Araştırma Makalesi
BibTex RIS Kaynak Göster

Waste-to-Energy Technologies: A Comprehensive Analysis of Sustainable Energy Production Methods and Their Socio-Economic Viability

Yıl 2025, Cilt: 9 Sayı: 1, 14 - 22, 31.07.2025

Öz

Waste-to-Energy (WTE) technologies represent a critical approach to addressing global waste management and energy sustainability challenges. This study provides a comprehensive analysis of four prominent WTE technologies: Incineration, Anaerobic Digestion, Gasification, and Pyrolysis, evaluating their energy efficiency, environmental impact, economic feasibility, and socio-economic viability. Comparative analysis reveals that Anaerobic Digestion achieves the highest environmental benefits with low carbon emissions (200 kg/ton) and moderate capital costs (USD 600/ton), while Gasification offers superior energy recovery rates (90%) and carbon reduction (35%). Pyrolysis demonstrates remarkable feedstock flexibility and low methane emissions (5 kg/ton), making it a versatile option for diverse waste streams. Incineration, despite being widely adopted, faces challenges related to high emissions (900 kg CO2/ton) and ash residue management. Economically, Anaerobic Digestion has the shortest payback period (7 years) and highest return on investment (35%), while Gasification and Pyrolysis require higher capital but offer long-term stability and moderate risk factors. Social acceptance varies, with Anaerobic Digestion achieving the highest public approval (80%) due to minimal health and environmental concerns. Regionally, policy support in Europe and North America significantly drives WTE adoption, while Africa faces gaps in regulatory enforcement and incentives. Future trends highlight increased investment in research, pilot projects, and innovation, particularly in biochar utilization and advanced catalyst technologies. This study highlights the importance of tailored regional policies, financial incentives, and public awareness campaigns to enhance WTE adoption and ensure sustainable socio-economic benefits globally. The findings advocate for an integrated approach to optimize WTE technologies for a cleaner and more energy-efficient future.

