İnceleme Makalesi
BibTex RIS Kaynak Göster

Edible seeds with potential anti-obesity impact: A Review

Yıl 2022, Cilt: 2 Sayı: 1, 64 - 81, 15.06.2022

Öz

Obesity and related metabolic diseases prevalence rates have risen dramatically in the recent decades, leading to severe health issues and increased mortality rates. A pressing need is evolved for a potential solution addressing obesity undermining. Bariatric dietary supplements and alternative medicine are recently gaining growing attention as a panacea for obesity owing to their rich nutritional profile and bioactive compounds. This systematic review was conducted to evaluate the current knowledge of some purported dietary seeds commonly used as functional food; quinoa (Chenopodium quinoa, L.), chia (Salvia hispanica L.), Hab El-Rashad (Lepidium sativum, L.), pumpkin (Cucurbita pepo L.) and fenugreek (Trigonella foenum-graecum). Due to the limited scientific evidence for their efficacy, future studies should empirically investigate dietary intervention structure to evaluate the impact on body mass status.

Kaynakça

  • Abdulmalek, S.A., Fessal, M., El-Sayed, M., 2021. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. Journal of Ethnopharmacology, 266, 113439.
  • Achari, A.E., Jain, S.K., 2017. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International Journal of Molecular Sciences, 18(6), 1321.
  • Achilonu, M.C., Nwafor, I.C., Umesiobi, D.O., Sedibe, M.M., 2018. Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well‐being of poultry species. Journal of Animal Physiology and Animal Nutrition, 102(1), 5-16.
  • Ademiluyi, A.O., Oyeniran, O.H., Jimoh, T.O., Oboh, G., Boligon, A.A., 2019. Fluted pumpkin (Telfairia occidentalis) seed modulates some markers of erectile function in isolated rat’s corpus cavernosum: Influence of polyphenol and amino acid constituents. Journal of Food Biochemistry, 43(11), e13037.
  • Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A., Yaqoob, S., Aziz, M.A., 2017. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. The Journal of Phytopharmacology, 6(2), 133-139.
  • Adsul, S., Madkaikar, V., 2021. Pumpkin (Cucurbita pepo) Seed. In Oilseeds: Health Attributes and Food Applications (pp. 473-506). Springer, Singapore.
  • Afzal, B., Pasha, I., Zahoor, T., Nawaz, H., 2016. Nutritional potential of fenugreek supplemented bread with special reference to antioxidant profiling. Pakistan Journal of Agricultural Sciences, 53(1), 217-223.
  • Ahmad, A., Jan, B.L., Raish, M., Alkharfy, K.M., Ahad, A., Khan, A., Hamidaddin, M.A.A., 2018. Inhibitory effects of Lepidium sativum polysaccharide extracts on TNF-α production in Escherichia coli-stimulated mouse. 3 Biotech, 8(6), 1-8.
  • Akbar, S., 2020. Handbook of 200 medicinal plants: A comprehensive review of their traditional medical uses and scientific justifications. Springer.
  • Akinfenwa, A.O., Cheikhyoussef, A., Cheikhyoussef, N., Hussein, A.A., 2020. Cold pressed chia (Salvia hispanica L.) seed oil. In Cold Pressed Oils (pp. 181-190). Academic Press.
  • Alamri, E., 2019. The Influence of Two Types of Chia Seed on Some Physiological Parameters in Diabetic Rats. International Journal of Pharmaceutical Research & Allied Sciences, 8(3), 131-136.
  • Al-Fuhaid, N., 2018. Can a Garden Cress (Lepidium sativum: Cruciferae) Seeds be a Poisonous Bait for the Larvae of Trogoderma granarium Everts?. World Journal of Agricultural Research, 6(2), 31-36.
  • Alharbi, F.K., Hanan, M.S., 2017. Influence of dietary supplementation of Garden cress (Lepidium sativum L.) on histopathology and serum biochemistry in Diabetic Rats. Egyptian Journal of Chemistry and Environmental Health, 3(1), 1-19.
  • Almatroodi, S.A., Almatroudi, A., Alsahli, M.A., Rahmani, A.H., 2021. Fenugreek (Trigonella Foenum-Graecum) and its Active Compounds: A Review of its Effects on Human Health through Modulating Biological Activities. Pharmacognosy Journal, 13(3), 813–821.
