Araştırma Makalesi
BibTex RIS Kaynak Göster

BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching

Yıl 2024, Cilt: 10 Sayı: 2, 394 - 406, 31.12.2024
https://doi.org/10.29132/ijpas.1501474

Öz

This study investigates the adsorption capabilities of Ti3C2Tx MXene to remove Basic Red 46 (BR 46) dye from aqueous solutions. Azo dyes such as BR 46 are common pollutants from textile industries and pose significant ecological and health risks due to their toxicity and persistence. Current removal methods face efficiency issues af-fected by dye composition, pH, and other contaminants. Advanced oxidation pro-cesses (AOPs) and adsorption methods are promising but require optimization for practical application. MXenes, two-dimensional transition metal carbides/nitrides, offer high adsorption capacity and stability. In this study, the titanium aluminum carbide (Ti3AlC2) MAX phase was exfoliated using lithium fluoride (LiF)+hydrochloride acid (HCl) to synthesize Ti3C2Tx. Characterization techniques including Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to analyze the material. The study examined the effects of various reaction conditions such as pH, MXene dosage, and initial dye concentration on BR 46 adsorption. The results show that Ti3C2Tx MXene is an effective adsorbent and provides a potential solution for removing toxic dyes from wastewater. This study contributes to developing efficient, cost-effective, and sus-tainable methods to reduce dye pollution in water resources.

