Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying

Yıl 2025, Cilt: 11 Sayı: 2, 572 - 587, 29.12.2025
https://doi.org/10.29132/ijpas.1766763

Öz

In this study, a modeling approach using infrared (IR) drying data of mixed-culture algae, an energy efficiency analysis of the drying process, and some surface proper-ties of the dried product were presented. New model equations derived from com-monly known drying models were applied to experimental data obtained from drying microalgal biomass at various temperatures ranging from 5 to 105 °C. Among these, the DM13 equation, based on the Newton model, best represented the drying behav-ior. The specific moisture extraction rate (SMER) and moisture extraction rate (MER) increased with higher drying temperatures, while, as expected, the specific energy consumption (SEC) decreased. According to the energy efficiency analysis, the IR drying method can be considered suitable for drying microalgal biomass. FT-IR re-sults indicated characteristic green algae peaks attributed to components such as carbohydrates, proteins, and cellulose–fatty acids. Peaks at 2900 cm⁻¹ and 3386 cm⁻¹ decreased with increasing drying temperature and disappeared at 105 °C. SEM imag-es showed that microalgal cells experienced shrinkage at 60 °C. Furthermore, while dried microalgal biomass exhibited a porous structure at 50 °C and 60 °C, pores were almost absent at 70 °C and 105 °C.

Kaynakça

  • [1] M. P. Devi, G. V. Subhash, and S. V. Mohan, "Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation," Renewable energy, vol. 43, pp. 276-283, 2012, doi: https://doi.org/10.1016/j.renene.2011.11.021.
  • [2] L. G.-R. M. Garcia-Garibay, A.E. Cruz-Guerrero, E. Barzana, "The Algae," in Encyclopedia of Food Microbiology vol. 3, C. A. B. a. M. L. Tortorello, Ed., ed: Academic Press, 2014, pp. 425-430.
  • [3] G. V. Subhash, M. Rohit, M. P. Devi, Y. Swamy, and S. V. Mohan, "Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater," Bioresource technology, vol. 169, pp. 789-793, 2014, doi: https://doi.org/10.1016/j.biortech.2014.07.019.
  • [4] R. Chandra, M. Rohit, Y. Swamy, and S. V. Mohan, "Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation," Bioresource technology, vol. 165, pp. 279-287, 2014, doi: https://doi.org/10.1016/j.biortech.2014.02.102.
  • [5] Y.-G. Y. Kuan-Yeow Show, Duu-Jong Lee, "Algal biomass harvesting and drying," in Biofuels from Algae, J.-S. C. Ashok Pandey, Carlos Ricardo Soccol, Duu-Jong Lee, Yusuf Chisti Ed., no. In Biomass, Biofuels, Biochemicals): Elsevier, 2019, pp. 135-166.
  • [6] B. Wang, Y. Li, N. Wu, and C. Q. Lan, "CO2 bio-mitigation using microalgae," Applied microbiology and biotechnology, vol. 79, no. 5, pp. 707-718, 2008, doi: https://doi.org/10.1007/s00253-008-1518-y.
  • [7] M. D. G. Guiry, G.M. "AlgaeBase." World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org (accessed 02 March 2021).
  • [8] Y. Dote, S. Sawayama, S. Inoue, T. Minowa, and S.-y. Yokoyama, "Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction," Fuel, vol. 73, no. 12, pp. 1855-1857, 1994, doi: https://doi.org/10.1016/0016-2361(94)90211-9.
  • [9] W. Peng, Q. Wu, and P. Tu, "Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production," Journal of Applied Phycology, vol. 13, no. 1, pp. 5-12, 2001, doi: https://doi.org/10.1023/A:1008153831875.
  • [10] T. M. Mata, A. A. Martins, and N. S. Caetano, "Microalgae for biodiesel production and other applications: a review," Renewable and sustainable energy reviews, vol. 14, no. 1, pp. 217-232, 2010, doi: https://doi.org/10.1016/j.rser.2009.07.020.
