Araştırma Makalesi
BibTex RIS Kaynak Göster

Properties and Characterization of Low Alkali Borosilicat Glass/Al2O3/Cordierite Composites for Low Temperature Co-fired Ceramic Applications

Yıl 2025, Cilt: 11 Sayı: 2, 562 - 571, 29.12.2025
https://doi.org/10.29132/ijpas.1760862

Öz

The rising demands of microwave wireless communication require lightweight, com-pact, cost-effective, high-performance ceramics. Low Temperature Co-fired Ceramics (LTCC) provide key advantages for high-frequency applications in communication, automotive, and medical devices. In this study, glass/ceramic composite materials capable of densifying at low sintering temperatures were developed. The material systems were formulated using low-alkali borosilicate glass, alumina (Al₂O₃), and cor-dierite powders. Three different composite formulations were prepared and shaped via the tape casting method. The samples were sintered at 800, 850, and 900 °C for 1 hour, and their microstructures were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Dielectric and thermal properties were also evaluated. The results indicated that all composites reached their maximum densities at 850 °C, which was identified as the optimal sintering temperature for LTCC applications. The G6A4 composite, with high alumina content, exhibited the highest bulk density (2.39 g/cm³) and thermal conductivity (4.4 W/mK), making it a suitable candidate for microelect-ronic applications requiring effective thermal management. In contrast, the G6A1K3 composite with higher cordierite content showed lower density and thermal conductivity but demonstrated superior electrical performance with a dielectric constant of 5 and a very low dielectric loss of 0.0011 at 1 MHz, indicating its potential for high-frequency electronic applications.

