Araştırma Makalesi
BibTex RIS Kaynak Göster

Design and Fabrication of a Low-Cost Automated Waste Sorting and Recycling System

Yıl 2025, Cilt: 9 Sayı: 1, 30 - 41, 31.07.2025

Öz

This project presents the design and fabrication of a low-cost automated waste sorting and recycling system, developed to enhance solid waste management efficiency through smart sorting mechanisms. The system comprised key components such as a mild steel structural frame, PVC conveyor belt, sensor array, and servo-driven flap diverters, all controlled via an Arduino microcontroller. Using computer-aided design (CAD) tools like SolidWorks and AutoCAD, the frame was modeled with dimensions of 1500 mm × 600 mm × 1000 mm, ensuring structural integrity under a 1000 N load with a safety margin (σ = 1.25 MPa << σy = 250 MPa). The conveyor belt, made from durable 3 mm PVC, was rated safe under a 7.5 kg load with tension below its rated capacity.
Mechanical calculations confirmed the roller shaft, powered by a 20 W DC geared motor, operated within safe torsional limits (τ = 103 MPa < 150 MPa). The MG995 servo motors, rated at ≥ 0.6 Nm, successfully actuated the flap diverters requiring only 0.441 Nm. Sensor accuracy using TCS3200 color sensors reached 92%, enabling correct sorting of 52 out of 60 test items, yielding a sorting efficiency of 86.7%. The conveyor operated at 0.209 m/s, with synchronized flap actuation ensuring near-perfect timing (Tsync ≈ 0.96 s). Overall, the system demonstrated a composite performance efficiency of 70.14%, proving both technically viable and cost-effective for small-scale waste segregation and recycling.
The results validate the system’s potential as a sustainable solution for automated solid waste management in developing regions.

