Araştırma Makalesi
BibTex RIS Kaynak Göster

Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu

Yıl 2025, Cilt: 11 Sayı: 2, 493 - 506, 29.12.2025
https://doi.org/10.29132/ijpas.1673310

Öz

Bu çalışmada, katyonik bir boya olan Bazik Mavi 3'ün, kitosan bazlı boncuk formdaki polimerik sorbentler kullanılarak sulu ortamdan uzaklaştırılması amaçlanmıştır. Ki-tosan bazlı polimerik boncukları oluşturmak için çökelt-me-toplama yönteminden faydalanılmıştır. Daha sonra, kitosan bazlı sorbentin sorpsiyon aktivitesi katyonik boyar madde (Bazik Mavi 3, BB3) içeren atık su kullanılarak değerlendirilmiştir. Boya moleküllerinin sorpsiyon etkinliği üzerinde, sıcaklık, başlangıç pH'ı, sorbent dozajı, başlangıç boya çözeltisi kon-santrasyonu, temas süresi vb. gibi farklı sorp-siyon parametrelerinin etkisi incelenmiştir. Optimum çözelti sıcaklığı, başlangıç pH'ı, kitosan konsantrasyonu, temas süresi ve BB3 boyasının başlangıç konsantrasyonu sırasıyla 298 K, 10,5 ± 0,02, 240 dakika, 1 g/L ve 150 mg/L olarak tespit edildi. Bu şartlarda sorbentin optimum sorpsiyon kapasitesi 59.89 mg/g olarak bulundu. Kitosan boncuklarının fiziksel kararlılıklarını koruduğu görüldü.

Teşekkür

Araştırma yazarlarından Gizem AKKUŞ ÖZER çalışmada YÖK 100/2000 doktora bursiyeri olarak görev almaktadır.