  • [11] M. Ö. Gülyurt, D. Özçimen, and B. Inan, "Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification," International journal of molecular sciences, vol. 17, no. 4, p. 579, 2016, doi: https://doi.org/10.3390/ijms17040579.
  • [12] T. Minowa and S. Sawayama, "A novel microalgal system for energy production with nitrogen cycling," Fuel, vol. 78, no. 10, pp. 1213-1215, 1999, doi: https://doi.org/10.1016/S0016-2361(99)00047-2.
  • [13] R. P. John, G. Anisha, K. M. Nampoothiri, and A. Pandey, "Micro and macroalgal biomass: a renewable source for bioethanol," Bioresource technology, vol. 102, no. 1, pp. 186-193, 2011, doi: https://doi.org/10.1016/j.biortech.2010.06.139.
  • [14] A. Dmytryk, Ł. Tuhy, and K. Chojnacka, "Algae as source of pharmaceuticals," in Prospects and Challenges in Algal Biotechnology: Springer, 2017, pp. 295-310.
  • [15] F. J. Barba, "Microalgae and seaweeds for food applications: Challenges and perspectives," Food Research International, vol. 99, no. 3, pp. 969-970, 2017, doi: https://doi.org/10.1016/j.foodres.2016.12.022.
  • [16] P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, "Commercial applications of microalgae," Journal of bioscience and bioengineering, vol. 101, no. 2, pp. 87-96, 2006, doi: https://doi.org/10.1263/jbb.101.87.
  • [17] O. Pulz and W. Gross, "Valuable products from biotechnology of microalgae," Applied microbiology and biotechnology, vol. 65, no. 6, pp. 635-648, 2004, doi: https://doi.org/10.1007/s00253-004-1647-x.
  • [18] M. C. Pina-Pérez, A. Rivas, A. Martínez, and D. Rodrigo, "Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food," Food chemistry, vol. 235, pp. 34-44, 2017, doi: https://doi.org/10.1016/j.foodchem.2017.05.033.
  • [19] C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review," Bioresource technology, vol. 102, no. 1, pp. 71-81, 2011, doi: https://doi.org/10.1016/j.biortech.2010.06.159.
  • [20] K.-Y. Show, D.-J. Lee, and J.-S. Chang, "Algal biomass dehydration," Biore source Technology, vol. 135, pp. 720-729, 2013, doi: https://doi.org/10.1016/j.biortech.2012.08.021.
  • [21] C.-L. Chen, J.-S. Chang, and D.-J. Lee, "Dewatering and drying methods for microalgae," Drying technology, vol. 33, no. 4, pp. 443-454, 2015, doi: https://doi.org/10.1080/07373937.2014.997881.
  • [22] A. S. Mujumdar and C. L. Law, "Drying technology: Trends and applications in postharvest processing," Food and Bioprocess Technology, vol. 3, no. 6, pp. 843-852, 2010, doi: https://doi.org/10.1007/s11947-010-0353-1.
  • [23] O. O. Agbede et al., "Thin layer drying of green microalgae (Chlorella sp.) paste biomass: drying characteristics, energy requirement and mathematical modeling," Bioresource Technology Reports, vol. 11, p. 100467, 2020, doi: https://doi.org/10.1016/j.biteb.2020.100467.
  • [24] J. Prakash, B. Pushparaj, P. Carlozzi, G. Torzillo, E. Montaini, and R. Materassi, "Microalgal Biomass Drying By a Simple Solar Device∗," International journal of solar energy, vol. 18, no. 4, pp. 303-311, 1997, doi: https://doi.org/10.1080/01425919708914325.
  • [25] H. Desmorieux and N. Decaen, "Convective drying of spirulina in thin layer," Journal of food engineering, vol. 66, no. 4, pp. 497-503, 2005, doi: https://doi.org/10.1016/j.jfoodeng.2005.05.060.
  • [26] A. Dissa, H. Desmorieux, P. Savadogo, B. Segda, and J. Koulidiati, "Shrinkage, porosity and density behaviour during convective drying of spirulina," Journal of food Engineering, vol. 97, no. 3, pp. 410-418, 2010, doi: https://doi.org/10.1016/j.jfoodeng.2009.10.036.