Kaynakça

  • Hashemi, S. H., & Kaykhaii, M. (2022). Azo dyes: sources, occurrence, toxicity, sampling, anal-ysis, and their removal methods. In Emerging freshwater pollutants (pp. 267–287). Elsevier.
  • Chadha, P., Mehra, S., & Singh, M. (2021). Adverse impact of textile dyes on the aquatic envi-ronment as well as on human beings. Toxicology International (Formerly Indian Journal of Toxicol-ogy), 165–176.
  • Mojiri, A., Zhou, J. L., KarimiDermani, B., Razmi, E., & Kasmuri, N. (2023). Anaerobic mem-brane bioreactor (AnMBR) for the removal of dyes from water and wastewater: progress, challenges, and future perspectives. Processes, 11(3), 855.
  • Lekhak, U. M. (2023). Ecotoxicity of synthetic dyes. In Current Developments in Bioengineering and Biotechnology (pp. 45–67). Elsevier.
  • Khan, M. D., Singh, A., Khan, M. Z., Tabraiz, S., & Sheikh, J. (2023). Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. Journal of Water Process Engineering, 53, 103579.
  • Vaiano, V., & De Marco, I. (2023). Removal of azo dyes from wastewater through heterogeneous photocatalysis and supercritical water oxidation. Separations, 10(4), 230.
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497–4531.
  • Periyasamy, A. P. (2024). Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability, 16(2), 495.
  • Abdollahi Ghahi, N., Nohekhan, M., Rezazadeh Azari, F., Rezaei Fard, B., Bakhtiari Ramezani, M., Beigmohammadi, N., Aghamiri, S. Z., & Abdollahi Dargah, M. (2022). Degradation of basic red 46 dye from color wastewater using cold atmospheric plasma. Journal of Nuclear Research and Ap-plications, 2(4), 21–24.
  • Ganaie, R. J., Rafiq, S., & Sharma, A. (2023). Recent advances in physico-chemical methods for removal of dye from wastewater. IOP Conference Series: Earth and Environmental Science, 1110(1), 12040.
  • Islam, A., Teo, S. H., Taufiq-Yap, Y. H., Ng, C. H., Vo, D.-V. N., Ibrahim, M. L., Hasan, M. M., Khan, M. A. R., Nur, A. S. M., & Awual, M. R. (2021). Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review. Resources, Conservation and Recycling, 175, 105849.
  • Rial, J. B., & Ferreira, M. L. (2021). Challenges of dye removal treatments based on IONzymes: Beyond heterogeneous Fenton. Journal of Water Process Engineering, 41, 102065.
  • Wiśniewska, M., Chibowski, S., Wawrzkiewicz, M., Onyszko, M., & Bogatyrov, V. (2022). CI Basic Red 46 removal from sewage by carbon and silica based composite: equilibrium, kinetic and electrokinetic studies. Molecules, 27(3), 1043.
  • Alam, M. S., Chowdhury, M. A., Khandaker, T., Hossain, M. S., Islam, M. S., Islam, M. M., & Hasan, M. K. (2024). Advancements in MAX phase materials: structure, properties, and novel ap-plications. RSC Advances, 14(37), 26995–27041.
  • Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. In MXenes (pp. 15–29). Jenny Stanford Publishing.
  • Huang, P., & Han, W.-Q. (2023). Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Letters, 15(1), 68.
  • Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conduc-tive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature, 516(7529), 78–81.
  • Gopalram, K., Kapoor, A., Kumar, P. S., Sunil, A., & Rangasamy, G. (2023). MXenes and MXene-Based Materials for Removal and Detection of Water Contaminants: A Review. Industrial & Engineering Chemistry Research, 62(17), 6559–6583.
  • Irfan, S., Khan, S. B., Din, M. A. U., Dong, F., & Chen, D. (2023). Retrospective on Exploring MXene-Based Nanomaterials: Photocatalytic Applications. Molecules, 28(6), 2495.
  • Maleski, K., Mochalin, V. N., & Gogotsi, Y. (2017). Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chemistry of Materials, 29(4), 1632–1640.
  • Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., & Gogotsi, Y. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chemistry of Materials, 29(18), 7633–7644.
  • Demirelli, K., Barim, E., Çelik, A., Yegin, M., Aksoy, Y., Hanay, Ö., & Hasar, H. (2024). Photoresponse, thermal and electrical behaviors of MXene-based polysulfone nanocomposite. Poly-mer Bulletin, 1–22.
  • Yan, P., Zuo, Z., Hou, M., Zhao, S., & Zhang, Z. (2023). MXene/nano-sized carbide-derived carbon composite with enhanced supercapacitive performance in acidic electrolyte. Ionics, 29(1), 411–418.
  • Lu, X., Zhu, J., Wu, W., & Zhang, B. (2017). Hierarchical architecture of PANI@ TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochimica Acta, 228, 282–289.
  • Wang, R., Cao, H., Yao, C., Peng, C., Qiu, J., Dou, K., Tsidaeva, N., & Wang, W. (2023). Construction of alkalized MXene-supported CoFe2O4/CS composites with super-strong adsorption capacity to remove toxic dyes from aqueous solution. Applied Surface Science, 624, 157091.
  • Yan, J., Liu, P. F., Wen, H. X., & Liu, H. J. (2022). Effective Removal of Basic Red 46 with Ti3C2 Powder Modified with Citric acid. ChemistrySelect, 7(29), e202201733.
  • Li, Z., Li, J., Tan, J., Jiang, M., Fu, S., Zhang, T., & Wang, X. (2022). In situ synthesis of novel peroxo-functionalized Ti3C2Tx adsorbent for aqueous pollutants removal: Role of oxygen-containing terminal groups. Chemosphere, 286, 131801.
  • Humelnicu, D., Ignat, M., & Suchea, M. (2015). Evaluation of Adsorption Capacity of Montmo-rillonite and Aluminium-pillared Clay for Pb 2+, Cu 2+ and Zn 2+. Acta Chimica Slovenica, 62(4).
  • Nezami, S., Ghaemi, A., & Yousefi, T. (2024). Experimental exploring of Ti3C2Tx MXene for efficient and deep removal of magnesium in water sample. Scientific Reports, 14(1), 27508.
  • Sen, N., Shefa, N. R., Reza, K., Shawon, S. M. A. Z., & Rahman, M. W. (2024). Adsorption of crystal violet dye from synthetic wastewater by ball-milled royal palm leaf sheath. Scientific Reports, 14(1), 5349.
  • Basu, S., Ghosh, G., & Saha, S. (2018). Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection, 117, 125–142.
  • Li, J., Dong, X., Liu, X., Xu, X., Duan, W., Park, J., Gao, L., & Lu, Y. (2022). Comparative study on the adsorption characteristics of heavy metal ions by activated carbon and selected natural adsor-bents. Sustainability, 14(23), 15579.

