogenic impacts with the environment (Doctoral dissertation). Universität der Bundeswehr München, Neubiberg.
  • Ma, Q., Tariq, M., Mahmood, H., & Khan, Z. (2022). The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technology in Society, 68, 101910.
  • Mahalik, M. K., Mallick, H., & Padhan, H. (2021). Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. Renewable Energy, 164, 419-432.
  • Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3), 591-612.
  • Misra, P., & Srivastava, R. (2024). Digital divide and sustainable development. İçinde Digital Technologies to Implement the UN Sustainable Development Goals (s. 451-472). Cham: Springer Nature Switzerland.
  • Nazari, Z., & Musilek, P. (2023). Impact of digital transformation on the energy sector: A review. Algorithms, 16(4), 211.
  • Nong, D., Simshauser, P., & Nguyen, D. B. (2021). Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax. Applied Energy, 298, 117223.
  • O'Connell, P. G. (1998). The overvaluation of purchasing power parity. Journal of international economics, 44(1), 1-19.
  • OECD (2001). Understanding the Digital Divide. http://www.oecd.org/internet/interneteconomy/1888451.pdf. sayfasından erişilmiştir. Erişim Tarihi: 15.05.2023.
  • Öztürk, L. (2002). Dijital uçurumun küresel boyutları. Ege Academic Review, 2(1), 1–10.
  • Öztürk, Ş. (2019). Bir işletmecilik tecrübesi çerçevesinde dijital dönüşüm modeli önerisi: enerji sektöründe uygulama ve danışmanlık hizmeti veren bir kobi örneği (Yüksek Lisans tezi). https://acikbilim.yok.gov.tr/handle/20.500.12812/588612 Sayfasından erişilmiştir. Erişim Tarihi: 09.11.2024
  • Parks, R. W. (1967). Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. Journal of the American Statistical Association, 62(318), 500-509.
  • Paul, R. K. (2006). Multicollinearity: Causes, effects and remedies. IASRI, New Delhi, 1(1), 58-65.
  • Pesaran, H.M. (2003). A simple panel unit root test in the presence of cross section dependence. University of Southern California, Mimeo.
  • Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers. Economics, 1240(1), 1.
  • Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22(2), 265-312.
  • Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117.
  • Qiu, Y., He, N., Yan, C., & Rao, Q. (2023). Whether the digital divide widens the income gap between China’s regions?. Plos One, 18(2), e0273334.
  • Ramanathan, R. (2003). An introduction to data envelopment analysis: a tool for performance measurement. Sage.
  • Rizza, C. (2024). Digital Divide. İçinde A.C. Michalos (Hrsg.), Encyclopedia of quality of life and well-being research (S. 1619–1621). Dordrecht: Springer Netherlands.
  • Ruiz-Mendoza, B. J., & Sheinbaum-Pardo, C. (2010). Electricity sector reforms in four latin-american countries and their ımpact on carbon dioxide emissions and renewable energy. Energy Policy, 38(11), 6755–6766. https://doi.org/10.1016/j.enpol.2010.06.046
  • Sánchez, J. J. V. (2018). Malmquist index with time series to data envelopment analysis. Multi-Criteria Methods and Techniques Applied to Supply Chain Management, 111.
  • Sarwar, S., Yaseen, M. R., Makhdum, M. S. A., Sardar, A., Yasmeen, N., & Shahid, R. (2023). Global digital divide and environmental degradation in Africa. Environmental Science and Pollution Research, 30(42), 96191-96207.
  • Schneider, N. (2022). Unveiling the anthropogenic dynamics of environmental change with the stochastic IRPAT model: A review of baselines and extensions. Environmental Impact Assessment Review, 96, 106854.
  • Sezgin, S., & Fırat, M. (2020). Covid-19 pandemisinde uzaktan eğitime geçiş ve dijital uçurum tehlikesi. Açıköğretim Uygulamaları ve Araştırmaları Dergisi, 6(4), 37–54. https://dergipark.org.tr/tr/download/article-file/1195678
  • Shah, M. A. H., & Ximei, W. (2024). Innovating for sustainability: Exploring the synergy between international digital trade, appeal mechanisms, renewable energy, and economic growth on ecological footprint in BRICST economies. Environment, Development and Sustainability, 1-26.
