Araştırma Makalesi
BibTex RIS Kaynak Göster

Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi

Yıl 2024, Cilt: 10 Sayı: 2, 407 - 417, 31.12.2024
https://doi.org/10.29132/ijpas.1518879

Öz

Hardox 500 aşınma ve kırılmalara karşı dirençli, yüksek sertlik ve mekanik muka-vemete sahip sertleştirilmiş bir çeliktir. Bu yüksek mekanik özellikler bu malzemenin işlenebilirliğini sınırlamaktadır. Bu çalışmanın amacı işlenmesi zor olan Hardox 500 çeliğine farklı soğutma yöntemleri ve işleme parametrelerinin uygulanmasıyla işle-nebilirliğini artırmaktır. Endüstriyel açıdan önemli bir malzeme olan Hardox 500 çeliğinin çeşitli kesme ortamları kullanılarak işlenebilirliğini artırmak amaçlanmış-tır. Farklı ilerleme hızları, kesme hızları ve soğutma yöntemlerinin yüzey pürüzlü-lüğüne, kesme sıcaklıklarına, takım aşınmasına olan etkisi incelenmiştir. Deneysel sonuçlara göre Minimum miktarda yağlama (MMY) yöntemi yüzey kalitesini artır-dığı ve yan yüzey aşınması ile kesme sıcaklıklarını düşürdüğü görülmüştür. Kuru koşullara göre MMY yöntemi kullanılarak yüzey pürüzlülüğünde yaklaşık %20-30, kesme sıcaklığında yaklaşık %15-35 yan yüzey aşınmasında %22-30 oranında iyi-leşme elde edilmiştir. Yüzey kalitesini optimize etmek için yüksek kesme hızı ve düşük ilerleme hızlarının seçilmesi gerektiği görülmüştür. Yüksek kesme hızı ve ilerleme hızı sürtünmeyi artırarak sıcaklığı artırmıştır.

