Araştırma Makalesi
BibTex RIS Kaynak Göster

Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli

Yıl 2024, Cilt: 10 Sayı: 2, 550 - 562, 31.12.2024
https://doi.org/10.29132/ijpas.1548698

Öz

Extreme and sudden weather events experienced with global warming and climate change reveal the importance of accurate air temperature prediction. For this reason, it can be used to optimize decision-making processes for a wide range of applications from health and agricultural planning to energy consumption strategies. Artificial intelligence methods are successfully applied in many application areas due to their flexibility and efficiency. Traditional weather forecasting models are inefficient in detecting sudden fluctuations and complex, irregular patterns in data. Artificial in-telligence methods overcome these limitations thanks to their ability to process big data and capture long-term temporal dependencies. In this study, the aim is to predict future temperature changes more accurately by capturing patterns in past data with the developed CNN-LSTM hybrid model. The developed hybrid model is compared in detail with RF, SVM, CNN, and LSTM. The compared models were tested using daily average temperature data between 1961-2024 and hourly temperature data between 2020-2024. Experiments have shown that CNN-LSTM outperforms the compared models with R2 value above 0.97 in all scenarios.

Kaynakça

  • Haldon, J., Chase, A. F., Eastwood, W., Medina-Elizalde, M., Izdebski, A., Ludlow, F., and Turner, B. L. (2020). Demystifying collapse: climate, environment, and social agency in pre-modern societies. Millennium, 17(1), 1-33.
  • Ôhashi, Y., and Orchiston, W. (2021). The evolution of local Southeast Asian astronomy and the influence of China, India, the Islamic world and the West. Exploring the History of Southeast Asian Astronomy: A Review of Current Projects and Future Prospects and Possibilities, 673-767.
  • Fathi, M., Haghi Kashani, M., Jameii, S. M., and Mahdipour, E. (2022). Big data analytics in weather forecasting: A systematic review. Archives of Computational Methods in Engineering, 29(2), 1247-1275.
  • Dewitte, S., Cornelis, J. P., Müller, R., and Munteanu, A. (2021). Artificial intelligence revolu-tionises weather forecast, climate monitoring and decadal prediction. Remote Sensing, 13(16), 3209.
  • Neal, R., Guentchev, G., Arulalan, T., Robbins, J., Crocker, R., Mitra, A., and Jayakumar, A. (2022). The application of predefined weather patterns over India within probabilistic medi-um-range forecasting tools for high-impact weather. Meteorological Applications, 29(3), e2083.
  • Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., and Wang, X. (2021). Deep learning-based weather prediction: a survey. Big Data Research, 23, 100178.
  • Mohammed, A. S., Amamou, A., Ayevide, F. K., Kelouwani, S., Agbossou, K., and Zioui, N. (2020). The perception system of intelligent ground vehicles in all weather conditions: A systematic literature review. Sensors, 20(22), 6532.
  • Rahman, M. M., Nguyen, R., and Lu, L. (2022). Multi-level impacts of climate change and supply disruption events on a potato supply chain: An agent-based modeling approach. Agricultural Systems, 201, 103469.
  • Eom, J., Hyun, M., Lee, J., and Lee, H. (2020). Increase in household energy consumption due to ambient air pollution. Nature Energy, 5(12), 976-984.
  • Cifuentes, J., Marulanda, G., Bello, A., and Reneses, J. (2020). Air temperature forecasting using machine learning techniques: a review. Energies, 13(16), 4215.
  • Dewitte, S., Cornelis, J. P., Müller, R., and Munteanu, A. (2021). Artificial intelligence revolu-tionises weather forecast, climate monitoring and decadal prediction. Remote Sensing, 13(16), 3209.
  • Kadow, C., Hall, D. M., and Ulbrich, U. (2020). Artificial intelligence reconstructs missing climate information. Nature Geoscience, 13(6), 408-413.
  • Aydın, S., Taşyürek, M., and Öztürk, C. (2021). Derin Öğrenme Yöntemi ile İç Anadolu Bölgesi ve Çevresi Hava Kirliliği Tahmini. Avrupa Bilim ve Teknoloji Dergisi, (29), 168-173.
  • Bekkar, A., Hssina, B., Douzi, S., and Douzi, K. (2021). Air-pollution prediction in smart city, deep learning approach. Journal of big Data, 8, 1-21.
  • Ay, Ş., and Ekinci, E. (2022). Ozon Konsantrasyonlarını Modellemek için Makine Öğrenmesi ve Derin Öğrenme Yöntemlerinin Karşılaştırılması. Journal of Intelligent Systems: Theory and Ap-plications, 5(2), 106-118.
  • Karabulut, M. A., and Topçu, E. (2022). Derin öğrenme tekniği kullanılarak Kars ilinin hava sıcaklık tahmini. Mühendislik Bilimleri ve Tasarım Dergisi, 10(4), 1174-1181.
  • Subbiah, S. S., Paramasivan, S. K., Arockiasamy, K., Senthivel, S., and Thangavel, M. (2023). Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features. Intelligent Automation & Soft Computing, 35(3).
  • Shakya, D., Deshpande, V., Goyal, M. K., and Agarwal, M. (2023). PM2. 5 air pollution prediction through deep learning using meteorological, vehicular, and emission data: A case study of New Delhi, India. Journal of Cleaner Production, 427, 139278.
  • Esager, M. W. M., and Ünlü, K. D. (2023). Forecasting air quality in Tripoli: An evaluation of deep learning models for hourly PM2. 5 surface mass concentrations. Atmosphere, 14(3), 478.
  • Hosseinzadeh, A., Baziar, M., Alidadi, H., Zhou, J. L., Altaee, A., Najafpoor, A. A., and Jafarpour, S. (2020). Application of artificial neural network and multiple linear regression in modeling nu-trient recovery in vermicompost under different conditions. Bioresource technology, 303, 122926.
  • Tellez Gaytan, J. C., Ateeq, K., Rafiuddin, A., Alzoubi, H. M., Ghazal, T. M., Ahanger, T. A., and Viju, G. K. (2022). AI-Based Prediction of Capital Structure: Performance Comparison of ANN SVM and LR Models. Computational intelligence and neuroscience, 2022(1), 8334927.
  • Ghiasi, M. M., and Zendehboudi, S. (2021). Application of decision tree-based ensemble learning in the classification of breast cancer. Computers in biology and medicine, 128, 104089.
  • Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2021). Mathematical optimization in classification and regression trees. Top, 29(1), 5-33.
  • Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., and Lopez, A. (2020). A comprehen-sive survey on support vector machine classification: Applications, challenges and trends. Neu-rocomputing, 408, 189-215.
  • Nie, F., Zhu, W., and Li, X. (2020). Decision Tree SVM: An extension of linear SVM for non-linear classification. Neurocomputing, 401, 153-159.
  • Utku, A. (2024). Hindistan'daki Turistik Şehirlerin İklim Değişkenlerinin Tahminine Yönelik Hibrit ConvGRU Modeli. Mühendislik Bilimleri ve Araştırmaları Dergisi, 6(2), 165-176.
  • Celik, M. E. (2022). Deep learning based detection tool for impacted mandibular third molar teeth. Diagnostics, 12(4), 942.
  • Kuncan, F., Kaya, Y., Yiner, Z., and Kaya, M. (2022). A new approach for physical human activity recognition from sensor signals based on motif patterns and long-short term memory. Biomedical Signal Processing and Control, 78, 103963.
  • Landi, F., Baraldi, L., Cornia, M., and Cucchiara, R. (2021). Working memory connections for LSTM. Neural Networks, 144, 334-341.
  • Ali, M. H. E., Abdel-Raman, A. B., and Badry, E. A. (2022). Developing novel activation functions based deep learning LSTM for classification. IEEE Access, 10, 97259-97275.