BR 46 Adsorpsiyon Uygulaması: LiF/HCl Aşındırma Yoluyla Ti3C2Tx’nin Yerinde HF Üretimi

Yıl 2024, Cilt: 10 Sayı: 2, 394 - 406, 31.12.2024
https://doi.org/10.29132/ijpas.1501474

Öz

Bu çalışma, Ti3C2Tx MXene’in sulu çözeltilerden Basic Red 46 (BR 46) boyasını uzaklaştırma konusundaki adsorpsiyon yeteneklerini araştırmaktadır. Azo boyalar sınıfından olan BR 46, tekstil endüstrisinden kaynaklanan yaygın kirleticiler arasın-da yer almakta olup, yüksek toksisiteleri ve kalıcılıkları nedeniyle ciddi ekolojik ve sağlık riskleri oluşturmaktadır. Mevcut giderim yöntemleri, boya bileşimi, pH ve diğer kirleticiler gibi faktörlerden etkilenerek verimlilik sorunlarıyla karşılaşmak-tadır. Gelişmiş oksidasyon işlemleri (AOP’ler) ve adsorpsiyon yöntemleri umut va-detmekle birlikte, pratik uygulama için optimizasyon gerekliliği devam etmektedir. İki boyutlu geçiş metali karbür/nitrür yapılarından oluşan MXeneler, yüksek adsorp-siyon kapasitesi ve kimyasal stabiliteleri sayesinde dikkat çekmektedir. Bu çalışma-da, titanyum alüminyum karbür (Ti3AlC2) MAX fazı, lityum florür (LiF) ve hi-droklorür asit (HCl) kullanılarak pul pul dökülmüş ve Ti3C2Tx elde edilmiştir. Elde edilen malzemenin özelliklerini değerlendirmek amacıyla Fourier Dönüşümü Kızılötesi Spektrometresi (FTIR), X-Işını Kırınımı (XRD) ve Taramalı Elektron Mikroskobu (SEM) gibi karakterizasyon teknikleri kullanılmıştır. Çalışmada, pH, MXene dozajı ve başlangıç boya konsantrasyonu gibi reaksiyon koşullarının BR 46 adsorpsiyonu üzerindeki etkileri incelenmiştir. Sonuçlar, Ti3C2Tx MXene’in etkili bir adsorban olduğunu ve atık sulardan toksik boyaların giderilmesinde potansiyel bir çözüm sunduğunu ortaya koymaktadır. Bu araştırma, su kaynaklarındaki boya kirliliğini azaltmaya yönelik verimli, maliyet etkin ve sürdürülebilir yöntemlerin geliştirilmesine katkı sağlamaktadır.