  • Shahbaz, M., Wang, J., Dong, K., & Zhao, J. (2022). The İmpact of digital economy on energy transition across the globe: The mediating role of government governance. Renewable and Sustainable Energy Reviews, 166, 1–14. https://doi.org/10.1016/j.rser.2022.112620
  • Slinker, B. K., & Glantz, S. A. (1985). Multiple regression for physiological data analysis: The problem of multicollinearity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 249(1), R1-R12.
  • Sohag, K., Al Mamun, M., Uddin, G. S., & Ahmed, A. M. (2017). Sectoral output, energy use, and CO2 emission in middle-income countries. Environmental Science and Pollution Research, 24, 9754-9764.
  • Sparks, C. (2013). What is the “digital divide” and why is it important?. Javnost-The Public, 20(2), 27-46. Stevenson, S. (2009). Digital divide: A discursive move away from the real inequities. The Information Society, 25(1), 1-22.
  • Sun, W., & Ren, C. (2021). The impact of energy consumption structure on China’s carbon emissions: Taking the Shannon–Wiener index as a new indicator. Energy Reports, 7, 2605-2614.
  • Truong, T. C. (2022). The impact of digital transformation on environmental sustainability. Advances in Multimedia, 2022(1), 6324325.
  • van Dijk, J. (2017). Afterword: The state of digital divide theory. İçinde Theorizing digital divides (S. 199-206). Routledge.
  • Vial, G. (2021). Understanding digital transformation: A review and a research agenda. Managing digital transformation, 13-66.
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature communications, 11(1), 1-10.
  • Wang, L., & Ramsey, T. S. (2024). Digital divide and environmental pressure: A countermeasure on the embodied carbon emissions in FDI. Technological Forecasting and Social Change, 204, 123398.
  • Wang, Y. M., & Lan, Y. X. (2011). Measuring Malmquist productivity index: A new approach based on double frontiers data envelopment analysis. Mathematical and Computer Modelling, 54(11-12), 2760-2771.
  • Wei, Q., Zhang, J., & Zhang, X. (2000). An inverse DEA model for inputs/outputs estimate. European journal of operational research, 121(1), 151-163.
  • Wöber, K. W. (2007). Data envelopment analysis. Journal of Travel & Tourism Marketing, 21(4), 91-108.
  • Xiaole, W., & Piscunova, L. P. (2022). The challenges of digital transformation and renewable energy management for the green economy transition. Российские регионы в фокусе перемен: сборник докладов. Том 1.—Екатеринбург, 2021, 253-265.
  • Xue, Y., Chen, L., Feng, Z., & Huang, Y. (2024). Breaking the resource curse: Heterogeneous effects of digital government. Resources Policy, 90, 104828.
  • Yandle, B., Vijayaraghavan, M., & Bhattarai, M. (2002). The environmental Kuznets curve. A Primer, PERC Research Study, 2(1), 1-38.
  • Yao, S., Zhang, S., & Zhang, X. (2019). Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. Journal of Cleaner Production, 235, 1338-1352.
  • Yi, M., Liu, Y., Sheng, M. S., & Wen, L. (2022). Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy, 171, 113271.
  • Yue, Q., Zhang, M., & Song, Y. (2024). Impact of digital divide on energy poverty across the globe: The mediating role of income inequality. Energy Policy, 195, 114349.
  • Zhao, X., & Zhao, J. (2024). Digital finance and inequality in renewable energy technology innovation. Energy & Environment, 35(7), 3673-3702.
  • Zhou, J., & Liu, W. (2024). Carbon reduction effects of digital technology transformation: Evidence from the listed manufacturing firms in China. Technological Forecasting and Social Change, 198, 122999.

