The Influence of DNA Solution on Dipole Antenna Purcell Factor Spectra
Yıl 2021,
Cilt: 7 Sayı: 1, 27 - 31, 30.06.2021
Olcay Yiğit
Fadıl Kuyucuoğlu
,
Yavuz Öztürk
Öz
In this study, deoxyribonucleic acid (DNA) solution effect on the Purcell factor of an electric dipole antenna was analyzed. Any antenna tuned to a resonance can be described as a radiator, and the effect of the environment on its radiation can be defined as Purcell factor. It is possible to determine the Purcell factor in terms of the real part of the antenna input impedance. Therefore, the Purcell factor of an antenna in the presence of pure water and DNA solution was calculated through measuring the input impedance of a dipole antenna with resonance frequency of 9.6-11.6 GHz. The Purcell factor of the antenna was measured and analyzed in the frequency range 5-16 GHz for the samples placed at 5 mm to 20 mm from the antenna. The frequency bands where the maximum DNA sensitivity of Purcell factor occurs were determined.
Kaynakça
- Acuna, G. P., Möller, F. M., Holzmeister, P., Beater, S., Lalkens B., Tinnefeld P., 2012. Fluorescence enhancement at docking sites of dna-directed self-assembled nanoantennas. Science, 338:506–510
- Bukhari, M. H., Batool, S., Raza, D. Y., Bagasra, O., Rizvi, A., Shah, A., Sultan, T., 2018. DNA electromagnetic properties and interactions-An investigation on intrinsic bioelectromagnetism within DNA. Electromagnetic biology and medicine, 37(3)169-174.
- Chao, J., Zhu, D., Zhang, Y., Wang, L., Fan, C., 2016. DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, 76:68-79.
- Cui, Y., Li, J., Cao, W., Wang, P., 2014. Highly sensitive RF detection and analysis of DNA solutions. In 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, Florida, USA, June 1-6.
- Ermilova, E., Bier, F. F., Hölzel, R., 2014. Dielectric measurements of aqueous DNA solutions up to 110 GHz. Physical Chemistry Chemical Physics, 16(23):11256-11264.
- Kaushal, S., Nanda, S. S., Samal, S., Yi, D. K., 2020. Strategies for the Development of Metallic Nanoparticle Based Label Free Biosensors and Their Biomedical Applications. ChemBioChem, 21(5): 576-600.
- Krasnok, A. E. , Slobozhanyuk, A. P. , Simovski, C. R., Tretyakov, S. A., Poddubny, A. N., Miroshnihenko, A.E. , Kivshar, Y. S. and Belov, P.A., 2015. Revising of the Purcell effect in periodic metal-dielectric structures the role of absorption. Scientific Reports, 9(1):1-9.
- Lee, H. J., Lee, H. S., Yoo, K. H., Yook, J. G., 2010. DNA sensing using split-ring resonator alone at microwave regime. Journal of Applied Physics, 108(1):014908.
- Martin B. , Reba G., 2011. DNA is a fractal antenna in electromagnetic fields. International Journal of Radiation Biology,87:409-415
- Mehrotra, P., Chatterjee, B., Sen, S., 2019. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors, 19(5):1013.
- Purcell, E.M.,1946. Spontaneous emission probabilities at radio frequencies. Physical Review, 69:681.
- Sakamoto, M., Hayakawa, R., Wada, Y., 1979. Dielectric relaxation of DNA solutions. III. Effects of DNA concentration, protein contamination, and mixed solvents. Biopolymers: Original Research on Biomolecules, 18(11): 2769-2782.
- Sönmezoğlu, S. ,Sönmezoğlu, Ö.,Çankaya, G.,Yıldırım, A., Serin, N., 2010. Electrical characteristics of DNA-based metal-insulator-semiconductor structures. Journal of Applied Physics, 107(12):124518.
- Webb, S. J., Booth, A. D., 1969. Absorption of microwaves by microorganisms. Nature, 222(5199):1199-1200.
Yıl 2021,
Cilt: 7 Sayı: 1, 27 - 31, 30.06.2021
Olcay Yiğit
Fadıl Kuyucuoğlu
,
Yavuz Öztürk
Kaynakça
- Acuna, G. P., Möller, F. M., Holzmeister, P., Beater, S., Lalkens B., Tinnefeld P., 2012. Fluorescence enhancement at docking sites of dna-directed self-assembled nanoantennas. Science, 338:506–510
- Bukhari, M. H., Batool, S., Raza, D. Y., Bagasra, O., Rizvi, A., Shah, A., Sultan, T., 2018. DNA electromagnetic properties and interactions-An investigation on intrinsic bioelectromagnetism within DNA. Electromagnetic biology and medicine, 37(3)169-174.
- Chao, J., Zhu, D., Zhang, Y., Wang, L., Fan, C., 2016. DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, 76:68-79.
- Cui, Y., Li, J., Cao, W., Wang, P., 2014. Highly sensitive RF detection and analysis of DNA solutions. In 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, Florida, USA, June 1-6.
- Ermilova, E., Bier, F. F., Hölzel, R., 2014. Dielectric measurements of aqueous DNA solutions up to 110 GHz. Physical Chemistry Chemical Physics, 16(23):11256-11264.
- Kaushal, S., Nanda, S. S., Samal, S., Yi, D. K., 2020. Strategies for the Development of Metallic Nanoparticle Based Label Free Biosensors and Their Biomedical Applications. ChemBioChem, 21(5): 576-600.
- Krasnok, A. E. , Slobozhanyuk, A. P. , Simovski, C. R., Tretyakov, S. A., Poddubny, A. N., Miroshnihenko, A.E. , Kivshar, Y. S. and Belov, P.A., 2015. Revising of the Purcell effect in periodic metal-dielectric structures the role of absorption. Scientific Reports, 9(1):1-9.
- Lee, H. J., Lee, H. S., Yoo, K. H., Yook, J. G., 2010. DNA sensing using split-ring resonator alone at microwave regime. Journal of Applied Physics, 108(1):014908.
- Martin B. , Reba G., 2011. DNA is a fractal antenna in electromagnetic fields. International Journal of Radiation Biology,87:409-415
- Mehrotra, P., Chatterjee, B., Sen, S., 2019. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors, 19(5):1013.
- Purcell, E.M.,1946. Spontaneous emission probabilities at radio frequencies. Physical Review, 69:681.
- Sakamoto, M., Hayakawa, R., Wada, Y., 1979. Dielectric relaxation of DNA solutions. III. Effects of DNA concentration, protein contamination, and mixed solvents. Biopolymers: Original Research on Biomolecules, 18(11): 2769-2782.
- Sönmezoğlu, S. ,Sönmezoğlu, Ö.,Çankaya, G.,Yıldırım, A., Serin, N., 2010. Electrical characteristics of DNA-based metal-insulator-semiconductor structures. Journal of Applied Physics, 107(12):124518.
- Webb, S. J., Booth, A. D., 1969. Absorption of microwaves by microorganisms. Nature, 222(5199):1199-1200.