Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope

Yıl 2022, , 173 - 178, 30.06.2022
https://doi.org/10.29132/ijpas.1081660

Öz

The double-differential cross sections (DDX) of neutron induced and neutron emission reaction of 209Bi isotope are calculated and analysed at neutron emission energies below 7 MeV at 3 laboratory angles between 200 and 1500 . In the calculations, the latest version of Talys 1.96 is utilized to calculate the total, direct, pre-equilibrium and compound cross sections, which are obtained using the same parameters. The contributions of direct, pre-equilibrium and compound processes to the total cross section are separately investigated. It is presented that the compound part has the greatest contribution. The calculation results are compared with the existing experimental data taken from EXFOR library.

Kaynakça

  • Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). (http://www.nndc.bnl.gov/exfor/)
  • Canbula, B. (2017). Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi. Celal Bayar University Journal of Science, 13(2), 445-455.
  • Canbula, B. (2020). 55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 138-142.
  • Canbula, D. (2021). Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences, 7(2), 314-320.
  • De Marcillac, P., Coron, N., Dambier, G., Leblanc, J., & Moalic, J. P. (2003). Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature, 422(6934), 876-878.
  • Demir, B., Sarpün, İ. H., Kaplan, A., Çapalı, V., Aydın, A., and Tel, E. (2015). Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50, 52Cr. Journal of Fusion Energy, 34(4), 808-816.
  • Fazio, C., Gröschel, F., Wagner, W., Thomsen, K., Smith, B. L., Stieglitz, R., ... Knebel, J. U. (2008). The MEGAPIE-TEST project: Supporting research and lessons learned in first-of-a-kind spallation target technology. Nuclear Engineering and Design, 238(6), 1471-1495.
  • Han, Y. (2006). The double differential cross section for n+ U238 reaction. Nuclear Physics A, 780(1-2), 34-51.
  • Hauser, W., and Feshbach, H. (1952). The inelastic scattering of neutrons. Physical review, 87(2), 366.
  • Kalbach, C. (1982). Possible energy parameters for continuum angular distributions. Physical Review C, 25(6), 3197.
  • Kalbach, C. (1988). Systematics of continuum angular distributions: Extensions to higher energies. Physical Review C, 37(6), 2350.
  • Kalbach, C., Mann, F. M. (1981). Phenomenology of continuum angular distributions. I. Systematics and parametrization. Physical Review C, 23(1), 112.
  • Kaplan, A., Özdoğan, H., Aydın, A., Tel, E. (2013). (γ, 2n) Reaction Cross Section Calculations on Several Structural Fusion Materials. Journal of Fusion Energy, 32(4), 431-436.
  • Kaplan, A., Sarpün, İ. H., Aydın, A., Tel, E., Çapalı, V., Özdoǧan, H. (2015). (γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models. Physics of Atomic Nuclei, 78(1), 53-64.
  • Kara, A., Yılmaz, A., Yiğit, M. (2021). Monte Carlo simulations of chromium target under proton irradiation of 17.9, 22.3 MeV. Nuclear Engineering and Technology, 53(10), 3158-3163.
  • Kondo, K., Murata, I., Ochiai, K., Kubota, N., Miyamaru, H., Takagi, S., ... & Nishitani, T. (2007). Verification of nuclear data for DT neutron induced charged-particle emission reaction of light nuclei. Fusion engineering and design, 82(15-24), 2786-2793.
  • Koning, A. J., Hilaire, S., Goriely S. (2021). TALYS–1.96 A Nuclear Reaction Program, User Manual, Nuclear Research and Consultancy Group (NRG), Netherlands.
  • Küçüksucu, S., Yiğit, M., Paar, N. (2022). Statistical Hauser-Feshbach Model Description of (n, α) Reaction Cross Sections for the Weak s-Process. Universe, 8(1), 25.
  • Lalremruata, B., Dhole, S. D., Ganesan, S., & Bhoraskar, V. N. (2009). Double differential cross-sections of (n, α) reactions in aluminium and nickel at 14.77 MeV neutrons. Nuclear Physics A, 821(1-4), 23-35.
  • Marcinkowski, A., Rapaport, J., Finlay, R. W., Aslanoglou, X., & Kielan, D. (1991). Neutron emission cross sections on 93Nb and 209Bi at 20 MeV incident energy. Nuclear Physics A, 530(1), 75-93.
  • Özdoğan, H. (2021). Estimation of (n, p) reaction cross sections at 14.5∓ 0.5 MeV neutron energy by using artificial neural network. Applied Radiation and Isotopes, 170, 109584.
  • Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021a). Estimations of level density parameters by using artificial neural network for phenomenological level density models. Applied Radiation and Isotopes, 169, 109583.
  • Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021b). A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network. Modern Physics Letters A, 36(23), 2150168.
  • Rajput, M., Vala, S., Srinivasan, R., Abhangi, M., Subhash, P. V., Pandey, B., ... & Bora, D. (2018). Calculated differential and double differential cross section of DT neutron induced reactions on natural chromium (Cr). Indian Journal of Physics, 92(1), 91-96.
  • Sadeghi, M., Kakavand, T., Alipoor, Z. (2010). 85 Sr production via proton induced on various targets using TALYS 1.0 code. Modern Physics Letters A, 25(18), 1541-1552.
  • Sarpün, I. H., Aydin, A., & Koning, A. (2016). Double Differential Proton and Alpha Emission Cross Sections for Structural Fusion Materials 94, 95, 96Mo. Journal of Fusion Energy, 35(5), 725-729.
  • Schröder, V., Scobel, W., Wilde, L., & Bormann, M. (1978). On the mechanism of the (n, 2n) reaction with 14MeV projectiles on127I and209Bi. Zeitschrift für Physik A Atoms and Nuclei, 287(3), 353-362.
  • Semkova, V., Reimer, P., Altzitzoglou, T., Plompen, A. J. M., Quétel, C., Sudár, S., ... Smith, D. L. (2009). Neutron activation cross sections on lead isotopes. Physical review C, 80(2), 024610.
  • Şekerci, M., Özdoğan, H., Kaplan, A. (2020). An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n, γ) reactions. Radiochimica Acta, 108(1), 11-17.
  • Toshinsky, G., and Petrochenko, V. (2012). Modular lead-bismuth fast reactors in nuclear power. Sustainability, 4(9), 2293-2316.
  • Travaglio, C., Gallino, R., Busso, M., Gratton, R. (2001). Lead: asymptotic giant branch production and galactic chemical evolution. The Astrophysical Journal, 549(1), 346.
  • Yiğit, M. (2021). Study of cross sections for (n, p) reactions on Hf, Ta and W isotopes. Applied Radiation and Isotopes, 174, 109779.
  • Zhang, Z., Han, Y., & Cai, C. (2010). Double differential cross sections of light charged particle emission in neutron induced reactions on 54, 56, 57, 58Fe. Annals of Nuclear Energy, 37(2), 130-143.