İYE VE BDT ÜLKELERİNDE DİJİTAL DÖNÜŞÜM, DİJİTAL UÇURUM, EKONOMİK GELİŞME, CO2 EMİSYONLARI VE YENİLENEBİLİR ENERJİNİN İLİŞKİLENDİRİLMESİ

Yıl 2025, Cilt: 21 Sayı: 1, 251 - 279, 26.03.2025

Öz

Küresel ekonominin en kritik konuları arasında sera gazı emisyonları, dijital dönüşüm ve yenilenebilir enerji bulunmaktadır. Bu konuların dünyaya etkilerinin araştırılması Birleşmiş Milletler (BM) Sürdürülebilir Kalkınma Hedefleri ile birlikte yeşil çevrenin korunmasında kritik öneme sahiptir. Fakat bunların akademik çevrelerce birbirinden bağımsız ele alınması söz konusu ilişkinin sosyo-ekonomik etkilerinin tam olarak anlaşılamamasına neden olmaktadır. Bu nedenle hazırlanan bu çalışma, 23 yıllık dönemde (2000-2023) İleri Yükselen Ekonomiler (İYE) ve Bağımsız Devletler Topluluğu (BDT) geçiş ekonomilerinde dijital dönüşüm, dijital uçurum ve yenilenebilir enerji ile CO2 emisyonları arasındaki karmaşık ilişkiyi incelemeyi amaçlamaktadır. Çalışmada iki aşamalı analiz metodu kullanılmıştır. Birinci aşamada Uygulanabilir Genelleştirilmiş En Küçük Kareler (GEKK) metodu kullanılırken ikinci aşamada Veri Zarflama Analizi (VZA) ile birlikte VZA tabanlı Malmquist İndeksi (MI) metodu kullanılmıştır. GEEK’de yenilenebilir enerjinin CO2 emisyonları üzerinde ters U şeklinde bir etkisinin olduğu belirlenmiştir. Bununla birlikte CO2 emisyonlarını dijital dönüşüm ve yenilenebilir enerji kullanım artışı azaltırken, dijital uçurumun negatif etkilediği tespit edilmiştir. VZA skorlarında ise Karar Verme Birimlerinde belirli dönemler için etkin üretimden sapmalar belirlenmiştir. MI hesaplamalarında ise BDT ülkelerine kıyasla İYE ülkelerinin CO2 emisyonları ve dijital uçurumu azaltmada yüksek verimliliğe sahip olduğu tespit edilmiştir. Çalışmada varılan sonuçlar sürdürülebilir ekonomik kalkınma sürecinde politika yapıcılara önemli bir rehber niteliği taşımaktadır.

Kaynakça

  • Abbas, Q., Yao, H. X., Shahbaz, M., Ramzan, M., & Fatima, S. (2023). How renewable energy and digitalization affect CO2 emissions? The mediating role of public debt in emerging economies. The Mediating Role of Public Debt in Emerging Economies.
  • Adebayo, T. S., Ullah, S., Kartal, M. T., Ali, K., Pata, U. K., & Ağa, M. (2023). Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Science of the Total Environment, 859, 160181.
  • Asmild, M., Paradi, J. C., & Pastor, J. T. (2009). Centralized resource allocation BCC models. Omega, 37(1), 40-49.
  • Beier, G., Fritzsche, K., Kunkel, S., Matthess, M., Niehoff, S., Reißig, M., & van Zyl-Bulitta, V. (2020). Grüne digitalisierte Wirtschaft. Herausforderungen und Chancen für die Nachhaltigkeit (IASS Fact Sheet). IASS.
  • Ben Jebli, M., Ben Youssef, S., & Apergis, N. (2019). The dynamic linkage between renewable energy, tourism, CO2 emissions, economic growth, foreign direct investment, and trade. Latin American Economic Review, 28(1), 1-19.
  • Bhat, R., Verma, B. B., & Reuben, E. (2001). Data envelopment analysis (DEA). Journal of Health Management, 3(2), 309-328.
  • Bianchini, S., Damioli, G., & Ghisetti, C. (2023). The environmental effects of the “twin” green and digital transition in European regions. Environmental and Resource Economics, 84(4), 877-918.
  • Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies, 47(1), 239-253.
  • Camanho, A. S., & Dyson, R. G. (2006). Data envelopment analysis and Malmquist indices for measuring group performance. Journal of Productivity Analysis, 26, 35-49.
  • Campoli, J. S., Junior, P. N. A., Kodama, T. K., Nagano, M. S., & Burnquist, H. L. (2024). G20 countries’ progress on the 7th SDG under circular economy DEA model. Environmental Science & Policy, 160, 103839.
  • Chang, Y. (2004). Bootstrap unit root tests in panels with cross-sectional dependency. Journal of Econometrics, 120(2), 263-293.
  • Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. M. (1997). Data envelopment analysis theory, methodology and applications. Journal of the Operational Research Society, 48(3), 332-333.
  • Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249-272.