  • [27] R. A. Lemus, M. Pérez, A. Andrés, T. Roco, C. M. Tello, and A. Vega, "Kinetic study of dehydration and desorption isotherms of red alga Gracilaria," LWT-Food Science and Technology, vol. 41, no. 9, pp. 1592-1599, 2008, doi: https://doi.org/10.1016/j.lwt.2007.10.011.
  • [28] C. Tello-Ireland, R. Lemus-Mondaca, A. Vega-Gálvez, J. López, and K. Di Scala, "Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis," LWT-Food Science and Technology, vol. 44, no. 10, pp. 2112-2118, 2011, doi: https://doi.org/10.1016/j.lwt.2011.06.008.
  • [29] A. Vega-Gálvez, A. Ayala-Aponte, E. Notte, L. d. l. Fuente, and R. Lemus-Mondaca, "Mathematical modeling of mass transfer during convective dehydration of brown algae Macrocystis pyrifera," Drying Technology, vol. 26, no. 12, pp. 1610-1616, 2008, doi: https://doi.org/10.1080/07373930802467532.
  • [30] R. Moreira, F. Chenlo, J. Sineiro, M. Sánchez, and S. Arufe, "Water sorption isotherms and air drying kinetics modelling of the brown seaweed Bifurcaria bifurcata," Journal of applied phycology, vol. 28, no. 1, pp. 609-618, 2016, doi: https://doi.org/10.1007/s10811-015-0553-1.
  • [31] H. Hosseinizand, S. Sokhansanj, and C. J. Lim, "Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics," Drying Technology, vol. 36, no. 9, pp. 1049-1060, 2018, doi: https://doi.org/10.1080/07373937.2017.1369986.
  • [32] T. Simioni, M. B. Quadri, and R. B. Derner, "Drying of Scenedesmus obliquus: Experimental and modeling study," Algal Research, vol. 39, p. 101428, 2019, doi: https://doi.org/10.1016/j.algal.2019.101428.
  • [33] R. C. Villagracia et al., "Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production," Clean technologies and environmental policy, vol. 18, no. 8, pp. 2441-2451, 2016, doi: https://doi.org/10.1007/s10098-016-1169-0.
  • [34] M. Kalender and A. Yazıcıoğlu, "Investigation Of Infrared Drying Of Mixed Algae Culture," International Conference on Advances and Innovations in Engineering (ICAIE), vol. Elazığ, Turkey, 2017.
  • [35] E. Taşkan, "Effect of tetracycline antibiotics on performance and microbial community of algal photo-bioreactor," Applied biochemistry and biotechnology, vol. 179, no. 6, pp. 947-958, 2016, doi: https://doi.org/10.1007/s12010-016-2042-7.
  • [36] E. Taşkan, "Performance of mixed algae for treatment of slaughterhouse wastewater and microbial community analysis," Environmental Science and Pollution Research, vol. 23, no. 20, pp. 20474-20482, 2016, doi: https://doi.org/10.1007/s11356-016-7241-9.
  • [37] M. A. Tedesco and E. O. Duerr, "Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928," Journal of Applied Phycology, vol. 1, no. 3, pp. 201-209, 1989, doi: https://doi.org/10.1007/BF00003646.
  • [38] H. Toğrul, "Suitable drying model for infrared drying of carrot," Journal of food engineering, vol. 77, no. 3, pp. 610-619, 2006, doi: https://doi.org/10.1016/j.jfoodeng.2005.07.020.
  • [39] K. Altay, A. A. Hayaloglu, and S. N. Dirim, "Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods," Heat and Mass Transfer, vol. 55, no. 8, pp. 2173-2184, 2019, doi: https://doi.org/10.1007/s00231-019-02570-9.
  • [40] Z. Erbay and F. Icier, "A review of thin layer drying of foods: theory, modeling, and experimental results," Critical reviews in food science and nutrition, vol. 50, no. 5, pp. 441-464, 2010, doi: https://doi.org/10.1080/10408390802437063.
