Araştırma Makalesi
BibTex RIS Kaynak Göster

Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması

Yıl 2025, Cilt: 11 Sayı: 1, 281 - 297, 30.06.2025
https://doi.org/10.29132/ijpas.1582591

Öz

Bilgisayar destekli cihaz ve sistemlerin sağlık sektöründe giderek artan kullanımı, hastalıkların daha erken ve daha hızlı teşhis edilmesine olanak sağlamaktadır. Bilgisayar destekli sistem ve cihazlar özellikle nörolojik hastalıkların tanı ve görüntülemesinde kritik bir rol oynamaktadır. Merkezi sinir sistemi ve bilişsel fonksiyonların değerlendirilmesindeki gelişmeler, özellikle Alzheimer Hastalığı gibi nörodejeneratif hastalıkların erken teşhisinde önemli avantajlar sağlamaktadır. Çalışmada kullanılan veriler Kaggle platformunda açık kaynaklı olarak bulunan “Augmented Alzheimer MRI Dataset” isimli veri setinden alınmıştır. Bu veri setinde ikinci klasör kullanılmıştır. Toplamda 33.894 adet görüntü bulunmaktadır. Çalışmada Alzheimer hastalığı teşhisi analizi için derin öğrenme sınıflandırıcı model olarak Convolutional Neural Network (CNN) kullanılmıştır. Performans analizi yapılmıştır. Kullanılan CNN model accuracy değerini 0.9102 olarak vermiştir. Bu sonuçlar, CNN modelin kullanılmasıyla veri kaybının düşük olacağını, performansın iyi olacağını göstermektedir.

Etik Beyan

Bu çalışma "Alzheimer Hastalığı Tespiti ve CNN Model Sınıflandırması" başlıklı ve 10648777 referans numaralı yüksek lisans tezinden türetilmiştir.Yazarlar, bu çalışmanın araştırma ve yayın etiğine uygun olduğunu beyan eder.

Kaynakça

  • Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., ... & Jones, D. T. (2021). Alzheimer disease. Nature reviews Disease primers, 7(1), 33.
  • 2024 Alzheimer's disease facts and figures. (2024). Alzheimer's & dementia : the journal of the Alzheimer's Association, 20(5), 3708–3821.
  • Al Shehri, W. (2022). Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Computer Science, 8, e1177.
  • Jack Jr, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., ... & Silverberg, N. (2018). NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562.
  • Dubois, B., Villain, N., Frisoni, G. B., Rabinovici, G. D., Sabbagh, M., Cappa, S., ... & Feldman, H. H. (2021). Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology, 20(6), 484-496.
  • Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer's disease. Nature reviews disease primers, 1(1), 1-18.
  • Gürvit, İ. H., Yıldırım, Z., Samancı, Bedia (2022). Demans Sendromu, Alzheimer Hastalığı ve Alzheimer Dışı Demanslar.Öge A. Emre,Baykan Betül,Bilgiç Başar (Ed.), Nöroloji. İstanbul, Nobel Tıp Kitabevi; 573-663
  • Tang, M. X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., ... & Mayeux, R. (1996). Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease. The Lancet, 348(9025), 429-432..
  • Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules, 25(24), 5789.
  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34(7), 939-939.
  • Varghese, T., Sheelakumari, R., James, J. S., & Mathuranath, P. (2013). A review of neuroimaging biomarkers of Alzheimer's disease. Neurology Asia, 18(3), 239–248.
  • Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.
  • Payan, A., & Montana, G. (2015). Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506.
  • Salehi, A. W., Baglat, P., Sharma, B. B., Gupta, G., & Upadhya, A. (2020, September). A CNN model: earlier diagnosis and classification of Alzheimer disease using MRI. In 2020 International Conference on Smart Electronics and Communication (ICOSEC) (pp. 156-161). IEEE.
  • AbdulAzeem, Y., Bahgat, W. M., & Badawy, M. (2021). A CNN based framework for classification of Alzheimer’s disease. Neural Computing and Applications, 33(16), 10415-10428.
  • Karabay, G. S., & Çavaş, M. (2022). Derin Öğrenme Yöntemiyle Alzheimer Hastalığının Tespiti. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(2), 879-887.Karikari, T. K., Ashton, N. J., Brinkmalm, G., Brum, W. S., Benedet, A. L., Montoliu-Gaya, L., ... & Zetterberg, H. (2022). Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nature Reviews Neurology, 18(7), 400-418.
  • El-Latif, A. A. A., Chelloug, S. A., Alabdulhafith, M., & Hammad, M. (2023). Accurate detection of Alzheimer’s disease using lightweight deep learning model on MRI data. Diagnostics, 13(7), 1216.
  • Murugan, S., Venkatesan, C., Sumithra, M. G., Gao, X. Z., Elakkiya, B., Akila, M., & Manoharan, S. (2021). DEMNET: a deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. Ieee Access, 9, 90319-90329.
  • Bangyal, W. H., Rehman, N. U., Nawaz, A., Nisar, K., Ibrahim, A. A. A., Shakir, R., & Rawat, D. B. (2022). Constructing domain ontology for Alzheimer disease using deep learning based approach. Electronics, 11(12), 1890.
  • Balaji, P., Chaurasia, M. A., Bilfaqih, S. M., Muniasamy, A., & Alsid, L. E. G. (2023). Hybridized deep learning approach for detecting Alzheimer’s disease. Biomedicines, 11(1), 149.
  • Pacal, I. (2024). Efficient lightweight vision transformer models for automated Alzheimer’s disease diagnosis. In Proceedings of the IX. Uluslararası Sağlık, Mühendislik ve Fen Bilimleri Kongresi (Ankara, Turkey). (pp. 265-276).
  • Ozdemir, B., & Pacal, I. (2024). An Innovative Deep Learning Framework for Skin Cancer Detection Employing ConvNeXtV2 and Focal Self-Attention Mechanisms. Results in Engineering, 103692.
  • Pacal, I. (2024). Improved Vision Transformer with Lion Optimizer for Lung Diseases Detection. International Journal of Engineering Research and Development, 16(2), 760-776.