  • Chudik, A., & Pesaran, M. H. (2013). Large panel data models with cross-sectional dependence: A survey. CAFE Research Paper, (13.15).
  • Cocchia, A. (2014). Smart and digital city: A systematic literature review. İçinde R. Dameri, & C. Rosenthal-Sabroux, (Ed.), Smart city: How to create public and economic value with high technology in urban space, 13-43.
  • Cole, M. A., Rayner, A. J., & Bates, J. M. (1997). The environmental Kuznets curve: An empirical analysis. Environment and development economics, 2(4), 401-416.
  • Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)–Thirty years on. European Journal of Operational Research, 192(1), 1-17.
  • Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software (Vol. 2, p. 489). New York: Springer.
  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Data envelopment analysis: History, models, and interpretations. Handbook on data envelopment analysis, 1-39.
  • Cui, L., Chen, L., & Yang, X. (2023). Evaluation and analysis of green efficiency of China's coastal ports under the" double carbon" goal: Two improved DEA models with CO2 emissions. Environment, Development and Sustainability, 1-30.
  • Çakmak, E., & Örkçü, H. H. (2016). Türkiye’deki illerin etkinliklerinin sosyo-ekonomik temel göstergelerle veri zarflama analizi kullanarak incelenmesi. Karabük Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6(1), 30-48.
  • Daneeva, Y., Glebova, A., Daneev, O., & Zvonova, E. (2020, August). Digital transformation of oil and gas companies: Energy transition. İçinde Russian Conference on Digital Economy and Knowledge Management (RuDEcK 2020) (S. 199-205). Atlantis Press.
  • De Hoyos, R. E., & Sarafidis, V. (2006). Testing for cross-sectional dependence in panel-data models. The Stata Journal, 6(4), 482-496.
  • Dellnitz, A., Kleine, A., & Rödder, W. (2018). CCR or BCC: what if we are in the wrong model?. Journal of business economics, 88, 831-850.
  • Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94(1), 175-179.
  • Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175.
  • Dodman, D. (2009). Urban form, greenhouse gas emissions and climate vulnerability. İçinde Population dynamics and climate change (Vol. 2009, S. 64-79). London, UK: UNFPA-IIED.
  • Dong, F., Li, Y., Gao, Y., Zhu, J., Qin, C., & Zhang, X. (2022). Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resources, Conservation and Recycling, 177, 106002.
  • Doornik, J. A., Shephard, N., & Hendry, D. F. (2005). Parallel computation in econometrics: A simplified approach. İçinde Handbook of Parallel Computing and Statistics (S. 465-492). Chapman and Hall/CRC.
  • Ehrlich, P. R., & Holdren, J. P. (1971). Impact of population growth: Complacency concerning this component of man's predicament is unjustified and counterproductive. Science, 171(3977), 1212-1217.
  • Frisch, R. (1934). Circulation planning: Proposal for a national organization of a commodity and service exchange. Econometrica, Journal of the Econometric Society, 258-336.
  • Gao, D., Li, G., & Yu, J. (2022). Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities. Energy, 247, 123395.
  • Gao, J., Xu, N., & Zhou, J. (2023). Does digital transformation contribute to corporate carbon emissions reduction? Empirical evidence from China. Sustainability, 15(18), 13414.
  • Ghiyasi, M. (2015). On inverse DEA model: The case of variable returns to scale. Computers & Industrial Engineering, 87, 407-409.
  • Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38-50.
  • Gong, C., & Ribiere, V. (2021). Developing a unified definition of digital transformation. Technovation, 102, 102217.
  • Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111-120.
  • Gujarati, D. N., & Porter, D. C. (2012). Temel ekonometri (Ü. Şenesen & GG Şenesen, Çev.). İstanbul: Literatür Yayıncılık.
  • Gwelo, A. S. (2019). Principal components to overcome multicollinearity problem. Oradea Journal of Business and Economics, 4(1), 79-91.
  • Harris, R. D., & Tzavalis, E. (1999). Inference for unit roots in dynamic panels where the time dimension is fixed. Journal of econometrics, 91(2), 201-226.
  • Harris, R., & Sollis, R. (2003). Applied Time Series Modelling and Forecasting. England: John Wiley&Sonsltd.
  • Helsper, E. (2021). The digital disconnect: The social causes and consequences of digital inequalities. SAGE.