209Bi İzotopunun Nötron ile İndüklenmiş ve Nötron Emisyon Reaksiyonu için Çift Diferansiyel Tesir Kesiti Analizi

Yıl 2022, , 173 - 178, 30.06.2022
https://doi.org/10.29132/ijpas.1081660

Öz

209Bi izotopunun nötron ile indüklenen ve nötron yayınlayan reaksiyonuna ait çift diferansiyel tesir kesiti değerleri (DDX) hesaplanmıştır ve 7 MeV altında nötron yayma enerjilerinde 200 ve 1500 arasındaki 3 laboratuvar açısında analiz edilmiştir.Hesaplamalarda, aynı parametreler kullanılarak elde edilen toplam, direkt, denge-öncesi ve bileşik tesir kesitleri Talys 1.96 son versiyonukullanılarak elde edilmiştir. Direkt, denge-öncesi ve bileşik süreçlerin toplam tesir kesitine katkıları ayrı ayrı incelenmiştir. Bileşik kısmın en büyük katkıya sahip olduğu sunulmuştur. Hesaplama sonuçları EXFOR kütüphanesinden alınan deneysel veriler ile karşılaştırılmıştır.

Kaynakça

  • Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). (http://www.nndc.bnl.gov/exfor/)
  • Canbula, B. (2017). Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi. Celal Bayar University Journal of Science, 13(2), 445-455.
  • Canbula, B. (2020). 55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 138-142.
  • Canbula, D. (2021). Hafif Nadir Toprak Elementi 144Sm İzotopunun Fotonükleer Tesir Kesiti Hesabı. International Journal of Pure and Applied Sciences, 7(2), 314-320.
  • De Marcillac, P., Coron, N., Dambier, G., Leblanc, J., & Moalic, J. P. (2003). Experimental detection of α-particles from the radioactive decay of natural bismuth. Nature, 422(6934), 876-878.
  • Demir, B., Sarpün, İ. H., Kaplan, A., Çapalı, V., Aydın, A., and Tel, E. (2015). Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50, 52Cr. Journal of Fusion Energy, 34(4), 808-816.
  • Fazio, C., Gröschel, F., Wagner, W., Thomsen, K., Smith, B. L., Stieglitz, R., ... Knebel, J. U. (2008). The MEGAPIE-TEST project: Supporting research and lessons learned in first-of-a-kind spallation target technology. Nuclear Engineering and Design, 238(6), 1471-1495.
  • Han, Y. (2006). The double differential cross section for n+ U238 reaction. Nuclear Physics A, 780(1-2), 34-51.
  • Hauser, W., and Feshbach, H. (1952). The inelastic scattering of neutrons. Physical review, 87(2), 366.
  • Kalbach, C. (1982). Possible energy parameters for continuum angular distributions. Physical Review C, 25(6), 3197.
  • Kalbach, C. (1988). Systematics of continuum angular distributions: Extensions to higher energies. Physical Review C, 37(6), 2350.
  • Kalbach, C., Mann, F. M. (1981). Phenomenology of continuum angular distributions. I. Systematics and parametrization. Physical Review C, 23(1), 112.
  • Kaplan, A., Özdoğan, H., Aydın, A., Tel, E. (2013). (γ, 2n) Reaction Cross Section Calculations on Several Structural Fusion Materials. Journal of Fusion Energy, 32(4), 431-436.
  • Kaplan, A., Sarpün, İ. H., Aydın, A., Tel, E., Çapalı, V., Özdoǧan, H. (2015). (γ, 2n)-Reaction cross-section calculations of several even-even lanthanide nuclei using different level density models. Physics of Atomic Nuclei, 78(1), 53-64.
  • Kara, A., Yılmaz, A., Yiğit, M. (2021). Monte Carlo simulations of chromium target under proton irradiation of 17.9, 22.3 MeV. Nuclear Engineering and Technology, 53(10), 3158-3163.