  • Al-Okbi, S.Y., Mohamed, D.A., Hamed, T.E.S., Kassem, A.A., Abd El-Alim, S.H., Mostafa, D.M., 2017. Enhanced prevention of progression of non alcoholic fatty liver to steatohepatitis by incorporating pumpkin seed oil in nanoemulsions. Journal of Molecular Liquids, 225, 822-832.
  • Alqahtani, F.Y., Aleanizy, F.S., Mahmoud, A.Z., Farshori, N.N., Alfaraj, R., Al-Sheddi, E.S., Alsarra, I.A., 2019. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi Journal of Biological Sciences, 26(5), 1089-1092.
  • Alshammari, G.M., Balakrishnan, A., 2019. Pumpkin (Cucurbita ficifolia Bouché) extract attenuate the adipogenesis in human mesenchymal stem cells by controlling adipogenic gene expression. Saudi Journal of Biological Sciences, 26(4), 744-751.
  • Alsieni, M.A., El Rabey, H.A., Al-Sieni, A.I., Al-Seeni, M.N., 2021. Comparison between the Antioxidant and Antidiabetic Activity of Fenugreek and Buckthorn in Streptozotocin-Induced Diabetic Male Rats. BioMed Research International, 2021, 1-12.
  • Al-Snafi, A.E., 2019. Chemical constituents and pharmacological effects of Lepidium sativum-A Review. International Journal of Current Pharmaceutical Research, 11(6), 1-10.
  • Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M.W., Hamar, A., Khajehei, F., Piatti, C., 2020. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “Golden Grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2), 216.
  • Bakhtavar, M.A., Afzal, I., 2020. Climate smart Dry Chain Technology for safe storage of quinoa seeds. Scientific Reports, 10(1), 1-12.
  • Balgoon, M.J., 2019. Assessment of the protective effect of Lepidium sativum against aluminum-induced liver and kidney effects in albino rat. BioMed Research International, 2019.
  • Baregama, C., Goyal, A., 2019. Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum Linn.: A review. Asian Journal of Pharmaceutical and Clinical Research, 12(4), 45-50.
  • Bezerraa, K.G., Durvala, I.J., Silvab, I.A., Fabiola, C.G., 2020. Emulsifying capacity of biosurfactants from Chenopodium quinoa and Pseudomonas aeruginosa UCP 0992 with focus of application in the cosmetic Industry. Chemical Engineering Transactions, 79, 211-216.
  • Blüher, M., 2019. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288-298.
  • Buitrago, D., Buitrago-Villanueva, I., Barbosa-Cornelio, R., Coy-Barrera, E., 2019. Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions. Antioxidants, 8(8), 238.
  • Burrieza, H.P., Rizzo, A.J., Vale, E.M., Silveira, V., Maldonado, S., 2019. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chemistry, 293, 299-306.
  • Capraro, J., De Benedetti, S., Di Dio, M., Bona, E., Abate, A., Corsetto, P.A., Scarafoni, A., 2020. Characterization of Chenopodin Isoforms from Quinoa Seeds and Assessment of Their Potential Anti-Inflammatory Activity in Caco-2 Cells. Biomolecules, 10(5), 795.
  • Carciochi, R.A., Manrique, G.D., Dimitrov, K., 2014. Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal, 21, 767-773.
  • Caruso, M.C., Favati, F., Di Cairano, M., Galgano, F., Labella, R., Scarpa, T., Condelli, N., 2018. Shelf-life evaluation and nutraceutical properties of chia seeds from a recent long-day flowering genotype cultivated in Mediterranean area. LWT Food Science and Technology, 87, 400-405.
  • Chooi, Y.C., Ding, C., Magkos, F., 2019. The epidemiology of obesity. Metabolism: Clinical and Experimental, 92, 6-10.
  • Cragg, G.M., Newman, D.J., 2013. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670-3695.
  • da Silva, B.P., Toledo, R.C.L., Grancieri, M., de Castro Moreira, M.E., Medina, N.R., Silva, R.R., Martino, H.S.D., 2019. Effects of chia (Salvia hispanica L.) on calcium bioavailability and inflammation in Wistar rats. Food Research International, 116, 592-599.
  • de Falco, B., Amato, M., Lanzotti, V., 2017. Chia seeds products: an overview. Phytochemistry Reviews, 16, 745-760.