Kaynakça

  • [1] O. U. Akakuru, Z. M. Iqbal ve A. Wu, TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine, Weinheim, Germany: John Wiley & Sons, Ltd., 2020.
  • [2] O. A. Oyewo, E. E. Elemike, D. C. Onwudiwe ve M. S. Onyango, “Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater”, International Journal of Biological Macromolecules, c. 164, ss. 2477–2496, 2020, doi: 10.1016/j.ijbiomac.2020.08.074.
  • [3] S. Zhu, M. Xia, Y. Chu, M. A. Khan, W. Lei, F. Wang, T. Muhmood ve A. Wang, “Adsorption and desorption of Pb(II) on l-lysine modified montmorillonite and the simulation of interlayer structure”, Applied Clay Science, c. 169, ss. 40–47, 2019, doi: 10.1016/j.clay.2018.12.017
  • [4] S. Khan ve A. Malik, “Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye”, Environmental Science and Pollution Research, c. 25, ss. 4446–4458, 2018, doi: 10.1007/s11356-017-0783-7.
  • [5] R. Kishor, D. Purchase, G. D. Saratale, R. G. Saratale, L. F. R. Ferreira, M. Bilal, R. Chandra ve R. N. Bharagava, “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety”, Journal of Environmental Chemical Engineering, c. 9, 105012, 2021, doi: 10.1016/j.jece.2020.105012.
  • [6] G. McKay, P. Parthasarathy, S. Sajjad, J. Saleem ve M. Alherbawi, “Dye removal using biochars”, Sustainable Biochar for Water and Wastewater Treatment, D. Mohan, C. U. Pittman ve T. Mlsna, Eds., Amsterdam, The Netherlands: Elsevier, 2022, ss. 429–471, doi: 10.1016/B978-0-12-822225-6.00019
  • [7] S. Velusamy, A. Roy, S. Sundaram ve T. K. Mallick, “A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment”, The Chemical Record, c. 21, ss. 1570–1610, 2021, doi: 10.1002/tcr.202000153.
  • [8] T. A. Aragaw ve F. M. Bogale, “Biomass-based adsorbents for removal of dyes from wastewater: A review”, Frontiers in Environmental Science, c. 9, 558, 2021, doi: 10.3389/fenvs.2021.764958
  • [9] S. Zhu, M. A. Khan, T. Kameda, H. Xu, F. Wang, M. Xia ve T. Yoshioka, “New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material”, Journal of Hazardous Materials, c. 426, 128062, 2022, doi: 10.1016/j.jhazmat.2021.128062.
  • [10] S. Zhu, Y. Chen, M. A. Khan, H. Xu, F. Wang ve M. Xia, “In-depth study of heavy metal removal by an etidronic acid-functionalized layered double hydroxide”, ACS Applied Materials & Interfaces, c. 14, ss. 7450–7463, 2022, doi: 10.1021/acsami.1c22035.
  • [11] H. Demirtaş, Ş. Taşar, F. Kaya ve A. Özer, “Production and characterization of chitosan-based polymer particles with the precipitation collection method”, Fırat Univ. J. Exp. Comput. Eng., c. 1, sy 2, ss. 68–79, 2022, doi: 10.5505/fujece.2022.54264.
  • [12] H. Demirtaş, Ş. Taşar, F. Kaya ve A. Özer, “Removal of BB41 dye molecules onto cross-linked chitosan microspheres: synthesis, characterization, and sorption/desorption”, Biomass Convers. Biorefin., c. 14, sy 11, ss. 11927–11939, 2024, doi: 10.1007/s13399-023-04047-6.
  • [13] H. Demirtaş, Ş. Taşar, F. Kaya ve A. Özer, “Sorption of BB41 dye molecules using chitosan based particles from aqueous solutions: A kinetic and thermodynamic evaluation”, J. Environ. Chem. Eng., c. 10, sy 4, 108062, 2022, doi: 10.1016/j.jece.2022.108062.
  • [14] Ö. İpek, Ş. Taşar ve N. Duranay, “Removal of basic yellow dye molecules with chitosan-based magnetic field-sensitive particles from the aqueous solution”, Polymer, c. 316, 127895, 2025, doi: 10.1016/j.polymer.2024.127895.
  • [15] Ş. Taşar ve R. Orhan, “Temperature-responsive poly (acrylamide-co-N-isopropyl acrylamide) hydrogel: Synthesis, characterization, and sorption application”, Polymer (Korea), c. 44, sy 1, ss. 49–60, 2020, doi: 10.7317/pk.2020.44.1.49.
  • [16] M. Çakmak, Ş. Taşar, V. Selen, D. Özer ve A. Özer, “Removal of astrazon golden yellow 7GL from colored wastewater using chemically modified clay”, J. Cent. South Univ., c. 24, ss. 743–753, 2017, doi: 10.1007/s11771-017-3476-y.
  • [17] M. B. Ceretta, D. Nercessian ve E. A. Wolski, “Current trends on role of biological treatment in integrated treatment technologies of textile wastewater”, Front. Microbiol., c. 12, 651025, 2021, doi: 10.3389/fmicb.2021.651025.
  • [18] M. Abdelmonem, E. Metwally, T. E. Siyam, F. Abou El-Nour ve A.-R. M. Mousa, “Gamma radiation-induced preparation of chitosan-acrylic acid-1-vinyl-2-vinylpyrrolidone/multiwalled carbon nanotubes composite for removal of 152+154Eu, 60Co and 134Cs radionuclides”, Int. J. Biol. Macromol., c. 164, ss. 2258–2266, 2020, doi: 10.1016/j.ijbiomac.2020.08.120.
  • [19] M. X. Zhu, K. Y. Ding, S. H. Xu ve X. Jiang, “Adsorption of phosphate on hydroxy aluminum and hydroxyiron-montmorillonite complexes”, J. Hazard. Mater., c. 165, sy 1–3, ss. 645–651, 2009, doi: 10.1016/j.jhazmat.2008.10.035.
