Araştırma Makalesi
BibTex RIS Kaynak Göster

Multiphysics Simulation-Based Evaluation of Piezoelectric Materials Using COMSOL: A Study on Stress and Displacement Behaviors

Yıl 2025, Sayı: Special Issue, 66 - 74, 31.12.2025

Öz

In this study, the performance of Polyvinylidene Fluoride (PVDF), Barium Titanate (BaTiO₃), and Zinc Oxide (ZnO) piezoelectric materials was investigated through numerical simulations using the COMSOL Multiphysics environment. The aim was to analyze the stress distribution and volumetric displacement behavior of these materials under varying mechanical loads (3,000 Pa, 5,000 Pa, and 10,000 Pa) and electrical potentials (5–25 V) to determine their suitability for flexible sensor applications. PVDF, due to its polymeric and flexible nature, exhibited low stress accumulation but high displacement, making it ideal for large-deformation applications such as wearable electronics. BaTiO₃ demonstrated a balanced response with moderate deformation and stress, positioning it as a suitable candidate for hybrid actuator-sensor systems. ZnO, characterized by its rigid crystalline structure, showed the highest stress concentration with minimal deformation, proving its effectiveness in stress-based micro-scale sensors. The simulations confirmed that material selection for piezoelectric systems should be made not solely based on piezoelectric coefficients, but also on comprehensive electromechanical behavior under applied loads. These findings contribute to the design of next-generation smart sensors, energy harvesters, and micro-electromechanical systems (MEMS) by providing comparative insights into the material-specific responses in multiphysical environments.

Destekleyen Kurum

Tübitak

Teşekkür

Bu proje Tübitak 2209 destek programı 2023-2. dönem destekleri kapsamında desteklenmiştir.

Kaynakça

  • Y. Wu, Y. Ma, H. Zheng, and S. Ramakrishna, “Piezoelectric materials for flexible and wearable electronics: A review,” Dec. 01, 2021, Elsevier Ltd. doi: 10.1016/j.matdes.2021.110164.
  • X. Pan, Y. Wu, Y. Wang, G. Zhou, and H. Cai, “Mechanical energy harvesting based on the piezoelectric materials: Recent advances and future perspectives,” Oct. 01, 2024, Elsevier B.V. doi: 10.1016/j.cej.2024.154249.
  • Y. Chen, X. Zhang, and C. Lu, “Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications,” Sep. 27, 2024, Royal Society of Chemistry. doi: 10.1039/d4sc05166a.
  • G. Gilanizadehdizaj, K. C. Aw, J. Stringer, and D. Bhattacharyya, “Facile fabrication of flexible piezo-resistive pressure sensor array using reduced graphene oxide foam and silicone elastomer,” Sens Actuators A Phys, vol. 340, no. April, p. 113549, 2022, doi: 10.1016/j.sna.2022.113549.
  • N. Turdakyn, A. Medeubayev, I. Abay, D. Adair, and G. Kalimuldina, “Preparation of a piezoelectric PVDF sensor via electrospinning,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2478–2481. doi: 10.1016/j.matpr.2020.11.914.
  • S. Kumar and Y. K. Jain, “Simulation of Circular-Shaped PZT-5H Sensor for Train Measurement Using COMSOL Multiphysics,” IEEE Sens J, vol. 15, no. 8, pp. 4380–4387, Aug. 2015, doi: 10.1109/JSEN.2015.2419281.
  • S. Bi et al., “Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display,” Nano Energy, vol. 102, Nov. 2022, doi: 10.1016/j.nanoen.2022.107629.
  • N. Sivakumar, H. Kanagasabapathy, and H. P. Srikanth, “Static Multiple, Distributed Piezoelectric Actuator Structural Deformation and Bending Analysis Using COMSOL,” 2018. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853
  • S. Vrtagic et al., “Design and evaluation of a piezoelectric pressure sensor for mass detection with COMSOL and machine learning modeling,” Measurement (Lond), vol. 254, Oct. 2025, doi: 10.1016/j.measurement.2025.117945.
  • Z. Zhu et al., “Portable self-charging power unit with integrated flexible supercapacitor and triboelectric nanogenerator,” J Alloys Compd, vol. 971, Jan. 2024, doi: 10.1016/j.jallcom.2023.172716.
  • H. Zhang et al., “Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator,” Chemical Engineering Journal, vol. 496, Sep. 2024, doi: 10.1016/j.cej.2024.154226.
  • T. R. Kandukuri, C. Liao, and L. G. Occhipinti, “Modeling and Optimization of Energy Harvesters for Specific Applications Using COMSOL and Equivalent Spring Models,” Sensors, vol. 24, no. 23, Dec. 2024, doi: 10.3390/s24237509.
  • B. A. Thomas HOD, “Design And Comparison of Piezoelectric High Pressure Sensor by using COMSOL Multiphysics Pooja A N.” [Online]. Available: www.ijert.org

COMSOL Tabanlı Multifizik Simülasyon ile Piezolektrik Malzemelerin Değerlendirilmesi: Gerilme ve Deformasyon Davranışları Üzerine Bir Çalışma

Yıl 2025, Sayı: Special Issue, 66 - 74, 31.12.2025

Öz

Bu çalışmada, Polyvinylidene Fluoride (PVDF), Baryum Titanat (BaTiO₃) ve Çinko Oksit (ZnO) piezolektrik malzemelerin performansı, COMSOL Multiphysics ortamında gerçekleştirilen sayısal simülasyonlar yoluyla incelenmiştir. Amaç, bu malzemelerin farklı mekanik yükler (3.000 Pa, 5.000 Pa ve 10.000 Pa) ve elektriksel potansiyeller (5–25 V) altındaki gerilme dağılımı ve hacimsel yer değiştirme davranışlarını analiz ederek esnek sensör uygulamalarına uygunluklarını belirlemektir.