  • Desai, S.S., Walvekar, M.V., Shaikh, N.H., 2017. Cytoprotective effects of Lepidium sativum seed extract on liver and pancreas of HFD/STZ induced type 2 diabetic mice. International Journal of Pharmacognosy and Phytochemistry Research, 9i 502-507.
  • Dong, X.J., Chen, J.Y., Chen, S.F., Li, Y., Zhao, X.J., 2021. The composition and anti-inflammatory properties of pumpkin seeds. Journal of Food Measurement and Characterization, 15(2), 1834-1842.
  • Dotto, J.M., Chacha, J.S., 2020. The potential of pumpkin seeds as a functional food ingredient: a review. Scientific African, 10, e00575.
  • El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., El Kacimi, K., Yasri, A., 2020. An insight into saponins from quinoa (Chenopodium quinoa Willd): a review. Molecules, 25(5), 1059.
  • Ellulu, M.S., Patimah, I., Khaza’ai, H., Rahmat, A., Abed, Y., 2017. Obesity and inflammation: the linking mechanism and the complications. Archives of Medical Science: AMS, 13(4), 851-863.
  • Elshawwa, M.M., 2020. Correlation between Serum and Tissue Levels of Adipokines in Obesity in Adult Male Rats with and without Antioxidant. QJM: An International Journal of Medicine, 113(Supplement_1), 113-114.
  • Felemban, L.F., Al-Attar, A.M., Zeid, I.M.A., 2020. Medicinal and Nutraceutical Benefits of Chia Seed (Salvia hispanica). Journal of Pharmaceutical Research International, 15-26.
  • Feng, T., Liu, P., Zhang, Z., Hu, J., Kong, Z., 2016. Combination of DFP and taurine counteracts the aluminum-induced alterations in oxidative stress and ATPase in cortex and blood of rats. Biological Trace Element Research, 174(1), 142-149.
  • Fernández-López, J., Viuda-Martos, M., Sayas-Barberá, M.E., Navarro-Rodríguez de Vera, C., Lucas-González, R., Roldán-Verdú, A., Botella-Martínez, C., Pérez-Alvarez, J.A., 2020. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. Plants, 9, 1359.
  • Foucault, A.S., Mathé, V., Lafont, R., Even, P., Dioh, W., Veillet, S., Quignard‐Boulangé, A., 2012. Quinoa extract enriched in 20‐hydroxyecdysone protects mice from diet‐induced obesity and modulates adipokines expression. Obesity, 20(2), 270-277.
  • Garcia-Mazcorro, J.F., Mills, D.A., Murphy, K., Noratto, G., 2018. Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. European Journal of Nutrition, 57(7), 2513-2528.
  • Gazem, R.A.A., Chandrashekariah, S.A., 2016. Pharmacological properties of Salvia hispanica (chia) seeds: a review. Journal of Critical Reviews, 3(3), 63-67.
  • Ghahremanloo, A., Hajipour, R., Hemmati, M., Moossavi, M., Mohaqiq, Z., 2018. The beneficial effects of pumpkin extract on atherogenic lipid, insulin resistance and oxidative stress status in high-fat diet-induced obese rats. Journal of Complementary and Integrative Medicine, 15(2), 1-7.
  • Gokavi, S.S., Malleshi, N.G., Guo, M., 2004. Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nutrition, 59(3), 105-111.
  • Gomez, G., 2017. US Health Policy and Prescription Drug Coverage for FDA-Approved Obesity Medications (Doctoral dissertation, Harvard University).
  • Graf, B.L., Rojas‐Silva, P., Rojo, L.E., Delatorre‐Herrera, J., Baldeón, M.E., Raskin, I., 2015. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14(4), 431-445.
  • Grancieri, M., Martino, H.S.D., Gonzalez de Mejia, E., 2021. Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes. Nutrients, 13(1), 176.
  • Gurunath, S., 2019. Antihypertensive and Hypocholesterolemic Activity of a Novel Herbal Formulation of Fenugreek, Cumin and Ajowan in Rats. Journal of Exploratory Research in Pharmacology, 4(4), 41-47.
  • Han, K., Li, X.Y., Zhang, Y.Q., He, Y.L., Hu, R., Lu, X.L., Hui, J., 2020. Chia Seed Oil Prevents High Fat Diet Induced Hyperlipidemia and Oxidative Stress in Mice. European Journal of Lipid Science and Technology, 122(4), 1900443.