  • Hinings, B., Gegenhuber, T., & Greenwood, R. (2018). Digital innovation and transformation: An institutional perspective. Information and Organization, 28(1), 52-61.
  • Hofer, C. W. (1975). Toward a contingency theory of business strategy. Academy of Management Journal, 18(4), 784-810.
  • Hossin, M. A., Alemzero, D., Wang, R., Kamruzzaman, M. M., & Mhlanga, M. N. (2023). Examining artificial intelligence and energy efficiency in the MENA region: The dual approach of DEA and SFA. Energy Reports, 9, 4984-4994.
  • Hou, J., & Fu, Y. (2024). Study on the spillover effect of digital economy development on CO2 emissions. Frontiers in Energy Research, 12, 1358093.
  • Huang, C., Wang, C., Rani, T., & Rehman, S. A. U. (2024). Digitalization's role in shaping climate change, renewable energy, and technological innovation for achieving sustainable development in top Asian countries. Energy & Environment, 0958305X241258799.
  • Huang, S., Yang, L., Yang, C., Wang, D., & Li, Y. (2024). Obscuring effect of income inequality and moderating role of financial literacy in the relationship between digital finance and China's household carbon emissions. Journal of Environmental Management, 351, 119927.
  • IEEFA (2024). Enerji Ekonomisi ve Finansal Analiz Enstitüsü Raporu 2023. https://ieefa.org/reports?keys=&tid_1%5B6%5D=6&topic%5B584%5D=584&topic%5B590%5D=590 sayfasından erişilmiştir. Erişim Tarihi: 25.10.2024.
  • Ionaşcu, I., Ionaşcu, M., Nechita, E., Săcărin, M., & Minu, M. (2022). Digital transformation, financial performance and sustainability: Evidence for European Union listed companies. Amfiteatru Economic, 24(59), 94-109.
  • Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: An analytical framework and key issues for research. Energy policy, 28(9), 625-640.
  • Jensen, P. S., & Schmidt, T. D. (2011). Testing for cross-sectional dependence in regional panel data. Spatial Economic Analysis, 6(4), 423-450.
  • Ji, Y. B., & Lee, C. (2010). Data envelopment analysis. The Stata Journal, 10(2), 267-280.
  • Khan, M. A., Khan, M. Z., Zaman, K., & Naz, L. (2014). Global estimates of energy consumption and greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 29, 336-344.
  • Khan, S. (2024). Mapping the digital divide: Bridging ınequalities in access to ınformation and technology. Policy Journal of Social Science Review, 2(02), 48-55.
  • Khan, Y., Oubaih, H., & Elgourrami, F. Z. (2022). The effect of renewable energy sources on carbon dioxide emissions: Evaluating the role of governance, and ICT in Morocco. Renewable Energy, 190, 752-763.
  • Kmenta, J., & Klein, L. R. (1971). Elements of econometrics (Vol. 655). New York: Macmillan.
  • Kunkel, S., & Matthess, M. (2020). Digital transformation and environmental sustainability in industry: Putting expectations in Asian and African policies into perspective. Environmental science & policy, 112, 318-329.
  • Levin, A. & Lin, C.F. (1992). Unit root test in panel data: asymptotic and finite sample properties, University of California at San Diego, Discussion Paper 92-93.
  • Levin, A. & Lin, C.F. (1993). Unit root test in panel data: New results. University of California at San Diego, Discussion Paper, 93-56.
  • Li, B. (2024). Leading role of natural resources, eco-efficiency assessment, and energy transition in environmental sustainability: A depth of digital transformation. Resources Policy, 94, 105145.
  • Li, X., Liu, J., & Ni, P. (2021). The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability, 13(13), 7267.
  • Lim, S., & Zhu, J. (2015). DEA cross-efficiency evaluation under variable returns to scale. Journal of the Operational Research Society, 66(3), 476-487.
  • Lin, B., & Huang, C. (2023). Promoting variable renewable energy ıntegration: The moderating effect of digitalization. Applied Energy, 337, 1–10. https://doi.org/10.1016/j.apenergy.2023.120891
  • Lohwasser, J. (2023). STIRPAT analysis revisited-new insights and applications on the relationship of anthropogenic impacts with the environment (Doctoral dissertation). Universität der Bundeswehr München, Neubiberg.
  • Ma, Q., Tariq, M., Mahmood, H., & Khan, Z. (2022). The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technology in Society, 68, 101910.