Kaynakça

  • [1] Sharma, K. D., Prajapati, R. K., Srivastava, S., Fore, V., & Amrish, A. (2025). Design and Fabrication of an Automatic Waste Segregation and Monitoring System. Current World Environment, 19(3), 1235–1244. https://doi.org/10.12944/cwe.19.3.15
  • [2] S, B. (2024). Automatic Waste Segregation System. International Journal For Science Technology And Engineering, 12(12), 948–951. https://doi.org/10.22214/ijraset.2024.65909
  • [3] Yang, T., Yang, J., Fang, H., Ji, T., & Chen, W. (2023). Development of intelligent waste sorting system: a case study of low-value recyclable waste in Xiamen. Proceedings of the Institution of Civil Engineers. https://doi.org/10.1680/jwarm.23.00010
  • [4] Adebimpe, A. M., Uguru-Okorie, D. C., & Oluwagunwa, E. O. (2022). Design and production of an automatic solid waste sorting machine with smart digital counter. Nigerian Journal of Technology, 41(3), 542–546. https://doi.org/10.4314/njt.v41i3.14
  • [5] Nuva, T. J., Ahmed, Md. I., & Mahmud, S. S. (2022). Design & Fabrication of Automatic Color & Weight-Based Sorting System on Conveyor Belt. Journal of Integrated and Advanced Engineering, 2(2), 147–157. https://doi.org/10.51662/jiae.v2i2.87
  • [6] Karambe, M. D., khandait, D. M., Shah, S. M., Varambhe, V., & Nagwanshi, S. (2024). Development and Fabrication of Solar powered Smart Waste Segregation Machine. International Journal of Research Publication and Reviews, 5(5), 5805–5810. https://doi.org/10.55248/gengpi.5.0524.1263
  • [7] Sontakke, S. R. (2024). Automated Waste Sorting System. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2024.58256
  • [8] Chowdhury, S. S., Hossain, N. B., Saha, T., Ferdous, J., & Zishan, Md. S. R. (2021). The Design and Implementation of an Autonomous Waste Sorting Machine Using Machine Learning Technique. 19(3), 134–142. https://doi.org/10.53799/AJSE.V19I3.104
  • [9] Arzmi, A. A., Yussof, N., & Fadzly, M. K. (2020). Sorting and monitoring of recycle item with IOT. 2291, 020081. https://doi.org/10.1063/5.0024462
  • [10] Pillai, A. V., Varghese, M. G., & Jose, D. (2020). Design and fabrication of paper recycling unit. 11(11), 32–44. https://doi.org/10.34218/IJMET.11.2.2020.004
  • [11] Nuhel, A. K., Paul, D., Hasan, E., Rafi, F., & Roy, P. H. (2023). A Microcontroller based Automated Waste Recycling Management System for SMEs. Artificial Intelligence and Symbolic Computation, 78–82. https://doi.org/10.1109/AISC56616.2023.10085182
  • [12] Rathoure, A. K. (2024). Revolutionizing Waste Management With Advancements in Sorting and Processing Technologies. Practice, Progress, and Proficiency in Sustainability, 387–406. https://doi.org/10.4018/979-8-3693-4054-7.ch015
  • [13] Sulthoni, A., & Purnama, A. (2023). Implementasi Bak Sampah Otomatis Berbasis Mikrokontroler Untuk Mendukung Efisiensi Kerja Pada Salah Satu UMKM Di Desa Lendang Nangka. 1(2), 41–50. https://doi.org/10.70115/ijsta.v1i2.206
  • [14] Porokhnenko, K. A., Kustov, T. V., & Zimin, E. V. (2022). Development of Portable Waste Sorting System. 1569–1571. https://doi.org/10.1109/ElConRus54750.2022.9755538
  • [15] Wen, X., Jianhong, Y., Huaiying, F., Jiangteng, Z., Yuedong, K., & Zhang, X. (2020). Development of an automatic sorting robot for construction and demolition waste. Clean Technologies and Environmental Policy, 22(9), 1829–1841. https://doi.org/10.1007/S10098-020-01922-Y
  • [16] Rahman, M. O., Hussain, A., & Basri, H. (2020). Automated sorting of recycled paper using smart image processing. At-Automatisierungstechnik, 68(4), 277–293. https://doi.org/10.1515/AUTO-2019-0056
  • [17] Putra, M. T. D., Adiwilaga, A., Munggaran, J. P., Adhitama, M. A., As’Ad, R. A., Alhafidz, A. A., Nurmalasari, R. R., & Juhana, A. (2024). Mini Prototype of the Futuristic Bin with an Automatic Waste Sortation System for Managing the Garbage Problems in Society. 1–6. https://doi.org/10.1109/icwt62080.2024.10674711
  • [18] Koskinopoulou, M., Raptopoulos, F., Papadopoulos, G., Mavrakis, N., & Maniadakis, M. (2021). Robotic Waste Sorting Technology: Toward a Vision-Based Categorization System for the Industrial Robotic Separation of Recyclable Waste. IEEE Robotics & Automation Magazine, 28(2), 50–60. https://doi.org/10.1109/MRA.2021.3066040
  • [19] Crome, C., Graf-Drasch, V., Hawlitschek, F., & Zinsbacher, D. (2023). Circular economy is key! Designing a digital artifact to foster smarter household biowaste sorting. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.138613
  • [20] Sharma, A., Vaishnav, P., Raj, P. A., Yadav, N., & Pandey, B. (2024). Automated Waste: Sorting and Rewards System a Technological Solution for Sustainable Waste Management. 1(1), 20–25. https://doi.org/10.48001/joegwr.2024.1120-25
  • [21] Lubongo, C., Bin Daej, M. A. A., & Alexandridis, P. (2024). Automated sorting technology for plastic waste (pp. 13–35). Elsevier BV. https://doi.org/10.1016/b978-0-443-13798-3.00017-6
  • [22] Rastogi, S., Sethi, P., Pandey, H. K., Panwar, N., Yadav, P., & Мадан, А. К. (2025). The Role of Robotics and Automated Systems in Refining Waste Separation Processes. Advances in Environmental Engineering and Green Technologies Book Series, 441–490. https://doi.org/10.4018/979-8-3693-7282-1.ch019
  • [23] Cheng, T., Kojima, D., Hu, H., Onoda, H., & Pandyaswargo, A. H. (2024). Optimizing Waste Sorting for Sustainability: An AI-Powered Robotic Solution for Beverage Container Recycling. Sustainability, 16(23), 10155. https://doi.org/10.3390/su162310155
  • [24] Jeon, Y., Um, S., Yoo, J., Seo, M., Jeong, E., Seol, W., Kang, D., Song, H., Kim, K.-S., & Kim, S. (2020). Development of real-time automatic sorting system for color PET recycling process. International Conference on Control, Automation and Systems. https://doi.org/10.23919/ICCAS50221.2020.9268282
  • [25] Baker, N., & Handmann, U. (2022). An Approach for Smart and cost-Efficient Automated E-Waste Recycling for Small to medium-Sized Devices Using multi-Sensors. Italian National Conference on Sensors, 1–4. https://doi.org/10.1109/SENSORS52175.2022.9967195
  • [26] Rathoure, A. K. (2024). Revolutionizing Waste Management With Advancements in Sorting and Processing Technologies. Practice, Progress, and Proficiency in Sustainability, 387–406. https://doi.org/10.4018/979-8-3693-4054-7.ch015
  • [27] Crome, C., Graf-Drasch, V., Hawlitschek, F., & Zinsbacher, D. (2023). Circular economy is key! Designing a digital artifact to foster smarter household biowaste sorting. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.138613
  • [28] Rapolti, L., Holonec, R., Copindean, R., & Dragan, F. (2019). Sorting System for e-Waste Recycling using Contour Vision Sensors. 1–4. https://doi.org/10.1109/MPS.2019.8759739
  • [29] Kingsley, A., & Olodu, D. D. (2022). Design and construction of a wood-based modified yam pounder machine. International Journal of Energy Applications and Technologies, 9(1), 22-30. https://doi.org/10.31593/ijeat.1045514
  • [30] Olodu, D. D., Abraham, M., Jesuorobo, J., Akıakeme, O. O. (2023). The Design and Construction of a Locally Sourced Electric Powered Stair Climbing Trolley. Black Sea Journal of Engineering and Science, 6(1), 25-31. https://doi.org/10.34248/bsengineering.1187210
  • [31] Olodu, D. D., & Akokhia S.P. (2022). Desıgn and Constructıon of an Automated and Manual New-Fangled Fruıt Juıce Extractor. International Journal of Engineering and Innovative Research, 4(1), 10-22. https://doi.org/10.47933/ijeir.1013688
  • [32] Olodu, D. D., Aluya, F. O., Walters, S., & Falobi, B. A. (2025). Design and Fabrication of a Locally Made Plastic Shredder. ABUAD Journal of Engineering Research and Development (AJERD), 8(1), 226–239. https://doi.org/10.53982/ajerd.2025.0801.24-j