Detection of Alzheimer's Disease CNN Model Classification

Yıl 2025, Cilt: 11 Sayı: 1, 281 - 297, 30.06.2025
https://doi.org/10.29132/ijpas.1582591

Öz

The increasing use of computer-aided devices and systems in the health sector allows diseases to be diagnosed earlier and faster. Computer-aided systems and devices play a critical role in the diagnosis and imaging of neurological diseases in particular. Developments in the evaluation of central nervous system and cognitive functions provide significant advantages, especially in the early diagnosis of neurodegenerative diseases such as Alzheimer's Disease. The data used in the study were taken from the open source dataset called "Augmented Alzheimer MRI Dataset" on the Kaggle platform. The second folder was used in this data set. There are 33,894 images in total. In the study, Convolutional Neural Network (CNN) was used as a deep learning classifier model for Alzheimer's disease diagnostic analysis. Performance analysis was made. The CNN model used gave the accuracy value as 0.9102.These results show that by using the CNN model, data loss will be low and performance will be good.

Kaynakça

  • Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., ... & Jones, D. T. (2021). Alzheimer disease. Nature reviews Disease primers, 7(1), 33.
  • 2024 Alzheimer's disease facts and figures. (2024). Alzheimer's & dementia : the journal of the Alzheimer's Association, 20(5), 3708–3821.
  • Al Shehri, W. (2022). Alzheimer’s disease diagnosis and classification using deep learning techniques. PeerJ Computer Science, 8, e1177.
  • Jack Jr, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., ... & Silverberg, N. (2018). NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia, 14(4), 535-562.
  • Dubois, B., Villain, N., Frisoni, G. B., Rabinovici, G. D., Sabbagh, M., Cappa, S., ... & Feldman, H. H. (2021). Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology, 20(6), 484-496.
  • Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer's disease. Nature reviews disease primers, 1(1), 1-18.
  • Gürvit, İ. H., Yıldırım, Z., Samancı, Bedia (2022). Demans Sendromu, Alzheimer Hastalığı ve Alzheimer Dışı Demanslar.Öge A. Emre,Baykan Betül,Bilgiç Başar (Ed.), Nöroloji. İstanbul, Nobel Tıp Kitabevi; 573-663
  • Tang, M. X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., ... & Mayeux, R. (1996). Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease. The Lancet, 348(9025), 429-432..
  • Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules, 25(24), 5789.
  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS‐ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34(7), 939-939.
  • Varghese, T., Sheelakumari, R., James, J. S., & Mathuranath, P. (2013). A review of neuroimaging biomarkers of Alzheimer's disease. Neurology Asia, 18(3), 239–248.
  • Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.
  • Payan, A., & Montana, G. (2015). Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506.
  • Salehi, A. W., Baglat, P., Sharma, B. B., Gupta, G., & Upadhya, A. (2020, September). A CNN model: earlier diagnosis and classification of Alzheimer disease using MRI. In 2020 International Conference on Smart Electronics and Communication (ICOSEC) (pp. 156-161). IEEE.
  • AbdulAzeem, Y., Bahgat, W. M., & Badawy, M. (2021). A CNN based framework for classification of Alzheimer’s disease. Neural Computing and Applications, 33(16), 10415-10428.
  • Karabay, G. S., & Çavaş, M. (2022). Derin Öğrenme Yöntemiyle Alzheimer Hastalığının Tespiti. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34(2), 879-887.Karikari, T. K., Ashton, N. J., Brinkmalm, G., Brum, W. S., Benedet, A. L., Montoliu-Gaya, L., ... & Zetterberg, H. (2022). Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nature Reviews Neurology, 18(7), 400-418.