  • [20] C. Ye, B. Yan, X. Ji, B. Liao, R. Gong, X. Pei ve G. Liu, “Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: experimental and modeling”, Ecotoxicol. Environ. Saf., c. 180, ss. 366–373, 2019, doi: 10.1016/j.ecoenv.2019.04.086.
  • [21] H. Xu, L. Wu, T. Shi, W. Liu ve S. Qi, “Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash”, Sci. China Technol. Sci., c. 57, sy 6, ss. 1127–1134, 2014, doi: 10.1007/s11431-014-5542-0.
  • [22] S. Lagergren, “Zur theorie der sogenannten adsorption geloster stoffe”, Kungliga Svenska Vetenskapsakademiens Handlingar, c. 24, ss. 1–39, 1898.
  • [23] Y. S. Ho ve G. McKay, “Pseudo-second order model for sorption processes”, Process Biochem., c. 34, ss. 451–465, 1999, doi: 10.1016/S0032-9592(98)00112-5.
  • [24] G. A. Adebisi, Z. Z. Chowdhury ve P. A. Alaba, “Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent”, J. Cleaner Prod., c. 148, ss. 958–968, 2017, doi: 10.1016/j.jclepro.2017.02.047.
  • [25] Langmuir, “The constitution and fundamental properties of solids and liquids”, J. Am. Chem. Soc., c. 38, sy 11, ss. 2221–2295, 1916, doi: 10.1021/ja02268a002.
  • [26] H. M. F. Freundlich, “Über die adsorption in lösungen”, Z. Phys. Chem., c. 57A, ss. 385–470, 1906, doi: 10.1515/zpch-1907-5723.
  • [27] P. D. Chethan ve B. Vishalakshi, “Synthesis of ethylenediamine modified chitosan microspheres for removal of divalent and hexavalent ions”, Int. J. Biol. Macromol., c. 75, ss. 179–185, 2015, doi: 10.1016/j.ijbiomac.2015.01.032.
  • A. M. Alzayd, A. N. Zghair, A. M. Essa, A. S. Jawad, M. J. Abed, M. Batool ve L. S. Jasim, “Isotherm and thermodynamic analysis of Azur C dye adsorption on GO/P(CMC-Co-Am) nanocomposite”, J. Nanostruct., c. 14, sy 3, ss. 845–856, 2024, doi: 10.22052/JNS.2024.03.015.
  • [28] M. Alsawat, “Congo red dye adsorption using CuSnO2TiO2 nanocomposites: adsorption data interpretation by statistical modeling”, Int. J. Electrochem. Sci., 100611, 2024, doi: 10.1016/j.ijoes.2024.100611.
  • [29] Z. M. Şenol, H. Ertap, Y. Fernine ve N. El Messaoudi, “Adsorptive removal of synthetic dye from its aqueous solution by using chitosan-bentonite composite: DFT and experimental studies”, Polymer Bulletin, c. 81, sy 14, ss. 12795–12817, 2024, doi: 10.1007/s00289-024-05323-9.
  • [30] M. Çetin ve Y. Ozudogru, “Removal of malachite green dye by adsorption onto chitosan‐montmorillonite nanocomposite: kinetic, thermodynamic and equilibrium studies”, J. Chin. Chem. Soc., 2025, doi: 10.1002/jccs.202400331.
  • [31] X. He, H. Xu ve H. Li, “Cr(VI) removal from aqueous solution by chitosan/carboxylmethyl cellulose/silica hybrid membrane”, World J. Eng. Technol., c. 3, sy 3, ss. 234–240, 2015, doi: 10.4236/wjet.2015.33C034.
  • [32] Z. Abdeen, S. G. Mohammad ve M. S. Mahmoud, “Adsorption of Mn(II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution”, Environ. Nanotechnol. Monit. Manag., c. 3, ss. 1–9, 2015, doi: 10.1016/j.enmm.2014.10.001.
  • [33] L. Laysandra, I. J. Ondang, Y. H. Ju, B. H. Ariandini, A. Mariska, F. E. Soetaredjo, J. N. Putro, S. P. Santoso, F. L. Darsono ve S. Ismadji, “Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI)”, Environ. Sci. Pollut. Res. Int., c. 26, sy 5, ss. 5020–5037, 2019, doi: 10.1007/s11356-018-4035-2.
  • [34] M. Wang, Y. Zheng, Q. Li, Y. Qi, X. Liao ve Q. Fu, “The efficiency adsorption of ammonia nitrogen, phosphate and basic blue 3 by fulvic acid decorated Fe3O4 magnetic nanocomposites”, Pol. J. Environ. Stud., c. 30, sy 4, 2021, doi: 10.15244/pjoes/130363.
  • [35] Z. Bencheqroun, I. El Mrabet, M. Nawdali, M. Benali ve H. Zaitan, “Adsorption removal of cationic dyes from aqueous solutions by raw and chemically activated cedar sawdust”, Desalination Water Treat., c. 240, ss. 177–190, 2021, doi: 10.5004/dwt.2021.27635.
  • [36] M. K. Goswami ve A. Srivastava, “Polypyrrole/CoFe2O4 nanocomposite for the removal of basic blue 3 dye from wastewater: kinetic, adsorption isotherm, and thermodynamic study”, J. Appl. Polym. Sci., e56713, 2025, doi: 10.1002/app.56713.
  • [37] T. Börklü Budak, “Adsorption of basic yellow 28 and basic blue 3 dyes from aqueous solution using silybum marianum stem as a low-cost adsorbent”, Molecules, c. 28, sy 18, 6639, 2023, doi: 10.3390/molecules28186639.
  • [38] G. Crini, F. Gimbert, C. Robert, B. Martel, O. Adam, N. Morin-Crini ve P. M. Badot, “The removal of basic blue 3 from aqueous solutions by chitosan-based adsorbent: batch studies”, J. Hazard. Mater., c. 153, sy 1–2, ss. 96–106, 2008, doi: 10.1016/j.jhazmat.2007.08.025.
  • [39] S. Chadi, U. Saidu, S. Mamman ve A. A. Abubakar, “Synthesis, characterization and adsorption properties of protonated cross-linked chitosan for the removal of basic blue 3 dye from wastewater”, ChemSearch J., c. 11, sy 1, ss. 25–34, 2020, doi: 10.1016/j.ijbiomac.2019.08.058.