Kaynakça

  • Bensaid, K., & Fredj, N. B. (2021). Influence of sliding speed and normal loads on the wear resistance of Hardox 500 steel ground surfaces. In Advances in Mechanical Engineering, Materials and Mechanics: Selected contributions from the 7th International Conference on Advances in Mechanical Engineering and Mechanics, ICAMEM 2019, December 16-18, 2019, Hammamet, Tunisia (pp. 84-90). Springer International Publishing.
  • dos Santos Passari, É., de Souza, A. J., & Vilanova, A. M. (2023). Surface roughness analysis in finishing end milling of Hardox® 450 steel using multilayer graphene-based nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 147.
  • Ivanov, Y., Gromov, V., Konovalov, S., Kormyshev, V., Aksenova, K., & Teresov, A. (2017). Structure and properties of strengthening layer on Hardox 450 steel. Materials Science and Technology, 33(17), 2040-2045.
  • Gallina, B., Biehl, L. V., Medeiros, J. L. B., & de Souza, J. (2020). The influence of different heat treatment cycles on the properties of the steels HARDOX® 500 and STRENX® 700. Revista Liberato, 21(35), 67-74.
  • Duc, T. M., Long, T. T., & Van Thanh, D. (2020). Evaluation of minimum quantity lubrication and minimum quantity cooling lubrication performance in hard drilling of Hardox 500 steel using Al2O3 nanofluid. Advances in Mechanical Engineering, 12(2), 1687814019888404.
  • Kirik, I., Balalan, Z., Imak, A., & Yaz, M. (2020). Properties of different TIG coatings of Stellite on the Hardox 450 and St 52 steel. Materials Testing, 62(11), 1089-1093.
  • Filip, A. C., Mihail, L. A., & Vasiloni, M. A. (2017). An experimental study on the dimensional accuracy of holes made by abrasive waterjet machining of Hardox steels. In MATEC Web of Conferences (Vol. 137, p. 02003). EDP Sciences.
  • Klocke, F., & Kuchle, A. (2009). Manufacturing processes (Vol. 2, p. 433). Berlin: Springer.
  • Salur, E. (2022). Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions. Tribology International, 174, 107677.
  • Tasdelen, B., Wikblom, T., & Ekered, S. (2008). Studies on minimum quantity lubrication (MQL) and air cooling at drilling. Journal of Materials Processing Technology, 200(1-3), 339-346.
  • Alves, S. M., Barros, B. S., Trajano, M. F., Ribeiro, K. S. B., & Moura, E. J. T. I. (2013). Tri-bological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology international, 65, 28-36.
  • Korkmaz, M. E., Gupta, M. K., Demirsöz, R., Boy, M., Yaşar, N., Günay, M., & Ross, N. S. (2022). On tribological characteristics of TiC rollers machined under hybrid lubrication/cooling conditions. Tribology International, 174, 107745.
  • Salur, E., Aslan, A., Kuntoglu, M., Gunes, A., & Sahin, O. S. (2019). Experimental study and analysis of machinability characteristics of metal matrix composites during drilling. Composites Part B: Engineering, 166, 401-413.
  • Eltaggaz, A., Zawada, P., Hegab, H. A., Deiab, I., & Kishawy, H. A. (2018). Coolant strategy influence on tool life and surface roughness when machining ADI. The International Journal of Advanced Manufacturing Technology, 94, 3875-3887.
  • Bhowmick, S., Lukitsch, M. J., & Alpas, A. T. (2010). Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60). International Journal of Machine Tools and Manufacture, 50(5), 444-457.
  • Nam, J., & Lee, S. W. (2018). Machinability of titanium alloy (Ti-6Al-4V) in environmen-tally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodi-amond particles. International Journal of Precision Engineering and Manufacturing-Green Tech-nology, 5, 29-35.
  • Sun, J., Wong, Y. S., Rahman, M., Wang, Z. G., Neo, K. S., Tan, C. H., & Onozuka, H. (2006). Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Machining Science and Technology, 10(3), 355-370.
  • Chatha, S. S., Pal, A., & Singh, T. (2016). Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. Journal of Cleaner Production, 137, 537-545.
  • Yin, Q., Li, C., Dong, L., Bai, X., Zhang, Y., Yang, M., ... & Liu, Z. (2021). Effects of physi-cochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. International Journal of Precision Engineering and Manufacturing-Green Technology, 1-19.
  • Gupta, M. K., Boy, M., Korkmaz, M. E., Yaşar, N., Günay, M., & Krolczyk, G. M. (2022). Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel. Measurement, 187, 110353.
  • Khunt, C. P., Makhesana, M. A., Patel, K. M., & Mawandiya, B. K. (2021). Performance as-sessment of vegetable oil-based minimum quantity lubrication (MQL) in drilling. Materials Today: Proceedings, 44, 341-345.
  • Aslan, A. (2024). Machine learning models and machinability analysis for comparison of various cooling and lubricating mediums during milling of Hardox 400 steel. Tribology International, 109860.
  • Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., & Chandrashekarappa, M. P. G. (2023). Opti-mization of machining parameters to minimize cutting forces and surface roughness in mic-ro-milling of Mg13Sn alloy. Micromachines, 14(8), 1590.
  • Saha, S., Deb, S., & Bandyopadhyay, P. P. (2021). Progressive wear based tool failure analysis during dry and MQL assisted sustainable micro-milling. International Journal of Mechanical Sciences, 212, 106844.
  • Cristino, V. A. M., Rosa, P. A. R., & Martins, P. A. F. (2010). Cutting under active and inert gas shields: A contribution to the mechanics of chip flow. International Journal of Machine Tools and Manufacture, 50(10), 892-900.
  • Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., ... & Mao, C. (2016). Experimental eva-luation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubri-cation (MQL) grinding using different types of vegetable oils. Journal of Cleaner Production, 127, 487-499.
  • Abd Halim, N. F. H., Ascroft, H., & Barnes, S. (2017). Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP). Procedia Engineering, 184, 185-191.
  • Ni, C., & Zhu, L. (2020). Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. Journal of Materials Processing Technology, 278, 116518.
  • Binali, R., Demirpolat, H., Kuntoğlu, M., & Salur, E. (2023). Different aspects of machinability in turning of AISI 304 stainless steel: a sustainable approach with MQL technology. Metals, 13(6), 1088.
  • Mahdavinejad, R. A., & Saeedy, S. (2011). Investigation of the influential parameters of machining of AISI 304 stainless steel. Sadhana, 36, 963-970.
  • Xavior, M. A., & Adithan, M. (2009). Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. Journal of materials pro-cessing technology, 209(2), 900-909.
  • Singh, T., Sharma, V. K., Rana, M., Saini, A., Rooprai, R. S., & Singh, M. (2021). Multi response optimization of process variables in MQL assisted face milling of EN31 alloy steel using grey relational analysis. Materials Today: Proceedings, 47, 4062-4066.
  • Zha, X., Qin, H., Yuan, Z., Xi, L., Zhang, T., & Jiang, F. (2024). Effect of cutting feed rate on machining performance and surface integrity in cutting process of Ti-6Al-4V alloy. The Interna-tional Journal of Advanced Manufacturing Technology, 131(5), 2791-2809.
  • Saidur, R., Leong, K. Y., & Mohammed, H. A. (2011). A review on applications and challenges of nanofluids. Renewable and sustainable energy reviews, 15(3), 1646-1668.
  • Gupta, M. K., Niesłony, P., Sarikaya, M., Korkmaz, M. E., Kuntoğlu, M., & Królczyk, G. M. (2023). Studies on geometrical features of tool wear and other important machining characteristics in sustainable turning of aluminium alloys. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(4), 943-957.
  • Rosnan, R., Murad, M. N., Azmi, A. I., & Shyha, I. (2019). Effects of minimal quantity lubricants reinforced with nano-particles on the performance of carbide drills for drilling nickel-titanium alloys. Tribology International, 136, 58-66.
  • Ezugwu, E. O., & Okeke, C. I. (2001). Tool life and wear mechanisms of TiN coated tools in an intermittent cutting operation. Journal of Materials Processing Technology, 116(1), 10-15.
  • Khaliq, W., Zhang, C., Jamil, M., & Khan, A. M. (2020). Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions. Tribology International, 151, 106408.