  • Mahalik, M. K., Mallick, H., & Padhan, H. (2021). Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. Renewable Energy, 164, 419-432.
  • Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12(3), 591-612.
  • Misra, P., & Srivastava, R. (2024). Digital divide and sustainable development. İçinde Digital Technologies to Implement the UN Sustainable Development Goals (s. 451-472). Cham: Springer Nature Switzerland.
  • Nazari, Z., & Musilek, P. (2023). Impact of digital transformation on the energy sector: A review. Algorithms, 16(4), 211.
  • Nong, D., Simshauser, P., & Nguyen, D. B. (2021). Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax. Applied Energy, 298, 117223.
  • O'Connell, P. G. (1998). The overvaluation of purchasing power parity. Journal of international economics, 44(1), 1-19.
  • OECD (2001). Understanding the Digital Divide. http://www.oecd.org/internet/interneteconomy/1888451.pdf. sayfasından erişilmiştir. Erişim Tarihi: 15.05.2023.
  • Öztürk, L. (2002). Dijital uçurumun küresel boyutları. Ege Academic Review, 2(1), 1–10.
  • Öztürk, Ş. (2019). Bir işletmecilik tecrübesi çerçevesinde dijital dönüşüm modeli önerisi: enerji sektöründe uygulama ve danışmanlık hizmeti veren bir kobi örneği (Yüksek Lisans tezi). https://acikbilim.yok.gov.tr/handle/20.500.12812/588612 Sayfasından erişilmiştir. Erişim Tarihi: 09.11.2024
  • Parks, R. W. (1967). Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. Journal of the American Statistical Association, 62(318), 500-509.
  • Paul, R. K. (2006). Multicollinearity: Causes, effects and remedies. IASRI, New Delhi, 1(1), 58-65.
  • Pesaran, H.M. (2003). A simple panel unit root test in the presence of cross section dependence. University of Southern California, Mimeo.
  • Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers. Economics, 1240(1), 1.
  • Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22(2), 265-312.
  • Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117.
  • Qiu, Y., He, N., Yan, C., & Rao, Q. (2023). Whether the digital divide widens the income gap between China’s regions?. Plos One, 18(2), e0273334.
  • Ramanathan, R. (2003). An introduction to data envelopment analysis: a tool for performance measurement. Sage.
  • Rizza, C. (2024). Digital Divide. İçinde A.C. Michalos (Hrsg.), Encyclopedia of quality of life and well-being research (S. 1619–1621). Dordrecht: Springer Netherlands.
  • Ruiz-Mendoza, B. J., & Sheinbaum-Pardo, C. (2010). Electricity sector reforms in four latin-american countries and their ımpact on carbon dioxide emissions and renewable energy. Energy Policy, 38(11), 6755–6766. https://doi.org/10.1016/j.enpol.2010.06.046
  • Sánchez, J. J. V. (2018). Malmquist index with time series to data envelopment analysis. Multi-Criteria Methods and Techniques Applied to Supply Chain Management, 111.
  • Sarwar, S., Yaseen, M. R., Makhdum, M. S. A., Sardar, A., Yasmeen, N., & Shahid, R. (2023). Global digital divide and environmental degradation in Africa. Environmental Science and Pollution Research, 30(42), 96191-96207.
  • Schneider, N. (2022). Unveiling the anthropogenic dynamics of environmental change with the stochastic IRPAT model: A review of baselines and extensions. Environmental Impact Assessment Review, 96, 106854.
  • Sezgin, S., & Fırat, M. (2020). Covid-19 pandemisinde uzaktan eğitime geçiş ve dijital uçurum tehlikesi. Açıköğretim Uygulamaları ve Araştırmaları Dergisi, 6(4), 37–54. https://dergipark.org.tr/tr/download/article-file/1195678
  • Shah, M. A. H., & Ximei, W. (2024). Innovating for sustainability: Exploring the synergy between international digital trade, appeal mechanisms, renewable energy, and economic growth on ecological footprint in BRICST economies. Environment, Development and Sustainability, 1-26.
  • Shahbaz, M., Wang, J., Dong, K., & Zhao, J. (2022). The İmpact of digital economy on energy transition across the globe: The mediating role of government governance. Renewable and Sustainable Energy Reviews, 166, 1–14. https://doi.org/10.1016/j.rser.2022.112620
  • Slinker, B. K., & Glantz, S. A. (1985). Multiple regression for physiological data analysis: The problem of multicollinearity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 249(1), R1-R12.