Sorption of Basic Blue 3 Dye Molecules from Aqueous Solution with Chi-tosan-Based Beads without Crosslinkers

Yıl 2025, Cilt: 11 Sayı: 2, 493 - 506, 29.12.2025
https://doi.org/10.29132/ijpas.1673310

Öz

In this study, it was aimed to remove Basic Blue 3, a cationic dye, from aqueous media by using chitosan based polymeric sorbents in bead form. The precipi-ta-tion-measurement method was used to form chitosan based polymeric beads. Then, the sorption activity of chitosan based sorbent was evaluated using was-tewater con-taining cationic dye (Basic Blue 3, BB3). The effects of different sorption parameters such as temperature, initial pH, sorbent dosage, initial dye solution concentration, contact time etc. on the sorption efficiency of dye mole-cules were investigated. The optimum solution temperature, initial pH, chitosan concentration, contact time and initial concentration of BB3 dye were determined as 298 K, 10.5 ± 0.02, 240 min, 1 g/L and 150 mg/L, respectively. The optimum sorption capacity of the sorbent under these conditions was found to be 59.89 mg/g. Chitosan beads were found to maintain their physical stability.

Kaynakça

  • [1] O. U. Akakuru, Z. M. Iqbal ve A. Wu, TiO2 Nanoparticles: Applications in Nanobiotechnology and Nanomedicine, Weinheim, Germany: John Wiley & Sons, Ltd., 2020.
  • [2] O. A. Oyewo, E. E. Elemike, D. C. Onwudiwe ve M. S. Onyango, “Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater”, International Journal of Biological Macromolecules, c. 164, ss. 2477–2496, 2020, doi: 10.1016/j.ijbiomac.2020.08.074.
  • [3] S. Zhu, M. Xia, Y. Chu, M. A. Khan, W. Lei, F. Wang, T. Muhmood ve A. Wang, “Adsorption and desorption of Pb(II) on l-lysine modified montmorillonite and the simulation of interlayer structure”, Applied Clay Science, c. 169, ss. 40–47, 2019, doi: 10.1016/j.clay.2018.12.017
  • [4] S. Khan ve A. Malik, “Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye”, Environmental Science and Pollution Research, c. 25, ss. 4446–4458, 2018, doi: 10.1007/s11356-017-0783-7.
  • [5] R. Kishor, D. Purchase, G. D. Saratale, R. G. Saratale, L. F. R. Ferreira, M. Bilal, R. Chandra ve R. N. Bharagava, “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety”, Journal of Environmental Chemical Engineering, c. 9, 105012, 2021, doi: 10.1016/j.jece.2020.105012.
  • [6] G. McKay, P. Parthasarathy, S. Sajjad, J. Saleem ve M. Alherbawi, “Dye removal using biochars”, Sustainable Biochar for Water and Wastewater Treatment, D. Mohan, C. U. Pittman ve T. Mlsna, Eds., Amsterdam, The Netherlands: Elsevier, 2022, ss. 429–471, doi: 10.1016/B978-0-12-822225-6.00019
  • [7] S. Velusamy, A. Roy, S. Sundaram ve T. K. Mallick, “A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment”, The Chemical Record, c. 21, ss. 1570–1610, 2021, doi: 10.1002/tcr.202000153.
  • [8] T. A. Aragaw ve F. M. Bogale, “Biomass-based adsorbents for removal of dyes from wastewater: A review”, Frontiers in Environmental Science, c. 9, 558, 2021, doi: 10.3389/fenvs.2021.764958
  • [9] S. Zhu, M. A. Khan, T. Kameda, H. Xu, F. Wang, M. Xia ve T. Yoshioka, “New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material”, Journal of Hazardous Materials, c. 426, 128062, 2022, doi: 10.1016/j.jhazmat.2021.128062.
  • [10] S. Zhu, Y. Chen, M. A. Khan, H. Xu, F. Wang ve M. Xia, “In-depth study of heavy metal removal by an etidronic acid-functionalized layered double hydroxide”, ACS Applied Materials & Interfaces, c. 14, ss. 7450–7463, 2022, doi: 10.1021/acsami.1c22035.