Investigation of the Effect of Minimum Amount of Lubrication Method on Surface Roughness and Cutting Temperature in Drilling Hardox 500 Steel

Yıl 2024, Cilt: 10 Sayı: 2, 407 - 417, 31.12.2024
https://doi.org/10.29132/ijpas.1518879

Öz

Hardox 500 is a hardened steel that is resistant to wear and breakage, has high hard-ness and mechanical strength. These high mechanical properties limit the processa-bility of this material. The aim of this study is to increase the machinability of Hardox 500 steel, which is difficult to process, by applying different cooling methods and processing parameters. A new approach has been applied using various cutting media to increase the machinability of Hardox 500 steel, an industrially important material. The effects of different feed rates, cutting speeds and cooling methods on surface roughness, cutting temperatures and tool wear were examined. According to experi-mental results, it has been observed that the minimum amount of lubrication (MMY) method improves the surface quality and reduces flank wear and cutting temperatures. Compared to dry conditions, by using the MMY method, approximately 20-30% improvement in surface roughness, approximately 15-35% improvement in cutting temperature, 22-30% improvement in flank wear was achieved. It has been observed that high cutting speed and low feed rates should be selected to optimize surface qu-ality. High cutting speed and feed rate increased the temperature by increasing the friction.

Kaynakça

  • Bensaid, K., & Fredj, N. B. (2021). Influence of sliding speed and normal loads on the wear resistance of Hardox 500 steel ground surfaces. In Advances in Mechanical Engineering, Materials and Mechanics: Selected contributions from the 7th International Conference on Advances in Mechanical Engineering and Mechanics, ICAMEM 2019, December 16-18, 2019, Hammamet, Tunisia (pp. 84-90). Springer International Publishing.
  • dos Santos Passari, É., de Souza, A. J., & Vilanova, A. M. (2023). Surface roughness analysis in finishing end milling of Hardox® 450 steel using multilayer graphene-based nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 147.
  • Ivanov, Y., Gromov, V., Konovalov, S., Kormyshev, V., Aksenova, K., & Teresov, A. (2017). Structure and properties of strengthening layer on Hardox 450 steel. Materials Science and Technology, 33(17), 2040-2045.
  • Gallina, B., Biehl, L. V., Medeiros, J. L. B., & de Souza, J. (2020). The influence of different heat treatment cycles on the properties of the steels HARDOX® 500 and STRENX® 700. Revista Liberato, 21(35), 67-74.
  • Duc, T. M., Long, T. T., & Van Thanh, D. (2020). Evaluation of minimum quantity lubrication and minimum quantity cooling lubrication performance in hard drilling of Hardox 500 steel using Al2O3 nanofluid. Advances in Mechanical Engineering, 12(2), 1687814019888404.
  • Kirik, I., Balalan, Z., Imak, A., & Yaz, M. (2020). Properties of different TIG coatings of Stellite on the Hardox 450 and St 52 steel. Materials Testing, 62(11), 1089-1093.
  • Filip, A. C., Mihail, L. A., & Vasiloni, M. A. (2017). An experimental study on the dimensional accuracy of holes made by abrasive waterjet machining of Hardox steels. In MATEC Web of Conferences (Vol. 137, p. 02003). EDP Sciences.
  • Klocke, F., & Kuchle, A. (2009). Manufacturing processes (Vol. 2, p. 433). Berlin: Springer.
  • Salur, E. (2022). Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions. Tribology International, 174, 107677.
  • Tasdelen, B., Wikblom, T., & Ekered, S. (2008). Studies on minimum quantity lubrication (MQL) and air cooling at drilling. Journal of Materials Processing Technology, 200(1-3), 339-346.
  • Alves, S. M., Barros, B. S., Trajano, M. F., Ribeiro, K. S. B., & Moura, E. J. T. I. (2013). Tri-bological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology international, 65, 28-36.
  • Korkmaz, M. E., Gupta, M. K., Demirsöz, R., Boy, M., Yaşar, N., Günay, M., & Ross, N. S. (2022). On tribological characteristics of TiC rollers machined under hybrid lubrication/cooling conditions. Tribology International, 174, 107745.
  • Salur, E., Aslan, A., Kuntoglu, M., Gunes, A., & Sahin, O. S. (2019). Experimental study and analysis of machinability characteristics of metal matrix composites during drilling. Composites Part B: Engineering, 166, 401-413.
  • Eltaggaz, A., Zawada, P., Hegab, H. A., Deiab, I., & Kishawy, H. A. (2018). Coolant strategy influence on tool life and surface roughness when machining ADI. The International Journal of Advanced Manufacturing Technology, 94, 3875-3887.
  • Bhowmick, S., Lukitsch, M. J., & Alpas, A. T. (2010). Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60). International Journal of Machine Tools and Manufacture, 50(5), 444-457.