  • [41] B. Behera and P. Balasubramanian, "Experimental and modelling studies of convective and microwave drying kinetics for microalgae," Bioresource Technology, vol. 340, p. 125721, 2021, doi: https://doi.org/10.1016/j.biortech.2021.125721.
  • [42] I. D. Boateng, D. A. Soetanto, X. M. Yang, C. Zhou, F. K. Saalia, and F. Li, "Effect of pulsed‐vacuum, hot‐air, infrared, and freeze‐drying on drying kinetics, energy efficiency, and physicochemical properties of Ginkgo biloba L. seed," Journal of Food Process Engineering, vol. 44, no. 4, p. e13655, 2021, doi: https://doi.org/10.1111/jfpe.13655.
  • [43] M. Torki-Harchegani, D. Ghanbarian, A. G. Pirbalouti, and M. Sadeghi, "Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments," Renewable and Sustainable Energy Reviews, vol. 58, pp. 407-418, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.078.
  • [44] S. Kandasamy et al., "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, vol. 190, p. 116236, 2020, doi: https://doi.org/10.1016/j.energy.2019.116236.
  • [45] A. Bartošová, L. Blinová, and K. Gerulová, "Characterisation of polysacharides and lipids from selected green algae species by FTIR-ATR spectroscopy," Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol, vol. 23, no. 36, pp. 97-102, 2015, doi: https://doi.org/10.1515/rput-2015-0011.
  • [46] H. Nigam, A. Malik, and V. Singh, "A novel nanoemulsion-based microalgal growth medium for enhanced biomass production," Biotechnology for Biofuels, vol. 14, no. 1, pp. 1-18, 2021, doi: https://doi.org/10.1186/s13068-021-01960-8.
  • [47] I. Ponnuswamy, S. Madhavan, and S. Shabudeen, "Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production," International Journal of Bio-Science and Bio-Technology, vol. 5, no. 2, pp. 17-26, 2013.
  • [48] T. Viswanathan, S. Mani, K. Das, S. Chinnasamy, and A. Bhatnagar, "Drying characteristics of a microalgae consortium developed for biofuels production," Transactions of the ASABE, vol. 54, no. 6, pp. 2245-2252, 2011, doi: https://doi.org/10.13031/2013.40637.
  • [49] S. Jazzar et al., "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, vol. 148, pp. 210-219, 2015, doi: https://doi.org/10.1016/j.apenergy.2015.03.069.

Kızılötesi Kurutma Yöntemi ile Karışık Kültür Mikroalg Biyokütlesinin Kurutulmasında Uygun Modelin ve Enerji Verimliliğinin Belirlenmesi

Yıl 2025, Cilt: 11 Sayı: 2, 572 - 587, 29.12.2025
https://doi.org/10.29132/ijpas.1766763

Öz

Bu çalışmada, karışık kültür alglerinin kızılötesi kurutma (IR) verileri kullanılarak modelleme yaklaşımı, kuruma sürecinin enerji verimlilik analizi ve kuru ürünün bazı yüzey özellikleri sunuldu. Yaygın olarak bilinen kurutma model denklemlerinden tü-retilen yeni model denklemleri mikroalg biyokütlesinin 5-105 °C aralığında farklı sıcaklıklarda kurutulması ile elde edilen deneysel verilere uygulandı. Sonuçta bu denklemlerden Newton modelini esas alan DM13 denkleminin verileri en iyi temsil eden denklem olduğu görüldü. Spesifik nem çekme hızı (SMER) ve nem çekme hızı (MER) değerleri IR kurutucuda kurutma sıcaklığındaki artma ile arttı. Beklendiği üzere, kurutma sıcaklığındaki artmaya bağlı olarak spesifik enerji tüketim değeri (SEC) azaldı. Enerji verimlilik analizlerine göre IR kurutma yönteminin mikroalg biyokütlesinin kurutulması için uygun bir yöntem olduğu söylenebilir. FT-IR sonuçları, kurutulmuş karışık kültür alg örneklerinin karbonhidrat, protein ve selüloz-yağ asidi gibi bileşenlerinden kaynaklanan tipik yeşil alg piklerine işaret etmektedir. 2900 ve 3386 cm-1 noktasındaki pikler artan kurutma sıcaklığı ile azalmaktadır ve 105 °C’ de görülmemektedir. SEM resimlerine göre, 60 °C’ de mikroalg hücrelerinde bir büzül-menin meydana geldiği görülmektedir. Ayrıca, kurutulmuş mikroalg biyokütlesinin 50 ve 60 °C kurutma sıcaklıklarında gözenekli bir yapıya sahip iken 70 ve 105 °C sıcaklıklarında gözeneklerin neredeyse mevcut olmadığı sonucuna varıldı.