Uzun ve Kısa Vadeli Sıcaklık Tahmini İçin Hibrit CNN-LSTM Modeli: Bingöl ve Tunceli İçin Bir Vaka Çalışması

Yıl 2024, Cilt: 10 Sayı: 2, 550 - 562, 31.12.2024
https://doi.org/10.29132/ijpas.1548698

Öz

Küresel ısınma ve iklim değişikliği ile birlikte yaşanan aşırı ve ani hava olayları, hava sıcaklığının doğru bir şekilde tahminin önemini ortaya koymaktadır. Bu sebeple sağ-lık ve tarımsal planlamadan enerji tüketim stratejilerine kadar geniş bir uygulama alanı için karar verme süreçlerinin optimize edilmesinde kullanılabilir. Yapay zekâ yöntemleri, esneklikleri ve verimlilikleri sebebiyle birçok uygulama alanında başarılı bir şekilde uygulanmaktadır. Geleneksel hava tahmin modelleri, verilerdeki ani dal-galanmaları ve karmaşık, düzensiz örüntüleri tespit etmede verimsiz kalmaktadır. Yapay zekâ yöntemleri büyük verileri işleme ve uzun-vadeli zamansal bağımlılıkları yakalayabilme kabiliyetleri sayesinde bu sınırlılıkların üstesinden gelmektedir. Bu çalışmada geliştirilen CNN-LSTM hibrit model ile geçmiş verilerdeki örüntüleri yakalayarak gelecekteki sıcaklık değişimlerini daha doğru bir şekilde tahmin etmek amaçlanmıştır. Geliştirilen hibrit model RF, SVM, CNN ve LSTM ile detaylı bir şe-kilde karşılaştırılmıştır. Karşılaştırılan modeller 1961-2024 tarihleri arasındaki gün-lük ortalama sıcaklık verileri ve 2020-2024 tarihleri arasındaki saatlik sıcaklık veri-leri kullanılarak test edilmiştir. Deneyler, CNN-LSTM'nin tüm senaryolarda 0,97'nin üzerinde R2 değeri ile karşılaştırılan modellerden daha başarılı olduğunu göstermiştir.