Kaynakça

  • [1] H. Y. Hongtao, K. J. Kui, J. L. Jingsong, and Y. L. Yingzhong, “Tape casting and dielectric properties of SiO₂-filled glass composite ceramic with an ultra-low sintering temperature,” Journal of Materials Science: Materials in Electronics, vol. 25, no. 11, pp. 5114–5118, 2014, doi: 10.1007/s10854-014-2280-9.
  • [2] M. T. Sebastian and H. Jantunen, “Low loss dielectric materials for LTCC applications: a review,” International Materials Reviews, vol. 53, no. 2, pp. 57–90, 2013, doi: 10.1179/174328008X277524.
  • [3] D. Thomas, P. Abhilash, and M. T. Sebastian, “Casting and characterization of LiMgPO₄ glass-free LTCC tape for microwave applications,” Journal of the European Ceramic Society, vol. 33, pp. 87–93, 2013, doi: 10.1016/j.jeurceramsoc.2012.08.002.
  • [4] Y. Zhang, Y. Lu, Y. Shan, J. Wang, J. Feng, and H. Zhou, “Sintering behaviors, microstructures, and dielectric properties of CaO–Al₂O₃–B₂O₃–SiO₂/Ba(Mg₁/₃Nb₂/₃)O₃ composites for LTCC applications,” Journal of Materials Science: Materials in Electronics, vol. 35, no. 1, p. 96, 2024, doi: 10.1007/s10854-023-11799-4.
  • [5] F. Wang, Y. Lou, Z. J. Li, Y. Lu, Z. W. Dong, and W. Lu, “Improved flexural strength and dielectric loss in Al₂O₃-based LTCC with La₂O₃–CaO–B₂O₃–SiO₂ glass,” Ceramics Interna-tional, vol. 47, no. 7, pp. 9955–9960, 2021, doi: 10.1016/j.ceramint.2020.12.140.
  • [6] X. Luo, L. Ren, Y. Xia, Y. Hu, W. Gong, M. Cai, and H. Zhou, “Microstructure, sinterability and properties of CaO–B₂O₃–SiO₂ glass/Al₂O₃ composites for LTCC applications,” Ceramics International, vol. 43, no. 9, pp. 6791–6795, 2017, doi: 10.1016/j.ceramint.2017.02.096.
  • [7] F. Ebrahimi, A. Nemati, and S. Banijamali, “Fabrication and microwave dielectric charac-terization of cordierite/BZBS (Bi₂O₃–ZnO–B₂O₃–SiO₂) glass composites for LTCC applica-tions,” Journal of Alloys and Compounds, vol. 882, p. 160722, 2021, doi: 10.1016/j.jallcom.2021.160722.
  • [8] I. J. Induja, K. P. Surendran, M. R. Varma, and M. T. Sebastian, “Low κ, low loss alumina–glass composite with low CTE for LTCC microelectronic applications,” Ceramics International, vol. 43, no. 1, pp. 736–740, 2017, doi: 10.1016/j.ceramint.2016.10.002.
  • [9] G. M. Dursun and C. Duran, “Glass alumina composites for functional and structural appli-cations,” Ceramics International, vol. 45, no. 9, pp. 12550–12557, 2019, doi: 10.1016/j.ceramint.2019.03.194.
  • [10] H. Jantunen and A. Novel, Low Temperature Co-firing Ceramic (LTCC): Material for Telecommunication Devices, 2001.
  • [11] O. Bilaç, G. M. Dursun, and C. Duran, “Processing and properties of nano-hBN-added glass/ceramic composites for low-temperature co-fired ceramic applications,” Journal of the Korean Ceramic Society, vol. 59, pp. 383–391, 2022, doi: 10.1007/s43207-021-00185-7.
  • [12] L. Song, J. Wu, Z. Li, X. Hao, and Y. Yu, “Crystallization mechanisms and properties of α-cordierite glass–ceramics from K₂O–MgO–Al₂O₃–SiO₂ glasses,” Journal of Non-Crystalline Solids, vol. 419, pp. 16–26, 2015, doi: 10.1016/j.jnoncrysol.2015.03.023.
  • [13] S. Wang, H. Zhou, and L. Luo, “Sintering and crystallization of cordierite glass ceramics for high-frequency multilayer chip inductors,” Materials Research Bulletin, vol. 38, no. 8, pp. 1367–1374, 2003, doi: 10.1016/S0025-5408(03)00138-7.
  • [14] P. X. Zhang, L. Gao, Q. H. Yuan, H. L. Peng, X. Z. Ren, and D. Y. Zhang, “Crystallization behavior and performance of MgO–Al₂O₃–SiO₂ glass-ceramics by sintering,” Advanced Materials Research, vol. 92, pp. 65–71, 2010, doi: 10.4028/www.scientific.net/AMR.92.65
  • [15] M. A. Camerucci, G. Urretavizcaya, and A. L. Cavalieri, “Sintering of cordierite-based ma-terials,” Ceramics International, vol. 29, no. 2, pp. 159–168, 2003, doi: 10.1016/S0272-8842(02)00100-9.
  • [16] E. M. Hamzawy, A. A. El-Kheshen, and M. F. Zawrah, “Densification and properties of glass/cordierite composites,” Ceramics International, vol. 31, no. 3, pp. 383–389, 2005, doi: 10.1016/j.ceramint.2004.06.003.
  • [17] X. Zhu, H. Mao, F. Wang, R. Liang, X. Chen, Z. Liu, W. Zhang, and W. Li, “Preparation of a CaO–Al₂O₃–B₂O₃–SiO₂ glass/Al₂O₃ LTCC substrate material with high flexural strength for microwave application,” Journal of Materials Science: Materials in Electronics, vol. 34, pp. 1125–1135, 2023, doi: 10.1007/s10854-023-10541-4.

Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi

Yıl 2025, Cilt: 11 Sayı: 2, 562 - 571, 29.12.2025
https://doi.org/10.29132/ijpas.1760862