Kaynakça

  • [1] C. G. Achi, J. Snyman, J. M. Ndambuki, K. Williams, and J. Kupolati, "Advanced waste-to-energy technologies: A review on pathway to sustainable energy recovery in a circular economy," Nature Environment and Pollution Technology, vol. 23, no. 3, pp. 435-450, 2024, doi:10.46488/nept.2024.v23i03.002.
  • [2] M. A. Alao, P. Olawale, T. R. Ayodele, "Waste-to-energy nexus: An overview of technologies and implementation for sustainable development," Cleaner Energy Systems, vol. 1, no. 1, pp. 100034, 2022, doi:10.1016/j.cles.2022.100034.
  • [3] A. Anas, F. Ahmed, T. F. Qahtan, O. T. Owolabi, O. A. Agunloye, R. Marzaini, and M. S. Mohamed Ali, "Waste to sustainable energy based on TENG technology: A comprehensive review," Journal of Cleaner Production, vol. 395, pp. 141354, 2024, doi:10.1016/j.jclepro.2024.141354.
  • [4] A. Asam, L. Wangliang, S. Varjani, and S. You, "Waste-to-energy technologies for sustainability: life-cycle assessment and economic analysis," Elsevier Books, vol. 8, pp. 123-145, 2022, doi:10.1016/b978-0-323-89855-3.00008-x.
  • [5] C. Mertzanakis, C. Vlachokostas, C. Toufexis, and A. V. Michailidou, "Closing the loop between waste‐to‐energy technologies: A holistic assessment based on multiple criteria," Preprints, 2024, doi:10.20944/preprints202405.1023.v1.
  • [6] T. Junaid, A. Rafiq, and P. Martínez, "A critical review of sustainable refuse-derived fuel production in waste processing facility," Energy Conversion and Management: X, vol. 10, no. 1, pp. 100687, 2024, doi:10.1016/j.ecmx.2024.100687.
  • [7] K. Saini and K. Saini, "Emerging technologies for waste to energy production: A general review," Preprints, 2021, doi:10.20944/PREPRINTS202101.0376.V1.
  • [8] K. Borah and V. V. Goud, "Sustainable waste-to-energy technologies," Waste-to-Energy Advances, vol. 1, no. 2, pp. 100-120, 2024, doi:10.1201/9781003502012-7.
  • [9] L. Traven, "Sustainable energy generation from municipal solid waste: A brief overview of existing technologies," Case Studies in Chemical and Environmental Engineering, vol. 5, pp. 100491, 2023, doi:10.1016/j.cscee.2023.100491.
  • [10] M. M. Ahmed, N. H. Hossan, and M. H. Masud, "Prospect of waste-to-energy technologies in selected regions of lower and lower-middle-income countries of the world," Journal of Cleaner Production, vol. 389, pp. 142006, 2024, doi:10.1016/j.jclepro.2024.142006.
  • [11] M. K. Awasthi, S. Sarsaiya, H. Chen, Q. Wang, M. Wang, S. K. Awasthi, J. Li, T. Liu, A. Pandey, and Z. Zhang, "Global status of waste-to-energy technology," Elsevier, vol. 3, pp. 63-75, 2019, doi:10.1016/B978-0-444-64083-3.00003-8.
  • [12] N. Vukovic and E. Makogon, "Waste-to-energy generation: Complex world project analysis," Sustainability, vol. 16, no. 9, pp. 3531, 2024, doi:10.3390/su16093531.
  • [13] N. C. Kokkinos, "Waste-to-energy: Applications and perspectives on sustainable aviation fuel production," Springer Link, vol. 10, pp. 273-285, 2023, doi:10.1007/978-981-99-1392-3_10.
  • [14] N. A. Manaf, Z. F. Mohd Shadzalli, and N. Kamaruzaman, "Waste-energy-climate nexus perspective towards circular economy: A mini-review," Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 26, no. 1, pp. 3141, 2022, doi:10.37934/araset.26.1.3141.
  • [15] R. A. M. Boloy, A. C. Reis, E. M. Rios, J. A. S. Martins, L. O. Soares, V. A. S. Machado, and D. R. de Moraes, "Waste-to-energy technologies towards circular economy: A systematic literature review and bibliometric analysis," Water Air and Soil Pollution, vol. 232, no. 2, pp. 5224-5235, 2021, doi:10.1007/S11270-021-05224-X.
  • [16] S. K. Ghosh, U. V. Parlikar, A. A. Zorpas, and I. Papamichael, "Sustainable supply chain for waste-to-energy facilities," Elsevier, vol. 15, pp. 235-248, 2024, doi:10.1016/b978-0-323-95076-3.00015-6.
  • [17] S. Pandey, A. Sharma, N. Kumar, N. Aggarwal, and A. Vasishth, "Waste‐to‐energy technologies for energy recovery," John Wiley & Sons, vol. 17, pp. 321-337, 2024, doi:10.1002/9781394174805.ch17.
  • [18] S. Rezania, B. Oryani, V. R. Nasrollahi, N. Darajeh, M. L. Ghahroud, and K. Mehranzamir, "Review on waste-to-energy approaches toward a circular economy in developed and developing countries," Processes, vol. 11, no. 9, pp. 2566, 2023, doi:10.3390/pr11092566.
  • [19] S. You, "Waste-to-energy," Elsevier, vol. 3, pp. 83-92, 2022, doi:10.1016/b978-0-12-822681-0.00003-7.
  • [20] S. Jamilatun, J. Pitoyo, and M. Setyawan, "Technical, economic, and environmental review of waste-to-energy technologies from municipal solid waste," Jurnal Ilmu Lingkungan, vol. 21, no. 3, pp. 581-593, 2023, doi:10.14710/jil.21.3.581-593.
  • [21] S. Sharma, V. R. Reddy, G. R. R. Nijhawan, D. K. Yadav, R. Raed, and L. K. Tyagi, "Leveraging waste-to-energy technologies for sustainable development: A comprehensive review," E3S Web of Conferences, vol. 252, pp. 02010, 2024, doi:10.1051/e3sconf/202452902010.
  • [22] T. K. Vashishth, V. Sharma, K. K. Sharma, B. Kumar, S. Chaudhary, and R. Panwar, "Waste-to-energy solutions harnessing IoT and ML for sustainable power generation in smart cities," Advances in Computational Intelligence and Robotics, vol. 7, pp. 119-132, 2024, doi:10.4018/979-8-3693-1062-5.ch007.
  • [23] V. Terjanika and J. Pubule, "To burn or not to burn. Literature review," Connect Journal, vol. 7, pp. 51-65, 2023, doi:10.7250/conect.2023.051.
  • [24] W. Cui, Y. Wei, and N. Ji, "Global trends of waste-to-energy technologies in carbon neutral perspective: Bibliometric analysis," Ecotoxicology and Environmental Safety, vol. 256, pp. 115913, 2024, doi:10.1016/j.ecoenv.2023.115913.
  • [25] D. D. Olodu and A. Erameh, “Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa”, BSJ Eng. Sci., vol. 6, no. 3, pp. 296–307, 2023, doi: 10.34248/bsengineering.1195247.
  • [26] D. D. Olodu, O. I. Ihenyen, and F. Inegbedion, “Advances in Renewable Energy Systems: Integrating Solar, Wind, and Hydropower for a Carbon-Neutral Future”, IJONFEST, vol. 3, no. 1, pp. 14–24, 2025, doi: 10.61150/ijonfest.2025030102.