Kaynakça

  • [1] M. P. Devi, G. V. Subhash, and S. V. Mohan, "Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation," Renewable energy, vol. 43, pp. 276-283, 2012, doi: https://doi.org/10.1016/j.renene.2011.11.021.
  • [2] L. G.-R. M. Garcia-Garibay, A.E. Cruz-Guerrero, E. Barzana, "The Algae," in Encyclopedia of Food Microbiology vol. 3, C. A. B. a. M. L. Tortorello, Ed., ed: Academic Press, 2014, pp. 425-430.
  • [3] G. V. Subhash, M. Rohit, M. P. Devi, Y. Swamy, and S. V. Mohan, "Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater," Bioresource technology, vol. 169, pp. 789-793, 2014, doi: https://doi.org/10.1016/j.biortech.2014.07.019.
  • [4] R. Chandra, M. Rohit, Y. Swamy, and S. V. Mohan, "Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation," Bioresource technology, vol. 165, pp. 279-287, 2014, doi: https://doi.org/10.1016/j.biortech.2014.02.102.
  • [5] Y.-G. Y. Kuan-Yeow Show, Duu-Jong Lee, "Algal biomass harvesting and drying," in Biofuels from Algae, J.-S. C. Ashok Pandey, Carlos Ricardo Soccol, Duu-Jong Lee, Yusuf Chisti Ed., no. In Biomass, Biofuels, Biochemicals): Elsevier, 2019, pp. 135-166.
  • [6] B. Wang, Y. Li, N. Wu, and C. Q. Lan, "CO2 bio-mitigation using microalgae," Applied microbiology and biotechnology, vol. 79, no. 5, pp. 707-718, 2008, doi: https://doi.org/10.1007/s00253-008-1518-y.
  • [7] M. D. G. Guiry, G.M. "AlgaeBase." World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org (accessed 02 March 2021).
  • [8] Y. Dote, S. Sawayama, S. Inoue, T. Minowa, and S.-y. Yokoyama, "Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction," Fuel, vol. 73, no. 12, pp. 1855-1857, 1994, doi: https://doi.org/10.1016/0016-2361(94)90211-9.
  • [9] W. Peng, Q. Wu, and P. Tu, "Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production," Journal of Applied Phycology, vol. 13, no. 1, pp. 5-12, 2001, doi: https://doi.org/10.1023/A:1008153831875.
  • [10] T. M. Mata, A. A. Martins, and N. S. Caetano, "Microalgae for biodiesel production and other applications: a review," Renewable and sustainable energy reviews, vol. 14, no. 1, pp. 217-232, 2010, doi: https://doi.org/10.1016/j.rser.2009.07.020.
  • [11] M. Ö. Gülyurt, D. Özçimen, and B. Inan, "Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification," International journal of molecular sciences, vol. 17, no. 4, p. 579, 2016, doi: https://doi.org/10.3390/ijms17040579.
  • [12] T. Minowa and S. Sawayama, "A novel microalgal system for energy production with nitrogen cycling," Fuel, vol. 78, no. 10, pp. 1213-1215, 1999, doi: https://doi.org/10.1016/S0016-2361(99)00047-2.
  • [13] R. P. John, G. Anisha, K. M. Nampoothiri, and A. Pandey, "Micro and macroalgal biomass: a renewable source for bioethanol," Bioresource technology, vol. 102, no. 1, pp. 186-193, 2011, doi: https://doi.org/10.1016/j.biortech.2010.06.139.