Design and Fabrication of a Low-Cost Automated Waste Sorting and Recycling System

Yıl 2025, Cilt: 9 Sayı: 1, 30 - 41, 31.07.2025

Öz

This project presents the design and fabrication of a low-cost automated waste sorting and recycling system, developed to enhance solid waste management efficiency through smart sorting mechanisms. The system comprised key components such as a mild steel structural frame, PVC conveyor belt, sensor array, and servo-driven flap diverters, all controlled via an Arduino microcontroller. Using computer-aided design (CAD) tools like SolidWorks and AutoCAD, the frame was modeled with dimensions of 1500 mm × 600 mm × 1000 mm, ensuring structural integrity under a 1000 N load with a safety margin (σ = 1.25 MPa << σy = 250 MPa). The conveyor belt, made from durable 3 mm PVC, was rated safe under a 7.5 kg load with tension below its rated capacity.
Mechanical calculations confirmed the roller shaft, powered by a 20 W DC geared motor, operated within safe torsional limits (τ = 103 MPa < 150 MPa). The MG995 servo motors, rated at ≥ 0.6 Nm, successfully actuated the flap diverters requiring only 0.441 Nm. Sensor accuracy using TCS3200 color sensors reached 92%, enabling correct sorting of 52 out of 60 test items, yielding a sorting efficiency of 86.7%. The conveyor operated at 0.209 m/s, with synchronized flap actuation ensuring near-perfect timing (Tsync ≈ 0.96 s). Overall, the system demonstrated a composite performance efficiency of 70.14%, proving both technically viable and cost-effective for small-scale waste segregation and recycling.
The results validate the system’s potential as a sustainable solution for automated solid waste management in developing regions.