Öz

Mikrodalga kablosuz iletişim sistemlerinde artan ihtiyaçlar doğrultusunda, hafif, kompakt, düşük maliyetli ve yüksek performanslı seramik tabanlı malzemelerin ge-liştirilmesi kritik hale gelmiştir. Bu bağlamda, düşük sıcaklıkta birlikte sinterlenen se-ramikler (LTCC), başta kablosuz iletişim, otomotiv elektroniği ve tıbbi cihazlar olmak üzere birçok yüksek frekanslı uygulamada önemli avantajlar sunmaktadır. Bu ça-lışmada, düşük sinterleme sıcaklıklarında yoğunlaşma sağlayabilecek cam/seramik kompozitler geliştirmek amacıyla, düşük alkali içerikli borosilikat cam, alümina (Al₂O₃) ve kordiyerit tozları kullanılmıştır. Hazırlanan üç farklı kompozit formülasyonu, şerit döküm yöntemiyle şekillendirilmiş ve 800, 850 ve 900 °C’de 1 saat sinterlenmiştir. Mikroyapısal karakterizasyonlar taramalı elektron mikroskobu (SEM) ve X-ışını kı-rınımı (XRD) ile gerçekleştirilmiş, dielektrik ve termal özellikler ölçülmüştür. Elde edilen bulgulara göre, tüm kompozitler 850 °C’de maksimum yoğunluklarına ulaşmış ve bu sıcaklık LTCC uygulamaları için optimum sinterleme sıcaklığı olarak belirlenmiştir. Alümina içeriği yüksek olan G6A4 kompoziti, en yüksek yoğunluğu (2.39 g/cm³) ve en iyi termal iletkenlik değerini (4.4 W/mK) sergileyerek, ısı yönetimi gerektiren mikroe-lektronik uygulamalar için uygun bir aday olduğunu göstermiştir. Buna karşılık, kor-diyerit içeriği yüksek olan G6A1K3 kompoziti, daha düşük yoğunluk ve termal ilet-kenlik göstermesine rağmen, 1 MHz frekansında 5 değerinde dielektrik sabiti ve 0.0011 gibi çok düşük bir dielektrik kayıp sunarak yüksek frekanslı elektronik uygulamalarda elektriksel performans açısından öne çıkmıştır.

Kaynakça

  • [1] H. Y. Hongtao, K. J. Kui, J. L. Jingsong, and Y. L. Yingzhong, “Tape casting and dielectric properties of SiO₂-filled glass composite ceramic with an ultra-low sintering temperature,” Journal of Materials Science: Materials in Electronics, vol. 25, no. 11, pp. 5114–5118, 2014, doi: 10.1007/s10854-014-2280-9.
  • [2] M. T. Sebastian and H. Jantunen, “Low loss dielectric materials for LTCC applications: a review,” International Materials Reviews, vol. 53, no. 2, pp. 57–90, 2013, doi: 10.1179/174328008X277524.
  • [3] D. Thomas, P. Abhilash, and M. T. Sebastian, “Casting and characterization of LiMgPO₄ glass-free LTCC tape for microwave applications,” Journal of the European Ceramic Society, vol. 33, pp. 87–93, 2013, doi: 10.1016/j.jeurceramsoc.2012.08.002.
  • [4] Y. Zhang, Y. Lu, Y. Shan, J. Wang, J. Feng, and H. Zhou, “Sintering behaviors, microstructures, and dielectric properties of CaO–Al₂O₃–B₂O₃–SiO₂/Ba(Mg₁/₃Nb₂/₃)O₃ composites for LTCC applications,” Journal of Materials Science: Materials in Electronics, vol. 35, no. 1, p. 96, 2024, doi: 10.1007/s10854-023-11799-4.
  • [5] F. Wang, Y. Lou, Z. J. Li, Y. Lu, Z. W. Dong, and W. Lu, “Improved flexural strength and dielectric loss in Al₂O₃-based LTCC with La₂O₃–CaO–B₂O₃–SiO₂ glass,” Ceramics Interna-tional, vol. 47, no. 7, pp. 9955–9960, 2021, doi: 10.1016/j.ceramint.2020.12.140.
  • [6] X. Luo, L. Ren, Y. Xia, Y. Hu, W. Gong, M. Cai, and H. Zhou, “Microstructure, sinterability and properties of CaO–B₂O₃–SiO₂ glass/Al₂O₃ composites for LTCC applications,” Ceramics International, vol. 43, no. 9, pp. 6791–6795, 2017, doi: 10.1016/j.ceramint.2017.02.096.
  • [7] F. Ebrahimi, A. Nemati, and S. Banijamali, “Fabrication and microwave dielectric charac-terization of cordierite/BZBS (Bi₂O₃–ZnO–B₂O₃–SiO₂) glass composites for LTCC applica-tions,” Journal of Alloys and Compounds, vol. 882, p. 160722, 2021, doi: 10.1016/j.jallcom.2021.160722.
  • [8] I. J. Induja, K. P. Surendran, M. R. Varma, and M. T. Sebastian, “Low κ, low loss alumina–glass composite with low CTE for LTCC microelectronic applications,” Ceramics International, vol. 43, no. 1, pp. 736–740, 2017, doi: 10.1016/j.ceramint.2016.10.002.
  • [9] G. M. Dursun and C. Duran, “Glass alumina composites for functional and structural appli-cations,” Ceramics International, vol. 45, no. 9, pp. 12550–12557, 2019, doi: 10.1016/j.ceramint.2019.03.194.
  • [10] H. Jantunen and A. Novel, Low Temperature Co-firing Ceramic (LTCC): Material for Telecommunication Devices, 2001.
  • [11] O. Bilaç, G. M. Dursun, and C. Duran, “Processing and properties of nano-hBN-added glass/ceramic composites for low-temperature co-fired ceramic applications,” Journal of the Korean Ceramic Society, vol. 59, pp. 383–391, 2022, doi: 10.1007/s43207-021-00185-7.
  • [12] L. Song, J. Wu, Z. Li, X. Hao, and Y. Yu, “Crystallization mechanisms and properties of α-cordierite glass–ceramics from K₂O–MgO–Al₂O₃–SiO₂ glasses,” Journal of Non-Crystalline Solids, vol. 419, pp. 16–26, 2015, doi: 10.1016/j.jnoncrysol.2015.03.023.
  • [13] S. Wang, H. Zhou, and L. Luo, “Sintering and crystallization of cordierite glass ceramics for high-frequency multilayer chip inductors,” Materials Research Bulletin, vol. 38, no. 8, pp. 1367–1374, 2003, doi: 10.1016/S0025-5408(03)00138-7.
  • [14] P. X. Zhang, L. Gao, Q. H. Yuan, H. L. Peng, X. Z. Ren, and D. Y. Zhang, “Crystallization behavior and performance of MgO–Al₂O₃–SiO₂ glass-ceramics by sintering,” Advanced Materials Research, vol. 92, pp. 65–71, 2010, doi: 10.4028/www.scientific.net/AMR.92.65
  • [15] M. A. Camerucci, G. Urretavizcaya, and A. L. Cavalieri, “Sintering of cordierite-based ma-terials,” Ceramics International, vol. 29, no. 2, pp. 159–168, 2003, doi: 10.1016/S0272-8842(02)00100-9.
  • [16] E. M. Hamzawy, A. A. El-Kheshen, and M. F. Zawrah, “Densification and properties of glass/cordierite composites,” Ceramics International, vol. 31, no. 3, pp. 383–389, 2005, doi: 10.1016/j.ceramint.2004.06.003.
  • [17] X. Zhu, H. Mao, F. Wang, R. Liang, X. Chen, Z. Liu, W. Zhang, and W. Li, “Preparation of a CaO–Al₂O₃–B₂O₃–SiO₂ glass/Al₂O₃ LTCC substrate material with high flexural strength for microwave application,” Journal of Materials Science: Materials in Electronics, vol. 34, pp. 1125–1135, 2023, doi: 10.1007/s10854-023-10541-4.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliğinde Seramik
Bölüm Araştırma Makalesi
Yazarlar