  • Nam, J., & Lee, S. W. (2018). Machinability of titanium alloy (Ti-6Al-4V) in environmen-tally-friendly micro-drilling process with nanofluid minimum quantity lubrication using nanodi-amond particles. International Journal of Precision Engineering and Manufacturing-Green Tech-nology, 5, 29-35.
  • Sun, J., Wong, Y. S., Rahman, M., Wang, Z. G., Neo, K. S., Tan, C. H., & Onozuka, H. (2006). Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Machining Science and Technology, 10(3), 355-370.
  • Chatha, S. S., Pal, A., & Singh, T. (2016). Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. Journal of Cleaner Production, 137, 537-545.
  • Yin, Q., Li, C., Dong, L., Bai, X., Zhang, Y., Yang, M., ... & Liu, Z. (2021). Effects of physi-cochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045. International Journal of Precision Engineering and Manufacturing-Green Technology, 1-19.
  • Gupta, M. K., Boy, M., Korkmaz, M. E., Yaşar, N., Günay, M., & Krolczyk, G. M. (2022). Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel. Measurement, 187, 110353.
  • Khunt, C. P., Makhesana, M. A., Patel, K. M., & Mawandiya, B. K. (2021). Performance as-sessment of vegetable oil-based minimum quantity lubrication (MQL) in drilling. Materials Today: Proceedings, 44, 341-345.
  • Aslan, A. (2024). Machine learning models and machinability analysis for comparison of various cooling and lubricating mediums during milling of Hardox 400 steel. Tribology International, 109860.
  • Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., & Chandrashekarappa, M. P. G. (2023). Opti-mization of machining parameters to minimize cutting forces and surface roughness in mic-ro-milling of Mg13Sn alloy. Micromachines, 14(8), 1590.
  • Saha, S., Deb, S., & Bandyopadhyay, P. P. (2021). Progressive wear based tool failure analysis during dry and MQL assisted sustainable micro-milling. International Journal of Mechanical Sciences, 212, 106844.
  • Cristino, V. A. M., Rosa, P. A. R., & Martins, P. A. F. (2010). Cutting under active and inert gas shields: A contribution to the mechanics of chip flow. International Journal of Machine Tools and Manufacture, 50(10), 892-900.
  • Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., ... & Mao, C. (2016). Experimental eva-luation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubri-cation (MQL) grinding using different types of vegetable oils. Journal of Cleaner Production, 127, 487-499.
  • Abd Halim, N. F. H., Ascroft, H., & Barnes, S. (2017). Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP). Procedia Engineering, 184, 185-191.
  • Ni, C., & Zhu, L. (2020). Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. Journal of Materials Processing Technology, 278, 116518.
  • Binali, R., Demirpolat, H., Kuntoğlu, M., & Salur, E. (2023). Different aspects of machinability in turning of AISI 304 stainless steel: a sustainable approach with MQL technology. Metals, 13(6), 1088.
  • Mahdavinejad, R. A., & Saeedy, S. (2011). Investigation of the influential parameters of machining of AISI 304 stainless steel. Sadhana, 36, 963-970.
  • Xavior, M. A., & Adithan, M. (2009). Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. Journal of materials pro-cessing technology, 209(2), 900-909.
  • Singh, T., Sharma, V. K., Rana, M., Saini, A., Rooprai, R. S., & Singh, M. (2021). Multi response optimization of process variables in MQL assisted face milling of EN31 alloy steel using grey relational analysis. Materials Today: Proceedings, 47, 4062-4066.
  • Zha, X., Qin, H., Yuan, Z., Xi, L., Zhang, T., & Jiang, F. (2024). Effect of cutting feed rate on machining performance and surface integrity in cutting process of Ti-6Al-4V alloy. The Interna-tional Journal of Advanced Manufacturing Technology, 131(5), 2791-2809.
  • Saidur, R., Leong, K. Y., & Mohammed, H. A. (2011). A review on applications and challenges of nanofluids. Renewable and sustainable energy reviews, 15(3), 1646-1668.
  • Gupta, M. K., Niesłony, P., Sarikaya, M., Korkmaz, M. E., Kuntoğlu, M., & Królczyk, G. M. (2023). Studies on geometrical features of tool wear and other important machining characteristics in sustainable turning of aluminium alloys. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(4), 943-957.
  • Rosnan, R., Murad, M. N., Azmi, A. I., & Shyha, I. (2019). Effects of minimal quantity lubricants reinforced with nano-particles on the performance of carbide drills for drilling nickel-titanium alloys. Tribology International, 136, 58-66.
  • Ezugwu, E. O., & Okeke, C. I. (2001). Tool life and wear mechanisms of TiN coated tools in an intermittent cutting operation. Journal of Materials Processing Technology, 116(1), 10-15.
  • Khaliq, W., Zhang, C., Jamil, M., & Khan, A. M. (2020). Tool wear, surface quality, and residual stresses analysis of micro-machined additive manufactured Ti–6Al–4V under dry and MQL conditions. Tribology International, 151, 106408.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Aybars Mahmat 0000-0001-9261-0620