  • Kondo, K., Murata, I., Ochiai, K., Kubota, N., Miyamaru, H., Takagi, S., ... & Nishitani, T. (2007). Verification of nuclear data for DT neutron induced charged-particle emission reaction of light nuclei. Fusion engineering and design, 82(15-24), 2786-2793.
  • Koning, A. J., Hilaire, S., Goriely S. (2021). TALYS–1.96 A Nuclear Reaction Program, User Manual, Nuclear Research and Consultancy Group (NRG), Netherlands.
  • Küçüksucu, S., Yiğit, M., Paar, N. (2022). Statistical Hauser-Feshbach Model Description of (n, α) Reaction Cross Sections for the Weak s-Process. Universe, 8(1), 25.
  • Lalremruata, B., Dhole, S. D., Ganesan, S., & Bhoraskar, V. N. (2009). Double differential cross-sections of (n, α) reactions in aluminium and nickel at 14.77 MeV neutrons. Nuclear Physics A, 821(1-4), 23-35.
  • Marcinkowski, A., Rapaport, J., Finlay, R. W., Aslanoglou, X., & Kielan, D. (1991). Neutron emission cross sections on 93Nb and 209Bi at 20 MeV incident energy. Nuclear Physics A, 530(1), 75-93.
  • Özdoğan, H. (2021). Estimation of (n, p) reaction cross sections at 14.5∓ 0.5 MeV neutron energy by using artificial neural network. Applied Radiation and Isotopes, 170, 109584.
  • Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021a). Estimations of level density parameters by using artificial neural network for phenomenological level density models. Applied Radiation and Isotopes, 169, 109583.
  • Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021b). A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network. Modern Physics Letters A, 36(23), 2150168.
  • Rajput, M., Vala, S., Srinivasan, R., Abhangi, M., Subhash, P. V., Pandey, B., ... & Bora, D. (2018). Calculated differential and double differential cross section of DT neutron induced reactions on natural chromium (Cr). Indian Journal of Physics, 92(1), 91-96.
  • Sadeghi, M., Kakavand, T., Alipoor, Z. (2010). 85 Sr production via proton induced on various targets using TALYS 1.0 code. Modern Physics Letters A, 25(18), 1541-1552.
  • Sarpün, I. H., Aydin, A., & Koning, A. (2016). Double Differential Proton and Alpha Emission Cross Sections for Structural Fusion Materials 94, 95, 96Mo. Journal of Fusion Energy, 35(5), 725-729.
  • Schröder, V., Scobel, W., Wilde, L., & Bormann, M. (1978). On the mechanism of the (n, 2n) reaction with 14MeV projectiles on127I and209Bi. Zeitschrift für Physik A Atoms and Nuclei, 287(3), 353-362.
  • Semkova, V., Reimer, P., Altzitzoglou, T., Plompen, A. J. M., Quétel, C., Sudár, S., ... Smith, D. L. (2009). Neutron activation cross sections on lead isotopes. Physical review C, 80(2), 024610.
  • Şekerci, M., Özdoğan, H., Kaplan, A. (2020). An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n, γ) reactions. Radiochimica Acta, 108(1), 11-17.
  • Toshinsky, G., and Petrochenko, V. (2012). Modular lead-bismuth fast reactors in nuclear power. Sustainability, 4(9), 2293-2316.
  • Travaglio, C., Gallino, R., Busso, M., Gratton, R. (2001). Lead: asymptotic giant branch production and galactic chemical evolution. The Astrophysical Journal, 549(1), 346.
  • Yiğit, M. (2021). Study of cross sections for (n, p) reactions on Hf, Ta and W isotopes. Applied Radiation and Isotopes, 174, 109779.
  • Zhang, Z., Han, Y., & Cai, C. (2010). Double differential cross sections of light charged particle emission in neutron induced reactions on 54, 56, 57, 58Fe. Annals of Nuclear Energy, 37(2), 130-143.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Deniz Canbula 0000-0003-0283-2698