  • El-Latif, A. A. A., Chelloug, S. A., Alabdulhafith, M., & Hammad, M. (2023). Accurate detection of Alzheimer’s disease using lightweight deep learning model on MRI data. Diagnostics, 13(7), 1216.
  • Murugan, S., Venkatesan, C., Sumithra, M. G., Gao, X. Z., Elakkiya, B., Akila, M., & Manoharan, S. (2021). DEMNET: a deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. Ieee Access, 9, 90319-90329.
  • Bangyal, W. H., Rehman, N. U., Nawaz, A., Nisar, K., Ibrahim, A. A. A., Shakir, R., & Rawat, D. B. (2022). Constructing domain ontology for Alzheimer disease using deep learning based approach. Electronics, 11(12), 1890.
  • Balaji, P., Chaurasia, M. A., Bilfaqih, S. M., Muniasamy, A., & Alsid, L. E. G. (2023). Hybridized deep learning approach for detecting Alzheimer’s disease. Biomedicines, 11(1), 149.
  • Pacal, I. (2024). Efficient lightweight vision transformer models for automated Alzheimer’s disease diagnosis. In Proceedings of the IX. Uluslararası Sağlık, Mühendislik ve Fen Bilimleri Kongresi (Ankara, Turkey). (pp. 265-276).
  • Ozdemir, B., & Pacal, I. (2024). An Innovative Deep Learning Framework for Skin Cancer Detection Employing ConvNeXtV2 and Focal Self-Attention Mechanisms. Results in Engineering, 103692.
  • Pacal, I. (2024). Improved Vision Transformer with Lion Optimizer for Lung Diseases Detection. International Journal of Engineering Research and Development, 16(2), 760-776.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Görüntü İşleme
Bölüm Araştırma Makalesi
Yazarlar

Ceren Gündüzalp 0009-0006-5856-9146

Gökalp Tulum 0000-0003-1906-0401

Tahsin Gündüzalp 0009-0000-2394-5611

Gönderilme Tarihi 16 Kasım 2024
Kabul Tarihi 27 Ocak 2025
Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Gündüzalp, C., Tulum, G., & Gündüzalp, T. (2025). Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması. International Journal of Pure and Applied Sciences, 11(1), 281-297. https://doi.org/10.29132/ijpas.1582591
AMA Gündüzalp C, Tulum G, Gündüzalp T. Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması. International Journal of Pure and Applied Sciences. Haziran 2025;11(1):281-297. doi:10.29132/ijpas.1582591
Chicago Gündüzalp, Ceren, Gökalp Tulum, ve Tahsin Gündüzalp. “Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması”. International Journal of Pure and Applied Sciences 11, sy. 1 (Haziran 2025): 281-97. https://doi.org/10.29132/ijpas.1582591.
EndNote Gündüzalp C, Tulum G, Gündüzalp T (01 Haziran 2025) Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması. International Journal of Pure and Applied Sciences 11 1 281–297.
IEEE C. Gündüzalp, G. Tulum, ve T. Gündüzalp, “Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması”, International Journal of Pure and Applied Sciences, c. 11, sy. 1, ss. 281–297, 2025, doi: 10.29132/ijpas.1582591.
ISNAD Gündüzalp, Ceren vd. “Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması”. International Journal of Pure and Applied Sciences 11/1 (Haziran2025), 281-297. https://doi.org/10.29132/ijpas.1582591.
JAMA Gündüzalp C, Tulum G, Gündüzalp T. Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması. International Journal of Pure and Applied Sciences. 2025;11:281–297.
MLA Gündüzalp, Ceren vd. “Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması”. International Journal of Pure and Applied Sciences, c. 11, sy. 1, 2025, ss. 281-97, doi:10.29132/ijpas.1582591.
Vancouver Gündüzalp C, Tulum G, Gündüzalp T. Alzheimer Hastalığının Tespiti CNN Model Sınıflandırması. International Journal of Pure and Applied Sciences. 2025;11(1):281-97.