Kaynakça

  • [1] Sharma, K. D., Prajapati, R. K., Srivastava, S., Fore, V., & Amrish, A. (2025). Design and Fabrication of an Automatic Waste Segregation and Monitoring System. Current World Environment, 19(3), 1235–1244. https://doi.org/10.12944/cwe.19.3.15
  • [2] S, B. (2024). Automatic Waste Segregation System. International Journal For Science Technology And Engineering, 12(12), 948–951. https://doi.org/10.22214/ijraset.2024.65909
  • [3] Yang, T., Yang, J., Fang, H., Ji, T., & Chen, W. (2023). Development of intelligent waste sorting system: a case study of low-value recyclable waste in Xiamen. Proceedings of the Institution of Civil Engineers. https://doi.org/10.1680/jwarm.23.00010
  • [4] Adebimpe, A. M., Uguru-Okorie, D. C., & Oluwagunwa, E. O. (2022). Design and production of an automatic solid waste sorting machine with smart digital counter. Nigerian Journal of Technology, 41(3), 542–546. https://doi.org/10.4314/njt.v41i3.14
  • [5] Nuva, T. J., Ahmed, Md. I., & Mahmud, S. S. (2022). Design & Fabrication of Automatic Color & Weight-Based Sorting System on Conveyor Belt. Journal of Integrated and Advanced Engineering, 2(2), 147–157. https://doi.org/10.51662/jiae.v2i2.87
  • [6] Karambe, M. D., khandait, D. M., Shah, S. M., Varambhe, V., & Nagwanshi, S. (2024). Development and Fabrication of Solar powered Smart Waste Segregation Machine. International Journal of Research Publication and Reviews, 5(5), 5805–5810. https://doi.org/10.55248/gengpi.5.0524.1263
  • [7] Sontakke, S. R. (2024). Automated Waste Sorting System. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2024.58256
  • [8] Chowdhury, S. S., Hossain, N. B., Saha, T., Ferdous, J., & Zishan, Md. S. R. (2021). The Design and Implementation of an Autonomous Waste Sorting Machine Using Machine Learning Technique. 19(3), 134–142. https://doi.org/10.53799/AJSE.V19I3.104
  • [9] Arzmi, A. A., Yussof, N., & Fadzly, M. K. (2020). Sorting and monitoring of recycle item with IOT. 2291, 020081. https://doi.org/10.1063/5.0024462
  • [10] Pillai, A. V., Varghese, M. G., & Jose, D. (2020). Design and fabrication of paper recycling unit. 11(11), 32–44. https://doi.org/10.34218/IJMET.11.2.2020.004
  • [11] Nuhel, A. K., Paul, D., Hasan, E., Rafi, F., & Roy, P. H. (2023). A Microcontroller based Automated Waste Recycling Management System for SMEs. Artificial Intelligence and Symbolic Computation, 78–82. https://doi.org/10.1109/AISC56616.2023.10085182
  • [12] Rathoure, A. K. (2024). Revolutionizing Waste Management With Advancements in Sorting and Processing Technologies. Practice, Progress, and Proficiency in Sustainability, 387–406. https://doi.org/10.4018/979-8-3693-4054-7.ch015
  • [13] Sulthoni, A., & Purnama, A. (2023). Implementasi Bak Sampah Otomatis Berbasis Mikrokontroler Untuk Mendukung Efisiensi Kerja Pada Salah Satu UMKM Di Desa Lendang Nangka. 1(2), 41–50. https://doi.org/10.70115/ijsta.v1i2.206
  • [14] Porokhnenko, K. A., Kustov, T. V., & Zimin, E. V. (2022). Development of Portable Waste Sorting System. 1569–1571. https://doi.org/10.1109/ElConRus54750.2022.9755538
  • [15] Wen, X., Jianhong, Y., Huaiying, F., Jiangteng, Z., Yuedong, K., & Zhang, X. (2020). Development of an automatic sorting robot for construction and demolition waste. Clean Technologies and Environmental Policy, 22(9), 1829–1841. https://doi.org/10.1007/S10098-020-01922-Y
  • [16] Rahman, M. O., Hussain, A., & Basri, H. (2020). Automated sorting of recycled paper using smart image processing. At-Automatisierungstechnik, 68(4), 277–293. https://doi.org/10.1515/AUTO-2019-0056
  • [17] Putra, M. T. D., Adiwilaga, A., Munggaran, J. P., Adhitama, M. A., As’Ad, R. A., Alhafidz, A. A., Nurmalasari, R. R., & Juhana, A. (2024). Mini Prototype of the Futuristic Bin with an Automatic Waste Sortation System for Managing the Garbage Problems in Society. 1–6. https://doi.org/10.1109/icwt62080.2024.10674711
  • [18] Koskinopoulou, M., Raptopoulos, F., Papadopoulos, G., Mavrakis, N., & Maniadakis, M. (2021). Robotic Waste Sorting Technology: Toward a Vision-Based Categorization System for the Industrial Robotic Separation of Recyclable Waste. IEEE Robotics & Automation Magazine, 28(2), 50–60. https://doi.org/10.1109/MRA.2021.3066040