Polimerik ve esnek yapısı sayesinde PVDF, düşük gerilme birikimi ancak yüksek yer değiştirme sergilemiş ve bu özelliğiyle giyilebilir elektronik gibi büyük deformasyon gerektiren uygulamalar için ideal bir aday olarak öne çıkmıştır. BaTiO₃, orta seviyede deformasyon ve gerilme ile dengeli bir tepki vermiş ve bu yönüyle hibrit aktüatör-sensör sistemleri için uygun bir malzeme olarak değerlendirilmiştir. Kristal yapısı itibarıyla sert olan ZnO ise en yüksek gerilme yoğunluğunu ve en düşük deformasyonu göstermiş, bu da onu gerilmeye dayalı mikro ölçekli sensörler için etkili kılmıştır.

Gerçekleştirilen simülasyonlar, piezolektrik sistemlerde malzeme seçiminin yalnızca piezolektrik katsayılarına göre değil, uygulanan yükler altındaki kapsamlı elektromekanik davranış dikkate alınarak yapılması gerektiğini ortaya koymuştur. Bu bulgular, çoklu fiziksel ortamlardaki malzemeye özgü tepkileri karşılaştırmalı olarak sunarak yeni nesil akıllı sensörlerin, enerji toplayıcılarının ve mikro elektromekanik sistemlerin (MEMS) tasarımına katkı sağlamaktadır.

Kaynakça

  • Y. Wu, Y. Ma, H. Zheng, and S. Ramakrishna, “Piezoelectric materials for flexible and wearable electronics: A review,” Dec. 01, 2021, Elsevier Ltd. doi: 10.1016/j.matdes.2021.110164.
  • X. Pan, Y. Wu, Y. Wang, G. Zhou, and H. Cai, “Mechanical energy harvesting based on the piezoelectric materials: Recent advances and future perspectives,” Oct. 01, 2024, Elsevier B.V. doi: 10.1016/j.cej.2024.154249.
  • Y. Chen, X. Zhang, and C. Lu, “Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications,” Sep. 27, 2024, Royal Society of Chemistry. doi: 10.1039/d4sc05166a.
  • G. Gilanizadehdizaj, K. C. Aw, J. Stringer, and D. Bhattacharyya, “Facile fabrication of flexible piezo-resistive pressure sensor array using reduced graphene oxide foam and silicone elastomer,” Sens Actuators A Phys, vol. 340, no. April, p. 113549, 2022, doi: 10.1016/j.sna.2022.113549.
  • N. Turdakyn, A. Medeubayev, I. Abay, D. Adair, and G. Kalimuldina, “Preparation of a piezoelectric PVDF sensor via electrospinning,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2478–2481. doi: 10.1016/j.matpr.2020.11.914.
  • S. Kumar and Y. K. Jain, “Simulation of Circular-Shaped PZT-5H Sensor for Train Measurement Using COMSOL Multiphysics,” IEEE Sens J, vol. 15, no. 8, pp. 4380–4387, Aug. 2015, doi: 10.1109/JSEN.2015.2419281.
  • S. Bi et al., “Ultra-fast-responsivity with sharp contrast integrated flexible piezo electrochromic based tactile sensing display,” Nano Energy, vol. 102, Nov. 2022, doi: 10.1016/j.nanoen.2022.107629.
  • N. Sivakumar, H. Kanagasabapathy, and H. P. Srikanth, “Static Multiple, Distributed Piezoelectric Actuator Structural Deformation and Bending Analysis Using COMSOL,” 2018. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853
  • S. Vrtagic et al., “Design and evaluation of a piezoelectric pressure sensor for mass detection with COMSOL and machine learning modeling,” Measurement (Lond), vol. 254, Oct. 2025, doi: 10.1016/j.measurement.2025.117945.
  • Z. Zhu et al., “Portable self-charging power unit with integrated flexible supercapacitor and triboelectric nanogenerator,” J Alloys Compd, vol. 971, Jan. 2024, doi: 10.1016/j.jallcom.2023.172716.
  • H. Zhang et al., “Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator,” Chemical Engineering Journal, vol. 496, Sep. 2024, doi: 10.1016/j.cej.2024.154226.
  • T. R. Kandukuri, C. Liao, and L. G. Occhipinti, “Modeling and Optimization of Energy Harvesters for Specific Applications Using COMSOL and Equivalent Spring Models,” Sensors, vol. 24, no. 23, Dec. 2024, doi: 10.3390/s24237509.
  • B. A. Thomas HOD, “Design And Comparison of Piezoelectric High Pressure Sensor by using COMSOL Multiphysics Pooja A N.” [Online]. Available: www.ijert.org
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanoteknoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Durmuş Ali Karakelle Bu kişi benim

Necati Ekmen Bu kişi benim

Gözde Konuk Ege

Gönderilme Tarihi 4 Temmuz 2025
Kabul Tarihi 18 Temmuz 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Special Issue

Kaynak Göster

IEEE D. A. Karakelle, N. Ekmen, ve G. Konuk Ege, “Multiphysics Simulation-Based Evaluation of Piezoelectric Materials Using COMSOL: A Study on Stress and Displacement Behaviors”, IJONFEST, sy. Special Issue, ss. 66–74, Aralık2025.