Derya Kırsever 0000-0002-6729-511X

Gönderilme Tarihi 8 Ağustos 2025
Kabul Tarihi 16 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Kırsever, D. (2025). Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences, 11(2), 562-571. https://doi.org/10.29132/ijpas.1760862
AMA Kırsever D. Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences. Aralık 2025;11(2):562-571. doi:10.29132/ijpas.1760862
Chicago Kırsever, Derya. “Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi”. International Journal of Pure and Applied Sciences 11, sy. 2 (Aralık 2025): 562-71. https://doi.org/10.29132/ijpas.1760862.
EndNote Kırsever D (01 Aralık 2025) Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences 11 2 562–571.
IEEE D. Kırsever, “Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi”, International Journal of Pure and Applied Sciences, c. 11, sy. 2, ss. 562–571, 2025, doi: 10.29132/ijpas.1760862.
ISNAD Kırsever, Derya. “Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi”. International Journal of Pure and Applied Sciences 11/2 (Aralık2025), 562-571. https://doi.org/10.29132/ijpas.1760862.
JAMA Kırsever D. Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences. 2025;11:562–571.
MLA Kırsever, Derya. “Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi”. International Journal of Pure and Applied Sciences, c. 11, sy. 2, 2025, ss. 562-71, doi:10.29132/ijpas.1760862.
Vancouver Kırsever D. Düşük Sıcaklıkta Birlikte Sinterlenen Cam/Al₂O₃/Kordiyerit Esaslı LTCC Kompozitlerinin Termal ve Dielektrik Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences. 2025;11(2):562-71.