A Multidimensional Assessment of Waste-to-Energy Technologies: Economic Feasibility, Social Acceptance, and Future Trends of Gasification and Pyrolysis

Yıl 2025, Cilt: 9 Sayı: 1, 14 - 22, 31.07.2025

Öz

The global increase in municipal solid waste, projected to reach 3.4 billion tons annually by 2050, poses a critical environmental and energy challenge for both developed and developing nations. Waste-to-Energy (WTE) technologies represent a critical approach to addressing global waste management and energy sustainability challenges. This study provides a comprehensive analysis of four prominent WTE technologies: Incineration, Anaerobic Digestion, Gasification, and Pyrolysis, evaluating their energy efficiency, environmental impact, economic feasibility, and socio-economic viability. Comparative analysis reveals that Anaerobic Digestion achieves the highest environmental benefits with low carbon emissions (200 kg/ton) and moderate capital costs (USD 600/ton), while Gasification offers superior energy recovery rates (90%) and carbon reduction (35%). Pyrolysis demonstrates remarkable feedstock flexibility and low methane emissions (5 kg/ton), making it a versatile option for diverse waste streams. Incineration, despite being widely adopted, faces challenges related to high emissions (900 kg CO2/ton) and ash residue management. Economically, Anaerobic Digestion has the shortest payback period (7 years) and highest return on investment (35%), while Gasification and Pyrolysis require higher capital but offer long-term stability and moderate risk factors. Social acceptance varies, with Anaerobic Digestion achieving the highest public approval (80%) due to minimal health and environmental concerns. Regionally, policy support in Europe and North America significantly drives WTE adoption, while Africa faces gaps in regulatory enforcement and incentives. Future trends highlight increased investment in research, pilot projects, and innovation, particularly in biochar utilization and advanced catalyst technologies. This study highlights the importance of tailored regional policies, financial incentives, and public awareness campaigns to enhance WTE adoption and ensure sustainable socio-economic benefits globally. The findings advocate for an integrated approach to optimize WTE technologies for a cleaner and more energy-efficient future.