  • [14] A. Dmytryk, Ł. Tuhy, and K. Chojnacka, "Algae as source of pharmaceuticals," in Prospects and Challenges in Algal Biotechnology: Springer, 2017, pp. 295-310.
  • [15] F. J. Barba, "Microalgae and seaweeds for food applications: Challenges and perspectives," Food Research International, vol. 99, no. 3, pp. 969-970, 2017, doi: https://doi.org/10.1016/j.foodres.2016.12.022.
  • [16] P. Spolaore, C. Joannis-Cassan, E. Duran, and A. Isambert, "Commercial applications of microalgae," Journal of bioscience and bioengineering, vol. 101, no. 2, pp. 87-96, 2006, doi: https://doi.org/10.1263/jbb.101.87.
  • [17] O. Pulz and W. Gross, "Valuable products from biotechnology of microalgae," Applied microbiology and biotechnology, vol. 65, no. 6, pp. 635-648, 2004, doi: https://doi.org/10.1007/s00253-004-1647-x.
  • [18] M. C. Pina-Pérez, A. Rivas, A. Martínez, and D. Rodrigo, "Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food," Food chemistry, vol. 235, pp. 34-44, 2017, doi: https://doi.org/10.1016/j.foodchem.2017.05.033.
  • [19] C.-Y. Chen, K.-L. Yeh, R. Aisyah, D.-J. Lee, and J.-S. Chang, "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review," Bioresource technology, vol. 102, no. 1, pp. 71-81, 2011, doi: https://doi.org/10.1016/j.biortech.2010.06.159.
  • [20] K.-Y. Show, D.-J. Lee, and J.-S. Chang, "Algal biomass dehydration," Biore source Technology, vol. 135, pp. 720-729, 2013, doi: https://doi.org/10.1016/j.biortech.2012.08.021.
  • [21] C.-L. Chen, J.-S. Chang, and D.-J. Lee, "Dewatering and drying methods for microalgae," Drying technology, vol. 33, no. 4, pp. 443-454, 2015, doi: https://doi.org/10.1080/07373937.2014.997881.
  • [22] A. S. Mujumdar and C. L. Law, "Drying technology: Trends and applications in postharvest processing," Food and Bioprocess Technology, vol. 3, no. 6, pp. 843-852, 2010, doi: https://doi.org/10.1007/s11947-010-0353-1.
  • [23] O. O. Agbede et al., "Thin layer drying of green microalgae (Chlorella sp.) paste biomass: drying characteristics, energy requirement and mathematical modeling," Bioresource Technology Reports, vol. 11, p. 100467, 2020, doi: https://doi.org/10.1016/j.biteb.2020.100467.
  • [24] J. Prakash, B. Pushparaj, P. Carlozzi, G. Torzillo, E. Montaini, and R. Materassi, "Microalgal Biomass Drying By a Simple Solar Device∗," International journal of solar energy, vol. 18, no. 4, pp. 303-311, 1997, doi: https://doi.org/10.1080/01425919708914325.
  • [25] H. Desmorieux and N. Decaen, "Convective drying of spirulina in thin layer," Journal of food engineering, vol. 66, no. 4, pp. 497-503, 2005, doi: https://doi.org/10.1016/j.jfoodeng.2005.05.060.
  • [26] A. Dissa, H. Desmorieux, P. Savadogo, B. Segda, and J. Koulidiati, "Shrinkage, porosity and density behaviour during convective drying of spirulina," Journal of food Engineering, vol. 97, no. 3, pp. 410-418, 2010, doi: https://doi.org/10.1016/j.jfoodeng.2009.10.036.
  • [27] R. A. Lemus, M. Pérez, A. Andrés, T. Roco, C. M. Tello, and A. Vega, "Kinetic study of dehydration and desorption isotherms of red alga Gracilaria," LWT-Food Science and Technology, vol. 41, no. 9, pp. 1592-1599, 2008, doi: https://doi.org/10.1016/j.lwt.2007.10.011.