Kaynakça

  • Haldon, J., Chase, A. F., Eastwood, W., Medina-Elizalde, M., Izdebski, A., Ludlow, F., and Turner, B. L. (2020). Demystifying collapse: climate, environment, and social agency in pre-modern societies. Millennium, 17(1), 1-33.
  • Ôhashi, Y., and Orchiston, W. (2021). The evolution of local Southeast Asian astronomy and the influence of China, India, the Islamic world and the West. Exploring the History of Southeast Asian Astronomy: A Review of Current Projects and Future Prospects and Possibilities, 673-767.
  • Fathi, M., Haghi Kashani, M., Jameii, S. M., and Mahdipour, E. (2022). Big data analytics in weather forecasting: A systematic review. Archives of Computational Methods in Engineering, 29(2), 1247-1275.
  • Dewitte, S., Cornelis, J. P., Müller, R., and Munteanu, A. (2021). Artificial intelligence revolu-tionises weather forecast, climate monitoring and decadal prediction. Remote Sensing, 13(16), 3209.
  • Neal, R., Guentchev, G., Arulalan, T., Robbins, J., Crocker, R., Mitra, A., and Jayakumar, A. (2022). The application of predefined weather patterns over India within probabilistic medi-um-range forecasting tools for high-impact weather. Meteorological Applications, 29(3), e2083.
  • Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., and Wang, X. (2021). Deep learning-based weather prediction: a survey. Big Data Research, 23, 100178.
  • Mohammed, A. S., Amamou, A., Ayevide, F. K., Kelouwani, S., Agbossou, K., and Zioui, N. (2020). The perception system of intelligent ground vehicles in all weather conditions: A systematic literature review. Sensors, 20(22), 6532.
  • Rahman, M. M., Nguyen, R., and Lu, L. (2022). Multi-level impacts of climate change and supply disruption events on a potato supply chain: An agent-based modeling approach. Agricultural Systems, 201, 103469.
  • Eom, J., Hyun, M., Lee, J., and Lee, H. (2020). Increase in household energy consumption due to ambient air pollution. Nature Energy, 5(12), 976-984.
  • Cifuentes, J., Marulanda, G., Bello, A., and Reneses, J. (2020). Air temperature forecasting using machine learning techniques: a review. Energies, 13(16), 4215.
  • Dewitte, S., Cornelis, J. P., Müller, R., and Munteanu, A. (2021). Artificial intelligence revolu-tionises weather forecast, climate monitoring and decadal prediction. Remote Sensing, 13(16), 3209.
  • Kadow, C., Hall, D. M., and Ulbrich, U. (2020). Artificial intelligence reconstructs missing climate information. Nature Geoscience, 13(6), 408-413.
  • Aydın, S., Taşyürek, M., and Öztürk, C. (2021). Derin Öğrenme Yöntemi ile İç Anadolu Bölgesi ve Çevresi Hava Kirliliği Tahmini. Avrupa Bilim ve Teknoloji Dergisi, (29), 168-173.
  • Bekkar, A., Hssina, B., Douzi, S., and Douzi, K. (2021). Air-pollution prediction in smart city, deep learning approach. Journal of big Data, 8, 1-21.
  • Ay, Ş., and Ekinci, E. (2022). Ozon Konsantrasyonlarını Modellemek için Makine Öğrenmesi ve Derin Öğrenme Yöntemlerinin Karşılaştırılması. Journal of Intelligent Systems: Theory and Ap-plications, 5(2), 106-118.
  • Karabulut, M. A., and Topçu, E. (2022). Derin öğrenme tekniği kullanılarak Kars ilinin hava sıcaklık tahmini. Mühendislik Bilimleri ve Tasarım Dergisi, 10(4), 1174-1181.
  • Subbiah, S. S., Paramasivan, S. K., Arockiasamy, K., Senthivel, S., and Thangavel, M. (2023). Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features. Intelligent Automation & Soft Computing, 35(3).
  • Shakya, D., Deshpande, V., Goyal, M. K., and Agarwal, M. (2023). PM2. 5 air pollution prediction through deep learning using meteorological, vehicular, and emission data: A case study of New Delhi, India. Journal of Cleaner Production, 427, 139278.
  • Esager, M. W. M., and Ünlü, K. D. (2023). Forecasting air quality in Tripoli: An evaluation of deep learning models for hourly PM2. 5 surface mass concentrations. Atmosphere, 14(3), 478.
  • Hosseinzadeh, A., Baziar, M., Alidadi, H., Zhou, J. L., Altaee, A., Najafpoor, A. A., and Jafarpour, S. (2020). Application of artificial neural network and multiple linear regression in modeling nu-trient recovery in vermicompost under different conditions. Bioresource technology, 303, 122926.
  • Tellez Gaytan, J. C., Ateeq, K., Rafiuddin, A., Alzoubi, H. M., Ghazal, T. M., Ahanger, T. A., and Viju, G. K. (2022). AI-Based Prediction of Capital Structure: Performance Comparison of ANN SVM and LR Models. Computational intelligence and neuroscience, 2022(1), 8334927.
  • Ghiasi, M. M., and Zendehboudi, S. (2021). Application of decision tree-based ensemble learning in the classification of breast cancer. Computers in biology and medicine, 128, 104089.
  • Carrizosa, E., Molero-Río, C., and Romero Morales, D. (2021). Mathematical optimization in classification and regression trees. Top, 29(1), 5-33.
  • Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., and Lopez, A. (2020). A comprehen-sive survey on support vector machine classification: Applications, challenges and trends. Neu-rocomputing, 408, 189-215.
  • Nie, F., Zhu, W., and Li, X. (2020). Decision Tree SVM: An extension of linear SVM for non-linear classification. Neurocomputing, 401, 153-159.
  • Utku, A. (2024). Hindistan'daki Turistik Şehirlerin İklim Değişkenlerinin Tahminine Yönelik Hibrit ConvGRU Modeli. Mühendislik Bilimleri ve Araştırmaları Dergisi, 6(2), 165-176.
  • Celik, M. E. (2022). Deep learning based detection tool for impacted mandibular third molar teeth. Diagnostics, 12(4), 942.
  • Kuncan, F., Kaya, Y., Yiner, Z., and Kaya, M. (2022). A new approach for physical human activity recognition from sensor signals based on motif patterns and long-short term memory. Biomedical Signal Processing and Control, 78, 103963.
  • Landi, F., Baraldi, L., Cornia, M., and Cucchiara, R. (2021). Working memory connections for LSTM. Neural Networks, 144, 334-341.
  • Ali, M. H. E., Abdel-Raman, A. B., and Badry, E. A. (2022). Developing novel activation functions based deep learning LSTM for classification. IEEE Access, 10, 97259-97275.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dağıtık Bilgi İşleme ve Sistem Yazılımı (Diğer)
Bölüm Makaleler
Yazarlar