Kaynakça

  • [1] C. G. Achi, J. Snyman, J. M. Ndambuki, K. Williams, and J. Kupolati, "Advanced waste-to-energy technologies: A review on pathway to sustainable energy recovery in a circular economy," Nature Environment and Pollution Technology, vol. 23, no. 3, pp. 435-450, 2024, doi:10.46488/nept.2024.v23i03.002.
  • [2] M. A. Alao, P. Olawale, T. R. Ayodele, "Waste-to-energy nexus: An overview of technologies and implementation for sustainable development," Cleaner Energy Systems, vol. 1, no. 1, pp. 100034, 2022, doi:10.1016/j.cles.2022.100034.
  • [3] A. Anas, F. Ahmed, T. F. Qahtan, O. T. Owolabi, O. A. Agunloye, R. Marzaini, and M. S. Mohamed Ali, "Waste to sustainable energy based on TENG technology: A comprehensive review," Journal of Cleaner Production, vol. 395, pp. 141354, 2024, doi:10.1016/j.jclepro.2024.141354.
  • [4] A. Asam, L. Wangliang, S. Varjani, and S. You, "Waste-to-energy technologies for sustainability: life-cycle assessment and economic analysis," Elsevier Books, vol. 8, pp. 123-145, 2022, doi:10.1016/b978-0-323-89855-3.00008-x.
  • [5] C. Mertzanakis, C. Vlachokostas, C. Toufexis, and A. V. Michailidou, "Closing the loop between waste‐to‐energy technologies: A holistic assessment based on multiple criteria," Preprints, 2024, doi:10.20944/preprints202405.1023.v1.
  • [6] T. Junaid, A. Rafiq, and P. Martínez, "A critical review of sustainable refuse-derived fuel production in waste processing facility," Energy Conversion and Management: X, vol. 10, no. 1, pp. 100687, 2024, doi:10.1016/j.ecmx.2024.100687.
  • [7] K. Saini and K. Saini, "Emerging technologies for waste to energy production: A general review," Preprints, 2021, doi:10.20944/PREPRINTS202101.0376.V1.
  • [8] K. Borah and V. V. Goud, "Sustainable waste-to-energy technologies," Waste-to-Energy Advances, vol. 1, no. 2, pp. 100-120, 2024, doi:10.1201/9781003502012-7.
  • [9] L. Traven, "Sustainable energy generation from municipal solid waste: A brief overview of existing technologies," Case Studies in Chemical and Environmental Engineering, vol. 5, pp. 100491, 2023, doi:10.1016/j.cscee.2023.100491.
  • [10] M. M. Ahmed, N. H. Hossan, and M. H. Masud, "Prospect of waste-to-energy technologies in selected regions of lower and lower-middle-income countries of the world," Journal of Cleaner Production, vol. 389, pp. 142006, 2024, doi:10.1016/j.jclepro.2024.142006.
  • [11] M. K. Awasthi, S. Sarsaiya, H. Chen, Q. Wang, M. Wang, S. K. Awasthi, J. Li, T. Liu, A. Pandey, and Z. Zhang, "Global status of waste-to-energy technology," Elsevier, vol. 3, pp. 63-75, 2019, doi:10.1016/B978-0-444-64083-3.00003-8.
  • [12] N. Vukovic and E. Makogon, "Waste-to-energy generation: Complex world project analysis," Sustainability, vol. 16, no. 9, pp. 3531, 2024, doi:10.3390/su16093531.
  • [13] N. C. Kokkinos, "Waste-to-energy: Applications and perspectives on sustainable aviation fuel production," Springer Link, vol. 10, pp. 273-285, 2023, doi:10.1007/978-981-99-1392-3_10.
  • [14] N. A. Manaf, Z. F. Mohd Shadzalli, and N. Kamaruzaman, "Waste-energy-climate nexus perspective towards circular economy: A mini-review," Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 26, no. 1, pp. 3141, 2022, doi:10.37934/araset.26.1.3141.