  • [11] H. Demirtaş, Ş. Taşar, F. Kaya ve A. Özer, “Production and characterization of chitosan-based polymer particles with the precipitation collection method”, Fırat Univ. J. Exp. Comput. Eng., c. 1, sy 2, ss. 68–79, 2022, doi: 10.5505/fujece.2022.54264.
  • [12] H. Demirtaş, Ş. Taşar, F. Kaya ve A. Özer, “Removal of BB41 dye molecules onto cross-linked chitosan microspheres: synthesis, characterization, and sorption/desorption”, Biomass Convers. Biorefin., c. 14, sy 11, ss. 11927–11939, 2024, doi: 10.1007/s13399-023-04047-6.
  • [13] H. Demirtaş, Ş. Taşar, F. Kaya ve A. Özer, “Sorption of BB41 dye molecules using chitosan based particles from aqueous solutions: A kinetic and thermodynamic evaluation”, J. Environ. Chem. Eng., c. 10, sy 4, 108062, 2022, doi: 10.1016/j.jece.2022.108062.
  • [14] Ö. İpek, Ş. Taşar ve N. Duranay, “Removal of basic yellow dye molecules with chitosan-based magnetic field-sensitive particles from the aqueous solution”, Polymer, c. 316, 127895, 2025, doi: 10.1016/j.polymer.2024.127895.
  • [15] Ş. Taşar ve R. Orhan, “Temperature-responsive poly (acrylamide-co-N-isopropyl acrylamide) hydrogel: Synthesis, characterization, and sorption application”, Polymer (Korea), c. 44, sy 1, ss. 49–60, 2020, doi: 10.7317/pk.2020.44.1.49.
  • [16] M. Çakmak, Ş. Taşar, V. Selen, D. Özer ve A. Özer, “Removal of astrazon golden yellow 7GL from colored wastewater using chemically modified clay”, J. Cent. South Univ., c. 24, ss. 743–753, 2017, doi: 10.1007/s11771-017-3476-y.
  • [17] M. B. Ceretta, D. Nercessian ve E. A. Wolski, “Current trends on role of biological treatment in integrated treatment technologies of textile wastewater”, Front. Microbiol., c. 12, 651025, 2021, doi: 10.3389/fmicb.2021.651025.
  • [18] M. Abdelmonem, E. Metwally, T. E. Siyam, F. Abou El-Nour ve A.-R. M. Mousa, “Gamma radiation-induced preparation of chitosan-acrylic acid-1-vinyl-2-vinylpyrrolidone/multiwalled carbon nanotubes composite for removal of 152+154Eu, 60Co and 134Cs radionuclides”, Int. J. Biol. Macromol., c. 164, ss. 2258–2266, 2020, doi: 10.1016/j.ijbiomac.2020.08.120.
  • [19] M. X. Zhu, K. Y. Ding, S. H. Xu ve X. Jiang, “Adsorption of phosphate on hydroxy aluminum and hydroxyiron-montmorillonite complexes”, J. Hazard. Mater., c. 165, sy 1–3, ss. 645–651, 2009, doi: 10.1016/j.jhazmat.2008.10.035.
  • [20] C. Ye, B. Yan, X. Ji, B. Liao, R. Gong, X. Pei ve G. Liu, “Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: experimental and modeling”, Ecotoxicol. Environ. Saf., c. 180, ss. 366–373, 2019, doi: 10.1016/j.ecoenv.2019.04.086.
  • [21] H. Xu, L. Wu, T. Shi, W. Liu ve S. Qi, “Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash”, Sci. China Technol. Sci., c. 57, sy 6, ss. 1127–1134, 2014, doi: 10.1007/s11431-014-5542-0.
  • [22] S. Lagergren, “Zur theorie der sogenannten adsorption geloster stoffe”, Kungliga Svenska Vetenskapsakademiens Handlingar, c. 24, ss. 1–39, 1898.
  • [23] Y. S. Ho ve G. McKay, “Pseudo-second order model for sorption processes”, Process Biochem., c. 34, ss. 451–465, 1999, doi: 10.1016/S0032-9592(98)00112-5.
  • [24] G. A. Adebisi, Z. Z. Chowdhury ve P. A. Alaba, “Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent”, J. Cleaner Prod., c. 148, ss. 958–968, 2017, doi: 10.1016/j.jclepro.2017.02.047.
  • [25] Langmuir, “The constitution and fundamental properties of solids and liquids”, J. Am. Chem. Soc., c. 38, sy 11, ss. 2221–2295, 1916, doi: 10.1021/ja02268a002.
  • [26] H. M. F. Freundlich, “Über die adsorption in lösungen”, Z. Phys. Chem., c. 57A, ss. 385–470, 1906, doi: 10.1515/zpch-1907-5723.