  • Hernández-Pérez, T., Valverde, M.E., Paredes-López, O., 2021. Seeds from ancient food crops with the potential for antiobesity promotion. Critical Reviews in Food Science and Nutrition, 1-8.
  • Hirich, A., Choukr-Allah, R., Ragab, R., 2020. Emerging Research in Alternative Crops. Springer International Publishing.
  • Hussain, M.S., Hossain, M.S., Rashid, M.M.O., 2019. Antiobesity and Lipid Lowering Activitiy of Vigna unguiculata (L) Walp. Seed in High Fat Diet Induced Obese Mice. Journal of Pharmacy and Nutrition Sciences, 9, 000-000.
  • Jain, T., Grover, K., 2018. A comprehensive review on the nutritional and nutraceutical aspects of garden cress (Lepidium sativum Linn.). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(3), 829-836.
  • Jhajhria, A., Kumar, K., 2016. Fenugreek with its medicinal applications. International Journal of Pharmaceutical Sciences Review and Research, 41(1), 194-201.
  • Joebstl, D., Bandoniene, D., Meisel, T., Chatzistathis, S., 2010 Identification of the geographical origin of pumpkin seed oil by the use of rare earth elements and discriminant analysis. Food Chemistry, 123, 1303-1309.
  • Kalaivani, A., Sathibabu Uddandrao, V.V., Brahmanaidu, P., Saravanan, G., Nivedha, P.R., Tamilmani, P., Vadivukkarasi, S., 2018. Anti obese potential of Cucurbita maxima seeds oil: effect on lipid profile and histoarchitecture in high fat diet induced obese rats. Natural Product Research, 32(24), 2950-2953.
  • Kalaivani, A., Vadivukkarasi, S., Uddandrao, V.S., Saravanan, G., 2020. Attenuation of obesity-associated oxidative stress by Cucurbita maxima seed oil in high fat diet-induced obese rats. In Pathophysiology of Obesity-Induced Health Complications (pp. 305-316). Springer, Cham.
  • Kandhare, A.D., Bandyopadhyay, D., Thakurdesai, P.A., 2018. Low molecular weight galactomannans-based standardized fenugreek seed extract ameliorates high-fat diet-induced obesity in mice via modulation of FASn, IL-6, leptin, and TRIP-Br2. RSC Advances, 8(57), 32401-32416.
  • Katunzi-Kilewela, A., Kaale, L.D., Kibazohi, O., Rweyemamu, L.M., 2021. Nutritional, health benefits and usage of chia seeds (Salvia hispanica): A review. African Journal of Food Science, 15(2), 48-59.
  • Kaur, S., Panghal, A., Garg, M.K., Mann, S., Khatkar, S.K., Sharma, P., Chhikara, N., 2019. Functional and nutraceutical properties of pumpkin–a review. Nutrition & Food Science, 50, 384-401.
  • Khound, R., Shen, J., Song, Y., Santra, D., Su, Q., 2018. Phytoceuticals in fenugreek ameliorate VLDL overproduction and insulin resistance via the insig signaling pathway. Molecular Nutrition & Food Research, 62(5), 1700541.
  • Kimbonguila, A., Matos, L., Petit, J., Scher, J., Nzikou, J.M., 2019. Effect of physical treatment on the physicochemical, rheological and functional properties of yam meal of the cultivar “Ngumvu” from Dioscorea alata L. of Congo. International Journal of Recent Scientific Research, 8, 22213-22217.
  • Knez Hrnčič, M., Ivanovski, M., Cör, D., Knez, Ž., 2020. Chia Seeds (Salvia hispanica L.): an overview—phytochemical profile, isolation methods, and application. Molecules, 25(1), 11.
  • Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., Gramza-Michałowska, A., 2019. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11(6), 1242.
  • Kushawaha, D.K., Yadav, M., Chatterji, S., Srivastava, A.K., Watal, G., 2017. Evidence based study of antidiabetic potential of C. maxima seeds–In vivo. Journal of Traditional and Complementary Medicine, 7(4), 466-470.
  • L’hadj, I., Azzi, R., Lahfa, F., Koceir, E.A., Omari, N., 2019. The nutraceutical potential of Lepidium sativum L. seed flavonoid‐rich extract in managing metabolic syndrome components. Journal of Food Biochemistry, 43(3), e12725.