Anıl Utku 0000-0002-7240-8713

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 11 Eylül 2024
Kabul Tarihi 10 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Utku, A. (2024). Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli. International Journal of Pure and Applied Sciences, 10(2), 550-562. https://doi.org/10.29132/ijpas.1548698
AMA Utku A. Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli. International Journal of Pure and Applied Sciences. Aralık 2024;10(2):550-562. doi:10.29132/ijpas.1548698
Chicago Utku, Anıl. “Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli”. International Journal of Pure and Applied Sciences 10, sy. 2 (Aralık 2024): 550-62. https://doi.org/10.29132/ijpas.1548698.
EndNote Utku A (01 Aralık 2024) Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli. International Journal of Pure and Applied Sciences 10 2 550–562.
IEEE A. Utku, “Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli”, International Journal of Pure and Applied Sciences, c. 10, sy. 2, ss. 550–562, 2024, doi: 10.29132/ijpas.1548698.
ISNAD Utku, Anıl. “Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli”. International Journal of Pure and Applied Sciences 10/2 (Aralık 2024), 550-562. https://doi.org/10.29132/ijpas.1548698.
JAMA Utku A. Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli. International Journal of Pure and Applied Sciences. 2024;10:550–562.
MLA Utku, Anıl. “Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli”. International Journal of Pure and Applied Sciences, c. 10, sy. 2, 2024, ss. 550-62, doi:10.29132/ijpas.1548698.
Vancouver Utku A. Hybrid CNN-LSTM Model for Accurate Long-Term and Short-Term Temperature Prediction: A Case Study for Bingöl and Tunceli. International Journal of Pure and Applied Sciences. 2024;10(2):550-62.

154501544915448154471544615445