  • Sohag, K., Al Mamun, M., Uddin, G. S., & Ahmed, A. M. (2017). Sectoral output, energy use, and CO2 emission in middle-income countries. Environmental Science and Pollution Research, 24, 9754-9764.
  • Sparks, C. (2013). What is the “digital divide” and why is it important?. Javnost-The Public, 20(2), 27-46. Stevenson, S. (2009). Digital divide: A discursive move away from the real inequities. The Information Society, 25(1), 1-22.
  • Sun, W., & Ren, C. (2021). The impact of energy consumption structure on China’s carbon emissions: Taking the Shannon–Wiener index as a new indicator. Energy Reports, 7, 2605-2614.
  • Truong, T. C. (2022). The impact of digital transformation on environmental sustainability. Advances in Multimedia, 2022(1), 6324325.
  • van Dijk, J. (2017). Afterword: The state of digital divide theory. İçinde Theorizing digital divides (S. 199-206). Routledge.
  • Vial, G. (2021). Understanding digital transformation: A review and a research agenda. Managing digital transformation, 13-66.
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature communications, 11(1), 1-10.
  • Wang, L., & Ramsey, T. S. (2024). Digital divide and environmental pressure: A countermeasure on the embodied carbon emissions in FDI. Technological Forecasting and Social Change, 204, 123398.
  • Wang, Y. M., & Lan, Y. X. (2011). Measuring Malmquist productivity index: A new approach based on double frontiers data envelopment analysis. Mathematical and Computer Modelling, 54(11-12), 2760-2771.
  • Wei, Q., Zhang, J., & Zhang, X. (2000). An inverse DEA model for inputs/outputs estimate. European journal of operational research, 121(1), 151-163.
  • Wöber, K. W. (2007). Data envelopment analysis. Journal of Travel & Tourism Marketing, 21(4), 91-108.
  • Xiaole, W., & Piscunova, L. P. (2022). The challenges of digital transformation and renewable energy management for the green economy transition. Российские регионы в фокусе перемен: сборник докладов. Том 1.—Екатеринбург, 2021, 253-265.
  • Xue, Y., Chen, L., Feng, Z., & Huang, Y. (2024). Breaking the resource curse: Heterogeneous effects of digital government. Resources Policy, 90, 104828.
  • Yandle, B., Vijayaraghavan, M., & Bhattarai, M. (2002). The environmental Kuznets curve. A Primer, PERC Research Study, 2(1), 1-38.
  • Yao, S., Zhang, S., & Zhang, X. (2019). Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. Journal of Cleaner Production, 235, 1338-1352.
  • Yi, M., Liu, Y., Sheng, M. S., & Wen, L. (2022). Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy, 171, 113271.
  • Yue, Q., Zhang, M., & Song, Y. (2024). Impact of digital divide on energy poverty across the globe: The mediating role of income inequality. Energy Policy, 195, 114349.
  • Zhao, X., & Zhao, J. (2024). Digital finance and inequality in renewable energy technology innovation. Energy & Environment, 35(7), 3673-3702.
  • Zhou, J., & Liu, W. (2024). Carbon reduction effects of digital technology transformation: Evidence from the listed manufacturing firms in China. Technological Forecasting and Social Change, 198, 122999.
Toplam 111 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kalkınma Ekonomisi - Makro, Uluslararası İktisatta Bölgesel Gelişme ve Küreselleşme
Bölüm Araştırma Makaleleri
Yazarlar

Resul Telli 0000-0001-9110-6406

Erken Görünüm Tarihi 24 Mart 2025
Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 8 Aralık 2024
Kabul Tarihi 24 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 1

Kaynak Göster

APA Telli, R. (2025). İYE VE BDT ÜLKELERİNDE DİJİTAL DÖNÜŞÜM, DİJİTAL UÇURUM, EKONOMİK GELİŞME, CO2 EMİSYONLARI VE YENİLENEBİLİR ENERJİNİN İLİŞKİLENDİRİLMESİ. Uluslararası Yönetim İktisat Ve İşletme Dergisi, 21(1), 251-279. https://doi.org/10.17130/ijmeb.1598346