  • [15] R. A. M. Boloy, A. C. Reis, E. M. Rios, J. A. S. Martins, L. O. Soares, V. A. S. Machado, and D. R. de Moraes, "Waste-to-energy technologies towards circular economy: A systematic literature review and bibliometric analysis," Water Air and Soil Pollution, vol. 232, no. 2, pp. 5224-5235, 2021, doi:10.1007/S11270-021-05224-X.
  • [16] S. K. Ghosh, U. V. Parlikar, A. A. Zorpas, and I. Papamichael, "Sustainable supply chain for waste-to-energy facilities," Elsevier, vol. 15, pp. 235-248, 2024, doi:10.1016/b978-0-323-95076-3.00015-6.
  • [17] S. Pandey, A. Sharma, N. Kumar, N. Aggarwal, and A. Vasishth, "Waste‐to‐energy technologies for energy recovery," John Wiley & Sons, vol. 17, pp. 321-337, 2024, doi:10.1002/9781394174805.ch17.
  • [18] S. Rezania, B. Oryani, V. R. Nasrollahi, N. Darajeh, M. L. Ghahroud, and K. Mehranzamir, "Review on waste-to-energy approaches toward a circular economy in developed and developing countries," Processes, vol. 11, no. 9, pp. 2566, 2023, doi:10.3390/pr11092566.
  • [19] S. You, "Waste-to-energy," Elsevier, vol. 3, pp. 83-92, 2022, doi:10.1016/b978-0-12-822681-0.00003-7.
  • [20] S. Jamilatun, J. Pitoyo, and M. Setyawan, "Technical, economic, and environmental review of waste-to-energy technologies from municipal solid waste," Jurnal Ilmu Lingkungan, vol. 21, no. 3, pp. 581-593, 2023, doi:10.14710/jil.21.3.581-593.
  • [21] S. Sharma, V. R. Reddy, G. R. R. Nijhawan, D. K. Yadav, R. Raed, and L. K. Tyagi, "Leveraging waste-to-energy technologies for sustainable development: A comprehensive review," E3S Web of Conferences, vol. 252, pp. 02010, 2024, doi:10.1051/e3sconf/202452902010.
  • [22] T. K. Vashishth, V. Sharma, K. K. Sharma, B. Kumar, S. Chaudhary, and R. Panwar, "Waste-to-energy solutions harnessing IoT and ML for sustainable power generation in smart cities," Advances in Computational Intelligence and Robotics, vol. 7, pp. 119-132, 2024, doi:10.4018/979-8-3693-1062-5.ch007.
  • [23] V. Terjanika and J. Pubule, "To burn or not to burn. Literature review," Connect Journal, vol. 7, pp. 51-65, 2023, doi:10.7250/conect.2023.051.
  • [24] W. Cui, Y. Wei, and N. Ji, "Global trends of waste-to-energy technologies in carbon neutral perspective: Bibliometric analysis," Ecotoxicology and Environmental Safety, vol. 256, pp. 115913, 2024, doi:10.1016/j.ecoenv.2023.115913.
  • [25] D. D. Olodu and A. Erameh, “Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa”, BSJ Eng. Sci., vol. 6, no. 3, pp. 296–307, 2023, doi: 10.34248/bsengineering.1195247.
  • [26] D. D. Olodu, O. I. Ihenyen, and F. Inegbedion, “Advances in Renewable Energy Systems: Integrating Solar, Wind, and Hydropower for a Carbon-Neutral Future”, IJONFEST, vol. 3, no. 1, pp. 14–24, 2025, doi: 10.61150/ijonfest.2025030102.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yenilenebilir Enerji Sistemleri, Üretim Robotiği
Bölüm Araştırma Makalesi
Yazarlar

Dıckson Davıd Olodu 0000-0003-3383-2543

Andrew Erameh 0000-0002-6463-143X

Osagie Imevbore Ihenyen 0000-0003-4499-7845

Gönderilme Tarihi 23 Mart 2025
Kabul Tarihi 27 Haziran 2025
Erken Görünüm Tarihi 12 Temmuz 2025
Yayımlanma Tarihi 31 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

IEEE D. D. Olodu, A. Erameh, ve O. I. Ihenyen, “A Multidimensional Assessment of Waste-to-Energy Technologies: Economic Feasibility, Social Acceptance, and Future Trends of Gasification and Pyrolysis”, IJMSIT, c. 9, sy. 1, ss. 14–22, 2025.