  • [27] P. D. Chethan ve B. Vishalakshi, “Synthesis of ethylenediamine modified chitosan microspheres for removal of divalent and hexavalent ions”, Int. J. Biol. Macromol., c. 75, ss. 179–185, 2015, doi: 10.1016/j.ijbiomac.2015.01.032.
  • A. M. Alzayd, A. N. Zghair, A. M. Essa, A. S. Jawad, M. J. Abed, M. Batool ve L. S. Jasim, “Isotherm and thermodynamic analysis of Azur C dye adsorption on GO/P(CMC-Co-Am) nanocomposite”, J. Nanostruct., c. 14, sy 3, ss. 845–856, 2024, doi: 10.22052/JNS.2024.03.015.
  • [28] M. Alsawat, “Congo red dye adsorption using CuSnO2TiO2 nanocomposites: adsorption data interpretation by statistical modeling”, Int. J. Electrochem. Sci., 100611, 2024, doi: 10.1016/j.ijoes.2024.100611.
  • [29] Z. M. Şenol, H. Ertap, Y. Fernine ve N. El Messaoudi, “Adsorptive removal of synthetic dye from its aqueous solution by using chitosan-bentonite composite: DFT and experimental studies”, Polymer Bulletin, c. 81, sy 14, ss. 12795–12817, 2024, doi: 10.1007/s00289-024-05323-9.
  • [30] M. Çetin ve Y. Ozudogru, “Removal of malachite green dye by adsorption onto chitosan‐montmorillonite nanocomposite: kinetic, thermodynamic and equilibrium studies”, J. Chin. Chem. Soc., 2025, doi: 10.1002/jccs.202400331.
  • [31] X. He, H. Xu ve H. Li, “Cr(VI) removal from aqueous solution by chitosan/carboxylmethyl cellulose/silica hybrid membrane”, World J. Eng. Technol., c. 3, sy 3, ss. 234–240, 2015, doi: 10.4236/wjet.2015.33C034.
  • [32] Z. Abdeen, S. G. Mohammad ve M. S. Mahmoud, “Adsorption of Mn(II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution”, Environ. Nanotechnol. Monit. Manag., c. 3, ss. 1–9, 2015, doi: 10.1016/j.enmm.2014.10.001.
  • [33] L. Laysandra, I. J. Ondang, Y. H. Ju, B. H. Ariandini, A. Mariska, F. E. Soetaredjo, J. N. Putro, S. P. Santoso, F. L. Darsono ve S. Ismadji, “Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI)”, Environ. Sci. Pollut. Res. Int., c. 26, sy 5, ss. 5020–5037, 2019, doi: 10.1007/s11356-018-4035-2.
  • [34] M. Wang, Y. Zheng, Q. Li, Y. Qi, X. Liao ve Q. Fu, “The efficiency adsorption of ammonia nitrogen, phosphate and basic blue 3 by fulvic acid decorated Fe3O4 magnetic nanocomposites”, Pol. J. Environ. Stud., c. 30, sy 4, 2021, doi: 10.15244/pjoes/130363.
  • [35] Z. Bencheqroun, I. El Mrabet, M. Nawdali, M. Benali ve H. Zaitan, “Adsorption removal of cationic dyes from aqueous solutions by raw and chemically activated cedar sawdust”, Desalination Water Treat., c. 240, ss. 177–190, 2021, doi: 10.5004/dwt.2021.27635.
  • [36] M. K. Goswami ve A. Srivastava, “Polypyrrole/CoFe2O4 nanocomposite for the removal of basic blue 3 dye from wastewater: kinetic, adsorption isotherm, and thermodynamic study”, J. Appl. Polym. Sci., e56713, 2025, doi: 10.1002/app.56713.
  • [37] T. Börklü Budak, “Adsorption of basic yellow 28 and basic blue 3 dyes from aqueous solution using silybum marianum stem as a low-cost adsorbent”, Molecules, c. 28, sy 18, 6639, 2023, doi: 10.3390/molecules28186639.
  • [38] G. Crini, F. Gimbert, C. Robert, B. Martel, O. Adam, N. Morin-Crini ve P. M. Badot, “The removal of basic blue 3 from aqueous solutions by chitosan-based adsorbent: batch studies”, J. Hazard. Mater., c. 153, sy 1–2, ss. 96–106, 2008, doi: 10.1016/j.jhazmat.2007.08.025.
  • [39] S. Chadi, U. Saidu, S. Mamman ve A. A. Abubakar, “Synthesis, characterization and adsorption properties of protonated cross-linked chitosan for the removal of basic blue 3 dye from wastewater”, ChemSearch J., c. 11, sy 1, ss. 25–34, 2020, doi: 10.1016/j.ijbiomac.2019.08.058.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevresel ve Sürdürülebilir Süreçler
Bölüm Araştırma Makalesi
Yazarlar

