Alışveriş Sepetlerinin İnsan Eklemleri Üzerindeki Kuvvet Dağılımının Sonlu Elemanlar Analizi
Yıl 2022,
Cilt: 8 Sayı: 1, 111 - 116, 30.06.2022
Adil Kılınç
,
Tarık Akgül
,
Uğur Kemiklioğlu
,
Ahmet Zafer Şenalp
Öz
Alışveriş sepetleri alışveriş kullanımında önemli bir özellik taşımaktadır. Günümüzde kullanılan alışveriş sepetleri arasında farklılıklar vardır. Bu farklılıkların en belirgin olanı; bazı arabaların yalnızca öndeki iki tekeri serbest döner iken, arkadaki iki tekerleğin sabit olması; bazı arabaların dört serbest döner tekerleğe sahip olmasıdır. Bu çalışmada, alışveriş sepetlerindeki bu farklılığın farklı koşullar altında insan vücudunun eklemleri üzerindeki etkileri mekanik analiz yazılımı kullanılarak simülasyonu yapılmış ve elde edilen sonuçlar karşılaştırılmıştır. Sonuç olarak; Avrupa ülkelerinde çoğunlukla kullanılan dört serbest tekerlekli alışveriş arabalarının, düz giderken, diğer iki serbest tekerlekli alışveriş arabalarına göre daha fazla kuvvete ihtiyaç duyduğu ve dönme durumunda daha az kuvvete ihtiyaç duyduğu tespit edilmiştir. Ayrıca bu kuvvetler, yer çekimi ihmal edilerek, insan modeline uygulandığında eklemlerde meydana gelen reaksiyon kuvvetlerinin birbirine yakın olduğu tespit edilmiştir.
Kaynakça
- ASTM F2372-15: 2021. Standard Consumer Safety Performance Specification for Shopping Carts.
- BS EN 1929-1: 1998. Basket trolleys. Requirements and tests for basket trolleys with or without a child carrying facility.
- Carter, D. R., Caler, W., Spencler, D. M. and Frankel, V. H. 2009. Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range. Acta orthop Scand, 52, 481490.
- Da Silva Vieira, S., Badke-Schaub, P., and Fernandes, A., 2015. Framework of Awareness: for the analysis of Ergonomics in Design, Procedia Manufacturing, 3: p. 5955-5962.
- Elise F.M., Ginu U.U., and Amira, I.H., 2018. Bone mechanical properties in healthy and diseased states, Orthopedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA, p.121.
- Gruben, K.G., and Boehm, W.L., 2012. Mechanical interaction of center of pressure and force direction in the upright human, Journal of Biomechanics, 45: p.1661-1665.
- Hulshof, C.T.J., Pega, F., Neupane, S., Colosio, C., Daams, J.G., Kc, P., Kuijer, P.P.F.M., Mandic-Rajcevic, S., Masci, F., van der Molen, H.F., Nygård, C.Y., Oakman, J., Proper, K.I., and Frings-Dresen, M.H.W., 2021. The effect of occupational exposure to ergonomic risk factors on osteoarthritis of hip or knee and selected other musculoskeletal diseases: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury, Environment International, 150: p.106349.
- Jain, B., Tony, A.R., Alphin, M.S., and Sri Krishnan, G., 2020. Analysis of upper body ergonomic parameters on commuter motorbike users, Journal of Transport & Health, 16: p.100826.
- Jones, J.H., 2009. The force of selection on the human life cycle, Evolution and Human Behavior, 30: p. 305-314.
Kashan J.S., and Ali S.M., 2019. Modeling and simulation for mechanical behavior of modified biocomposite for scaffold application, Ingeniería e Investigation, 39(1), p.63-75.
- Paul, G., and Wischniewski, S., 2012. Standardization of digital human models, Ergonomics, 55(9): p.1115-1118.
Pediatrics August, 2006. 118 (2) 825-827; DOI: https://doi.org/10.1542/peds.2006-1215
- Pinnel, R.A.M., Mashouri, P., Mazara, N., Weersink, E., Brown, S.H.M., and Power, G.A., 2019. Residual force enhancement and force depression in human single muscle fibers, Journal of Biomechanics, 91: p.164-169.
- Terry, P. and Wilson, N., 1978. The Cart That Changed the World: The Career of Sylvan N. Goldman, University of Oklahoma Press, 1978, p. 135.