Kaynakça

  • Hashemi, S. H., & Kaykhaii, M. (2022). Azo dyes: sources, occurrence, toxicity, sampling, anal-ysis, and their removal methods. In Emerging freshwater pollutants (pp. 267–287). Elsevier.
  • Chadha, P., Mehra, S., & Singh, M. (2021). Adverse impact of textile dyes on the aquatic envi-ronment as well as on human beings. Toxicology International (Formerly Indian Journal of Toxicol-ogy), 165–176.
  • Mojiri, A., Zhou, J. L., KarimiDermani, B., Razmi, E., & Kasmuri, N. (2023). Anaerobic mem-brane bioreactor (AnMBR) for the removal of dyes from water and wastewater: progress, challenges, and future perspectives. Processes, 11(3), 855.
  • Lekhak, U. M. (2023). Ecotoxicity of synthetic dyes. In Current Developments in Bioengineering and Biotechnology (pp. 45–67). Elsevier.
  • Khan, M. D., Singh, A., Khan, M. Z., Tabraiz, S., & Sheikh, J. (2023). Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. Journal of Water Process Engineering, 53, 103579.
  • Vaiano, V., & De Marco, I. (2023). Removal of azo dyes from wastewater through heterogeneous photocatalysis and supercritical water oxidation. Separations, 10(4), 230.
  • Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497–4531.
  • Periyasamy, A. P. (2024). Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment. Sustainability, 16(2), 495.
  • Abdollahi Ghahi, N., Nohekhan, M., Rezazadeh Azari, F., Rezaei Fard, B., Bakhtiari Ramezani, M., Beigmohammadi, N., Aghamiri, S. Z., & Abdollahi Dargah, M. (2022). Degradation of basic red 46 dye from color wastewater using cold atmospheric plasma. Journal of Nuclear Research and Ap-plications, 2(4), 21–24.
  • Ganaie, R. J., Rafiq, S., & Sharma, A. (2023). Recent advances in physico-chemical methods for removal of dye from wastewater. IOP Conference Series: Earth and Environmental Science, 1110(1), 12040.
  • Islam, A., Teo, S. H., Taufiq-Yap, Y. H., Ng, C. H., Vo, D.-V. N., Ibrahim, M. L., Hasan, M. M., Khan, M. A. R., Nur, A. S. M., & Awual, M. R. (2021). Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review. Resources, Conservation and Recycling, 175, 105849.
  • Rial, J. B., & Ferreira, M. L. (2021). Challenges of dye removal treatments based on IONzymes: Beyond heterogeneous Fenton. Journal of Water Process Engineering, 41, 102065.
  • Wiśniewska, M., Chibowski, S., Wawrzkiewicz, M., Onyszko, M., & Bogatyrov, V. (2022). CI Basic Red 46 removal from sewage by carbon and silica based composite: equilibrium, kinetic and electrokinetic studies. Molecules, 27(3), 1043.
  • Alam, M. S., Chowdhury, M. A., Khandaker, T., Hossain, M. S., Islam, M. S., Islam, M. M., & Hasan, M. K. (2024). Advancements in MAX phase materials: structure, properties, and novel ap-plications. RSC Advances, 14(37), 26995–27041.
  • Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. In MXenes (pp. 15–29). Jenny Stanford Publishing.
  • Huang, P., & Han, W.-Q. (2023). Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Letters, 15(1), 68.
  • Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conduc-tive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature, 516(7529), 78–81.
  • Gopalram, K., Kapoor, A., Kumar, P. S., Sunil, A., & Rangasamy, G. (2023). MXenes and MXene-Based Materials for Removal and Detection of Water Contaminants: A Review. Industrial & Engineering Chemistry Research, 62(17), 6559–6583.
  • Irfan, S., Khan, S. B., Din, M. A. U., Dong, F., & Chen, D. (2023). Retrospective on Exploring MXene-Based Nanomaterials: Photocatalytic Applications. Molecules, 28(6), 2495.
  • Maleski, K., Mochalin, V. N., & Gogotsi, Y. (2017). Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chemistry of Materials, 29(4), 1632–1640.
  • Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., & Gogotsi, Y. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chemistry of Materials, 29(18), 7633–7644.
  • Demirelli, K., Barim, E., Çelik, A., Yegin, M., Aksoy, Y., Hanay, Ö., & Hasar, H. (2024). Photoresponse, thermal and electrical behaviors of MXene-based polysulfone nanocomposite. Poly-mer Bulletin, 1–22.
  • Yan, P., Zuo, Z., Hou, M., Zhao, S., & Zhang, Z. (2023). MXene/nano-sized carbide-derived carbon composite with enhanced supercapacitive performance in acidic electrolyte. Ionics, 29(1), 411–418.
  • Lu, X., Zhu, J., Wu, W., & Zhang, B. (2017). Hierarchical architecture of PANI@ TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochimica Acta, 228, 282–289.
  • Wang, R., Cao, H., Yao, C., Peng, C., Qiu, J., Dou, K., Tsidaeva, N., & Wang, W. (2023). Construction of alkalized MXene-supported CoFe2O4/CS composites with super-strong adsorption capacity to remove toxic dyes from aqueous solution. Applied Surface Science, 624, 157091.
  • Yan, J., Liu, P. F., Wen, H. X., & Liu, H. J. (2022). Effective Removal of Basic Red 46 with Ti3C2 Powder Modified with Citric acid. ChemistrySelect, 7(29), e202201733.
  • Li, Z., Li, J., Tan, J., Jiang, M., Fu, S., Zhang, T., & Wang, X. (2022). In situ synthesis of novel peroxo-functionalized Ti3C2Tx adsorbent for aqueous pollutants removal: Role of oxygen-containing terminal groups. Chemosphere, 286, 131801.
  • Humelnicu, D., Ignat, M., & Suchea, M. (2015). Evaluation of Adsorption Capacity of Montmo-rillonite and Aluminium-pillared Clay for Pb 2+, Cu 2+ and Zn 2+. Acta Chimica Slovenica, 62(4).
  • Nezami, S., Ghaemi, A., & Yousefi, T. (2024). Experimental exploring of Ti3C2Tx MXene for efficient and deep removal of magnesium in water sample. Scientific Reports, 14(1), 27508.
  • Sen, N., Shefa, N. R., Reza, K., Shawon, S. M. A. Z., & Rahman, M. W. (2024). Adsorption of crystal violet dye from synthetic wastewater by ball-milled royal palm leaf sheath. Scientific Reports, 14(1), 5349.
  • Basu, S., Ghosh, G., & Saha, S. (2018). Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection, 117, 125–142.
  • Li, J., Dong, X., Liu, X., Xu, X., Duan, W., Park, J., Gao, L., & Lu, Y. (2022). Comparative study on the adsorption characteristics of heavy metal ions by activated carbon and selected natural adsor-bents. Sustainability, 14(23), 15579.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi
Bölüm Makaleler
Yazarlar