  • [19] Crome, C., Graf-Drasch, V., Hawlitschek, F., & Zinsbacher, D. (2023). Circular economy is key! Designing a digital artifact to foster smarter household biowaste sorting. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.138613
  • [20] Sharma, A., Vaishnav, P., Raj, P. A., Yadav, N., & Pandey, B. (2024). Automated Waste: Sorting and Rewards System a Technological Solution for Sustainable Waste Management. 1(1), 20–25. https://doi.org/10.48001/joegwr.2024.1120-25
  • [21] Lubongo, C., Bin Daej, M. A. A., & Alexandridis, P. (2024). Automated sorting technology for plastic waste (pp. 13–35). Elsevier BV. https://doi.org/10.1016/b978-0-443-13798-3.00017-6
  • [22] Rastogi, S., Sethi, P., Pandey, H. K., Panwar, N., Yadav, P., & Мадан, А. К. (2025). The Role of Robotics and Automated Systems in Refining Waste Separation Processes. Advances in Environmental Engineering and Green Technologies Book Series, 441–490. https://doi.org/10.4018/979-8-3693-7282-1.ch019
  • [23] Cheng, T., Kojima, D., Hu, H., Onoda, H., & Pandyaswargo, A. H. (2024). Optimizing Waste Sorting for Sustainability: An AI-Powered Robotic Solution for Beverage Container Recycling. Sustainability, 16(23), 10155. https://doi.org/10.3390/su162310155
  • [24] Jeon, Y., Um, S., Yoo, J., Seo, M., Jeong, E., Seol, W., Kang, D., Song, H., Kim, K.-S., & Kim, S. (2020). Development of real-time automatic sorting system for color PET recycling process. International Conference on Control, Automation and Systems. https://doi.org/10.23919/ICCAS50221.2020.9268282
  • [25] Baker, N., & Handmann, U. (2022). An Approach for Smart and cost-Efficient Automated E-Waste Recycling for Small to medium-Sized Devices Using multi-Sensors. Italian National Conference on Sensors, 1–4. https://doi.org/10.1109/SENSORS52175.2022.9967195
  • [26] Rathoure, A. K. (2024). Revolutionizing Waste Management With Advancements in Sorting and Processing Technologies. Practice, Progress, and Proficiency in Sustainability, 387–406. https://doi.org/10.4018/979-8-3693-4054-7.ch015
  • [27] Crome, C., Graf-Drasch, V., Hawlitschek, F., & Zinsbacher, D. (2023). Circular economy is key! Designing a digital artifact to foster smarter household biowaste sorting. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.138613
  • [28] Rapolti, L., Holonec, R., Copindean, R., & Dragan, F. (2019). Sorting System for e-Waste Recycling using Contour Vision Sensors. 1–4. https://doi.org/10.1109/MPS.2019.8759739
  • [29] Kingsley, A., & Olodu, D. D. (2022). Design and construction of a wood-based modified yam pounder machine. International Journal of Energy Applications and Technologies, 9(1), 22-30. https://doi.org/10.31593/ijeat.1045514
  • [30] Olodu, D. D., Abraham, M., Jesuorobo, J., Akıakeme, O. O. (2023). The Design and Construction of a Locally Sourced Electric Powered Stair Climbing Trolley. Black Sea Journal of Engineering and Science, 6(1), 25-31. https://doi.org/10.34248/bsengineering.1187210
  • [31] Olodu, D. D., & Akokhia S.P. (2022). Desıgn and Constructıon of an Automated and Manual New-Fangled Fruıt Juıce Extractor. International Journal of Engineering and Innovative Research, 4(1), 10-22. https://doi.org/10.47933/ijeir.1013688
  • [32] Olodu, D. D., Aluya, F. O., Walters, S., & Falobi, B. A. (2025). Design and Fabrication of a Locally Made Plastic Shredder. ABUAD Journal of Engineering Research and Development (AJERD), 8(1), 226–239. https://doi.org/10.53982/ajerd.2025.0801.24-j
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Üretim Robotiği, Kontrol Mühendisliği, Mekatronik ve Robotik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Dıckson Davıd Olodu 0000-0003-3383-2543

Andrew Erameh 0000-0002-6463-143X

Osagie Imevbore Ihenyen 0000-0003-4499-7845

Gönderilme Tarihi 11 Nisan 2025
Kabul Tarihi 30 Mayıs 2025
Erken Görünüm Tarihi 12 Temmuz 2025
Yayımlanma Tarihi 31 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

IEEE D. D. Olodu, A. Erameh, ve O. I. Ihenyen, “Design and Fabrication of a Low-Cost Automated Waste Sorting and Recycling System”, IJMSIT, c. 9, sy. 1, ss. 30–41, 2025.