Şeyda Taşar 0000-0003-3184-1542

Gizem Özer 0000-0003-3610-8454

Fatih Kaya 0000-0002-4063-8362

Neslihan Duranay 0000-0001-7259-1864

Melek Yılgın 0000-0002-4177-8025

Gönderilme Tarihi 10 Nisan 2025
Kabul Tarihi 31 Ekim 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Taşar, Ş., Özer, G., Kaya, F., … Duranay, N. (2025). Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu. International Journal of Pure and Applied Sciences, 11(2), 493-506. https://doi.org/10.29132/ijpas.1673310
AMA Taşar Ş, Özer G, Kaya F, Duranay N, Yılgın M. Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu. International Journal of Pure and Applied Sciences. Aralık 2025;11(2):493-506. doi:10.29132/ijpas.1673310
Chicago Taşar, Şeyda, Gizem Özer, Fatih Kaya, Neslihan Duranay, ve Melek Yılgın. “Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu”. International Journal of Pure and Applied Sciences 11, sy. 2 (Aralık 2025): 493-506. https://doi.org/10.29132/ijpas.1673310.
EndNote Taşar Ş, Özer G, Kaya F, Duranay N, Yılgın M (01 Aralık 2025) Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu. International Journal of Pure and Applied Sciences 11 2 493–506.
IEEE Ş. Taşar, G. Özer, F. Kaya, N. Duranay, ve M. Yılgın, “Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu”, International Journal of Pure and Applied Sciences, c. 11, sy. 2, ss. 493–506, 2025, doi: 10.29132/ijpas.1673310.
ISNAD Taşar, Şeyda vd. “Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu”. International Journal of Pure and Applied Sciences 11/2 (Aralık2025), 493-506. https://doi.org/10.29132/ijpas.1673310.
JAMA Taşar Ş, Özer G, Kaya F, Duranay N, Yılgın M. Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu. International Journal of Pure and Applied Sciences. 2025;11:493–506.
MLA Taşar, Şeyda vd. “Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu”. International Journal of Pure and Applied Sciences, c. 11, sy. 2, 2025, ss. 493-06, doi:10.29132/ijpas.1673310.
Vancouver Taşar Ş, Özer G, Kaya F, Duranay N, Yılgın M. Çapraz Bağlayıcı İçermeyen Kitosan Esaslı Boncuklar ile Sulu Çözeltiden Bazik Mavi 3 Boya Moleküllerinin Sorpsiyonu. International Journal of Pure and Applied Sciences. 2025;11(2):493-506.