- Tsui, F., and Pain, M.T.G., 2018. Muscle tension increases impact force but decreases energy absorption and pain during visco-elastic impacts to human thighs, Journal of Biomechanics, 67: p.123-128.
- Wolf, A., Miehling, J., and Wartzack, S., 2020. Challenges in interaction modelling with digital human models – A systematic literature review of interaction modelling approaches, Ergonomics, 63(11): p.1442-1458.
Finite element analysis of force distribution of shopping carts on human joints
Yıl 2022,
Cilt: 8 Sayı: 1, 111 - 116, 30.06.2022
Adil Kılınç
,
Tarık Akgül
,
Uğur Kemiklioğlu
,
Ahmet Zafer Şenalp
Öz
Shopping carts are essential parts used in shopping. There are differences between shopping carts used today. The most prominent of these differences is that some carts have only the front two free rolling wheels, the rear two wheels are fixed rolling wheels, and some carts have four free rolling wheels. In this study, the effects of this difference in shopping carts on joints of the human body under different conditions were simulated using analysis software and the results were compared. As a result, it has been determined that European style shopping carts with four free rolling wheels need more force when going straight than other type of shopping carts with two free rolling wheels and need less force in case of rotation. In addition, when these forces are applied on the human model and gravity is neglected, it has been determined that the reaction of the joints is close to each other.
Kaynakça
- ASTM F2372-15: 2021. Standard Consumer Safety Performance Specification for Shopping Carts.
- BS EN 1929-1: 1998. Basket trolleys. Requirements and tests for basket trolleys with or without a child carrying facility.
- Carter, D. R., Caler, W., Spencler, D. M. and Frankel, V. H. 2009. Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range. Acta orthop Scand, 52, 481490.
- Da Silva Vieira, S., Badke-Schaub, P., and Fernandes, A., 2015. Framework of Awareness: for the analysis of Ergonomics in Design, Procedia Manufacturing, 3: p. 5955-5962.
- Elise F.M., Ginu U.U., and Amira, I.H., 2018. Bone mechanical properties in healthy and diseased states, Orthopedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA, p.121.
- Gruben, K.G., and Boehm, W.L., 2012. Mechanical interaction of center of pressure and force direction in the upright human, Journal of Biomechanics, 45: p.1661-1665.
- Hulshof, C.T.J., Pega, F., Neupane, S., Colosio, C., Daams, J.G., Kc, P., Kuijer, P.P.F.M., Mandic-Rajcevic, S., Masci, F., van der Molen, H.F., Nygård, C.Y., Oakman, J., Proper, K.I., and Frings-Dresen, M.H.W., 2021. The effect of occupational exposure to ergonomic risk factors on osteoarthritis of hip or knee and selected other musculoskeletal diseases: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury, Environment International, 150: p.106349.
- Jain, B., Tony, A.R., Alphin, M.S., and Sri Krishnan, G., 2020. Analysis of upper body ergonomic parameters on commuter motorbike users, Journal of Transport & Health, 16: p.100826.
- Jones, J.H., 2009. The force of selection on the human life cycle, Evolution and Human Behavior, 30: p. 305-314.
Kashan J.S., and Ali S.M., 2019. Modeling and simulation for mechanical behavior of modified biocomposite for scaffold application, Ingeniería e Investigation, 39(1), p.63-75.
- Paul, G., and Wischniewski, S., 2012. Standardization of digital human models, Ergonomics, 55(9): p.1115-1118.
Pediatrics August, 2006. 118 (2) 825-827; DOI: https://doi.org/10.1542/peds.2006-1215
- Pinnel, R.A.M., Mashouri, P., Mazara, N., Weersink, E., Brown, S.H.M., and Power, G.A., 2019. Residual force enhancement and force depression in human single muscle fibers, Journal of Biomechanics, 91: p.164-169.
- Terry, P. and Wilson, N., 1978. The Cart That Changed the World: The Career of Sylvan N. Goldman, University of Oklahoma Press, 1978, p. 135.
- Tsui, F., and Pain, M.T.G., 2018. Muscle tension increases impact force but decreases energy absorption and pain during visco-elastic impacts to human thighs, Journal of Biomechanics, 67: p.123-128.
- Wolf, A., Miehling, J., and Wartzack, S., 2020. Challenges in interaction modelling with digital human models – A systematic literature review of interaction modelling approaches, Ergonomics, 63(11): p.1442-1458.