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 3 Mart 2022
Kabul Tarihi 13 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Canbula, D. (2022). Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope. International Journal of Pure and Applied Sciences, 8(1), 173-178. https://doi.org/10.29132/ijpas.1081660
AMA Canbula D. Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope. International Journal of Pure and Applied Sciences. Haziran 2022;8(1):173-178. doi:10.29132/ijpas.1081660
Chicago Canbula, Deniz. “Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope”. International Journal of Pure and Applied Sciences 8, sy. 1 (Haziran 2022): 173-78. https://doi.org/10.29132/ijpas.1081660.
EndNote Canbula D (01 Haziran 2022) Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope. International Journal of Pure and Applied Sciences 8 1 173–178.
IEEE D. Canbula, “Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope”, International Journal of Pure and Applied Sciences, c. 8, sy. 1, ss. 173–178, 2022, doi: 10.29132/ijpas.1081660.
ISNAD Canbula, Deniz. “Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope”. International Journal of Pure and Applied Sciences 8/1 (Haziran 2022), 173-178. https://doi.org/10.29132/ijpas.1081660.
JAMA Canbula D. Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope. International Journal of Pure and Applied Sciences. 2022;8:173–178.
MLA Canbula, Deniz. “Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope”. International Journal of Pure and Applied Sciences, c. 8, sy. 1, 2022, ss. 173-8, doi:10.29132/ijpas.1081660.
Vancouver Canbula D. Analysis of Double Differential Cross Section for Neutron Induced and Neutron Emission Reaction of 209Bi Isotope. International Journal of Pure and Applied Sciences. 2022;8(1):173-8.

154501544915448154471544615445