  • [28] C. Tello-Ireland, R. Lemus-Mondaca, A. Vega-Gálvez, J. López, and K. Di Scala, "Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis," LWT-Food Science and Technology, vol. 44, no. 10, pp. 2112-2118, 2011, doi: https://doi.org/10.1016/j.lwt.2011.06.008.
  • [29] A. Vega-Gálvez, A. Ayala-Aponte, E. Notte, L. d. l. Fuente, and R. Lemus-Mondaca, "Mathematical modeling of mass transfer during convective dehydration of brown algae Macrocystis pyrifera," Drying Technology, vol. 26, no. 12, pp. 1610-1616, 2008, doi: https://doi.org/10.1080/07373930802467532.
  • [30] R. Moreira, F. Chenlo, J. Sineiro, M. Sánchez, and S. Arufe, "Water sorption isotherms and air drying kinetics modelling of the brown seaweed Bifurcaria bifurcata," Journal of applied phycology, vol. 28, no. 1, pp. 609-618, 2016, doi: https://doi.org/10.1007/s10811-015-0553-1.
  • [31] H. Hosseinizand, S. Sokhansanj, and C. J. Lim, "Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics," Drying Technology, vol. 36, no. 9, pp. 1049-1060, 2018, doi: https://doi.org/10.1080/07373937.2017.1369986.
  • [32] T. Simioni, M. B. Quadri, and R. B. Derner, "Drying of Scenedesmus obliquus: Experimental and modeling study," Algal Research, vol. 39, p. 101428, 2019, doi: https://doi.org/10.1016/j.algal.2019.101428.
  • [33] R. C. Villagracia et al., "Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production," Clean technologies and environmental policy, vol. 18, no. 8, pp. 2441-2451, 2016, doi: https://doi.org/10.1007/s10098-016-1169-0.
  • [34] M. Kalender and A. Yazıcıoğlu, "Investigation Of Infrared Drying Of Mixed Algae Culture," International Conference on Advances and Innovations in Engineering (ICAIE), vol. Elazığ, Turkey, 2017.
  • [35] E. Taşkan, "Effect of tetracycline antibiotics on performance and microbial community of algal photo-bioreactor," Applied biochemistry and biotechnology, vol. 179, no. 6, pp. 947-958, 2016, doi: https://doi.org/10.1007/s12010-016-2042-7.
  • [36] E. Taşkan, "Performance of mixed algae for treatment of slaughterhouse wastewater and microbial community analysis," Environmental Science and Pollution Research, vol. 23, no. 20, pp. 20474-20482, 2016, doi: https://doi.org/10.1007/s11356-016-7241-9.
  • [37] M. A. Tedesco and E. O. Duerr, "Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928," Journal of Applied Phycology, vol. 1, no. 3, pp. 201-209, 1989, doi: https://doi.org/10.1007/BF00003646.
  • [38] H. Toğrul, "Suitable drying model for infrared drying of carrot," Journal of food engineering, vol. 77, no. 3, pp. 610-619, 2006, doi: https://doi.org/10.1016/j.jfoodeng.2005.07.020.
  • [39] K. Altay, A. A. Hayaloglu, and S. N. Dirim, "Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods," Heat and Mass Transfer, vol. 55, no. 8, pp. 2173-2184, 2019, doi: https://doi.org/10.1007/s00231-019-02570-9.
  • [40] Z. Erbay and F. Icier, "A review of thin layer drying of foods: theory, modeling, and experimental results," Critical reviews in food science and nutrition, vol. 50, no. 5, pp. 441-464, 2010, doi: https://doi.org/10.1080/10408390802437063.
  • [41] B. Behera and P. Balasubramanian, "Experimental and modelling studies of convective and microwave drying kinetics for microalgae," Bioresource Technology, vol. 340, p. 125721, 2021, doi: https://doi.org/10.1016/j.biortech.2021.125721.
  • [42] I. D. Boateng, D. A. Soetanto, X. M. Yang, C. Zhou, F. K. Saalia, and F. Li, "Effect of pulsed‐vacuum, hot‐air, infrared, and freeze‐drying on drying kinetics, energy efficiency, and physicochemical properties of Ginkgo biloba L. seed," Journal of Food Process Engineering, vol. 44, no. 4, p. e13655, 2021, doi: https://doi.org/10.1111/jfpe.13655.