Aytekin Çelik 0000-0003-1985-7701

Umay Halisdemir 0000-0002-0673-6233

Yusuf Köse 0009-0009-7760-1481

Mustafa Yegin 0009-0000-0378-6051

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 19 Haziran 2024
Kabul Tarihi 22 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Çelik, A., Halisdemir, U., Köse, Y., Yegin, M. (2024). BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching. International Journal of Pure and Applied Sciences, 10(2), 394-406. https://doi.org/10.29132/ijpas.1501474
AMA Çelik A, Halisdemir U, Köse Y, Yegin M. BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching. International Journal of Pure and Applied Sciences. Aralık 2024;10(2):394-406. doi:10.29132/ijpas.1501474
Chicago Çelik, Aytekin, Umay Halisdemir, Yusuf Köse, ve Mustafa Yegin. “BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching”. International Journal of Pure and Applied Sciences 10, sy. 2 (Aralık 2024): 394-406. https://doi.org/10.29132/ijpas.1501474.
EndNote Çelik A, Halisdemir U, Köse Y, Yegin M (01 Aralık 2024) BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching. International Journal of Pure and Applied Sciences 10 2 394–406.
IEEE A. Çelik, U. Halisdemir, Y. Köse, ve M. Yegin, “BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching”, International Journal of Pure and Applied Sciences, c. 10, sy. 2, ss. 394–406, 2024, doi: 10.29132/ijpas.1501474.
ISNAD Çelik, Aytekin vd. “BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching”. International Journal of Pure and Applied Sciences 10/2 (Aralık 2024), 394-406. https://doi.org/10.29132/ijpas.1501474.
JAMA Çelik A, Halisdemir U, Köse Y, Yegin M. BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching. International Journal of Pure and Applied Sciences. 2024;10:394–406.
MLA Çelik, Aytekin vd. “BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching”. International Journal of Pure and Applied Sciences, c. 10, sy. 2, 2024, ss. 394-06, doi:10.29132/ijpas.1501474.
Vancouver Çelik A, Halisdemir U, Köse Y, Yegin M. BR 46 Adsorption Application: In Situ HF Production of Ti3C2Tx via LiF/HCl Etching. International Journal of Pure and Applied Sciences. 2024;10(2):394-406.

154501544915448154471544615445