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 22 Temmuz 2024
Kabul Tarihi 1 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Mahmat, A. (2024). Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences, 10(2), 407-417. https://doi.org/10.29132/ijpas.1518879
AMA Mahmat A. Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences. Aralık 2024;10(2):407-417. doi:10.29132/ijpas.1518879
Chicago Mahmat, Aybars. “Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü Ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi”. International Journal of Pure and Applied Sciences 10, sy. 2 (Aralık 2024): 407-17. https://doi.org/10.29132/ijpas.1518879.
EndNote Mahmat A (01 Aralık 2024) Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences 10 2 407–417.
IEEE A. Mahmat, “Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi”, International Journal of Pure and Applied Sciences, c. 10, sy. 2, ss. 407–417, 2024, doi: 10.29132/ijpas.1518879.
ISNAD Mahmat, Aybars. “Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü Ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi”. International Journal of Pure and Applied Sciences 10/2 (Aralık 2024), 407-417. https://doi.org/10.29132/ijpas.1518879.
JAMA Mahmat A. Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences. 2024;10:407–417.
MLA Mahmat, Aybars. “Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü Ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi”. International Journal of Pure and Applied Sciences, c. 10, sy. 2, 2024, ss. 407-1, doi:10.29132/ijpas.1518879.
Vancouver Mahmat A. Hardox 500 Çeliğinin Delinmesinde Minimum Miktarda Yağlama Yönteminin Yüzey Pürüzlülüğü ve Kesme Sıcaklığına Olan Etkisinin İncelenmesi. International Journal of Pure and Applied Sciences. 2024;10(2):407-1.

154501544915448154471544615445