  • [43] M. Torki-Harchegani, D. Ghanbarian, A. G. Pirbalouti, and M. Sadeghi, "Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments," Renewable and Sustainable Energy Reviews, vol. 58, pp. 407-418, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.078.
  • [44] S. Kandasamy et al., "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, vol. 190, p. 116236, 2020, doi: https://doi.org/10.1016/j.energy.2019.116236.
  • [45] A. Bartošová, L. Blinová, and K. Gerulová, "Characterisation of polysacharides and lipids from selected green algae species by FTIR-ATR spectroscopy," Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol, vol. 23, no. 36, pp. 97-102, 2015, doi: https://doi.org/10.1515/rput-2015-0011.
  • [46] H. Nigam, A. Malik, and V. Singh, "A novel nanoemulsion-based microalgal growth medium for enhanced biomass production," Biotechnology for Biofuels, vol. 14, no. 1, pp. 1-18, 2021, doi: https://doi.org/10.1186/s13068-021-01960-8.
  • [47] I. Ponnuswamy, S. Madhavan, and S. Shabudeen, "Isolation and characterization of green microalgae for carbon sequestration, waste water treatment and bio-fuel production," International Journal of Bio-Science and Bio-Technology, vol. 5, no. 2, pp. 17-26, 2013.
  • [48] T. Viswanathan, S. Mani, K. Das, S. Chinnasamy, and A. Bhatnagar, "Drying characteristics of a microalgae consortium developed for biofuels production," Transactions of the ASABE, vol. 54, no. 6, pp. 2245-2252, 2011, doi: https://doi.org/10.13031/2013.40637.
  • [49] S. Jazzar et al., "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, vol. 148, pp. 210-219, 2015, doi: https://doi.org/10.1016/j.apenergy.2015.03.069.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ayırma İşlemleri, Kütle Transferi, Kurutma Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Kalender 0000-0002-8932-8840

Hakan Yoğurtçu 0000-0001-7404-5533

Gönderilme Tarihi 24 Ağustos 2025
Kabul Tarihi 16 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Kalender, M., & Yoğurtçu, H. (2025). Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying. International Journal of Pure and Applied Sciences, 11(2), 572-587. https://doi.org/10.29132/ijpas.1766763
AMA Kalender M, Yoğurtçu H. Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying. International Journal of Pure and Applied Sciences. Aralık 2025;11(2):572-587. doi:10.29132/ijpas.1766763
Chicago Kalender, Mehmet, ve Hakan Yoğurtçu. “Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying”. International Journal of Pure and Applied Sciences 11, sy. 2 (Aralık 2025): 572-87. https://doi.org/10.29132/ijpas.1766763.
EndNote Kalender M, Yoğurtçu H (01 Aralık 2025) Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying. International Journal of Pure and Applied Sciences 11 2 572–587.
IEEE M. Kalender ve H. Yoğurtçu, “Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying”, International Journal of Pure and Applied Sciences, c. 11, sy. 2, ss. 572–587, 2025, doi: 10.29132/ijpas.1766763.
ISNAD Kalender, Mehmet - Yoğurtçu, Hakan. “Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying”. International Journal of Pure and Applied Sciences 11/2 (Aralık2025), 572-587. https://doi.org/10.29132/ijpas.1766763.
JAMA Kalender M, Yoğurtçu H. Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying. International Journal of Pure and Applied Sciences. 2025;11:572–587.
MLA Kalender, Mehmet ve Hakan Yoğurtçu. “Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying”. International Journal of Pure and Applied Sciences, c. 11, sy. 2, 2025, ss. 572-87, doi:10.29132/ijpas.1766763.
Vancouver Kalender M, Yoğurtçu H. Determination of Suitable Drying Model and Energy Efficiency of Mixed Culture Microalgal Biomass by Infrared Drying. International Journal of Pure and Applied Sciences. 2025;11(2):572-87.