  • Lahiri, B., Rani, R., 2020. Garden Cress Seeds: chemistry, medicinal properties, application in dairy and food industry: A Review. Emergent Life Sciences Research, 6, 1-4.
  • Liu, M., Zhu, K., Yao, Y., Chen, Y., Guo, H., Ren, G., Li, J., 2020. Antioxidant, anti‐inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry, 97(3), 703-713.
  • Lu, A., Yu, M., Fang, Z., Xiao, B., Guo, L., Wang, W., Zhang, Y., 2019. Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. International Journal of Biological Macromolecules, 121, 261-269.
  • Mala, S.K., Aathira, P., Anjali, E.K., Srinivasulu, K., Sulochanamma, G., 2018. Effect of pumpkin powder incorporation on the physico-chemical, sensory and nutritional characteristics of wheat flour muffins. International Food Research Journal, 25(3), 1081-1087.
  • Marcinek, K., Krejpcio, Z., 2017. Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications-a review. Roczniki Państwowego Zakładu Higieny, 68(2), 123-129.
  • Marrelli, M., Statti, G., Conforti, F., 2020. A review of biologically active natural products from Mediterranean wild edible plants: benefits in the treatment of obesity and its related disorders. Molecules, 25(3), 649.
  • Melo, D., Machado, T.B., Oliveira, M.B.P., 2019. Chia seeds: an ancient grain trending in modern human diets. Food & Function, 10(6), 3068-3089.
  • Mohamadi, N., Sharififar, F., Pournamdari, M., Ansari, M., 2018. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. Journal of Dietary Supplements, 15(2), 207-222.
  • Monteiro, C.A., Cannon, G.J., 2019. The role of the transnational ultra-processed food industry in the pandemic of obesity and its associated diseases: problems and solutions. World Nutrition, 10(1), 89-99.
  • Montesano, D., Blasi, F., Simonetti, M.S., Santini, A., Cossignani, L., 2018. Chemical and nutritional characterization of seed oil from Cucurbita maxima L.(var. Berrettina) pumpkin. Foods, 7(3), 30.
  • Moreno-Valdespino, C.A., Luna-Vital, D., Camacho-Ruiz, R.M., Mojica, L., 2020. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Research International, 130, 108905.
  • Mukthamba, P., Srinivasan, K., 2016. Hypolipidemic and antioxidant effects of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) in high-fat fed rats. Food Bioscience, 14, 1-9.
  • Navruz-Varli, S., Sanlier, N., 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376.
  • Ng, C.Y., Wang, M., 2021. The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Frontiers, 2(3), 329-356.
  • Noratto, G.D., Murphy, K., Chew, B.P., 2019. Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chemistry, 287, 107-114.
  • Nowak, V., Du, J., Charrondière, U.R., 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47-54.
  • Obaroakpo, J.U., Nan, W., Hao, L., Liu, L., Zhang, S., Lu, J., Lv, J., 2020. The hyperglycemic regulatory effect of sprouted quinoa yoghurt in high-fat-diet and streptozotocin-induced type 2 diabetic mice via glucose and lipid homeostasis. Food & Function, 11(9), 8354-8368.
  • Oliva, M.E., del Rosario Ferreira, M., Joubert, M.B.V., D'Alessandro, M.E., 2021. Salvia hispanica L.(chia) seed promotes body fat depletion and modulates adipocyte lipid handling in sucrose-rich diet-fed rats. Food Research International, 139, 109842.
  • Pachi, V.K., Mikropoulou, E.V., Gkiouvetidis, P., Siafakas, K., Argyropoulou, A., Angelis, A., Halabalaki, M., 2020. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. chia, Anacardiaceae): A review. Journal of Ethnopharmacology, 254, 112485.
  • Panchal, S.K., 2012. Cardioprotective and hepatoprotective effects of natural products in metabolic syndrome (Doctoral dissertation, University of Southern Queensland).
  • Paśko, P., Zagrodzki, P., Bartoń, H., Chłopicka, J., Gorinstein, S., 2010. Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition, 65(4), 333-338.
  • Patel, U., Kulkarni, M., Undale, V., Bhosale, A., 2009. Evaluation of diuretic activity of aqueous and methanol extracts of Lepidium sativum garden cress (Cruciferae) in rats. Tropical Journal of Pharmaceutical Research, 8(3).
  • Petersen, R., Pan, L., Blanck, H.M., 2019. Peer Reviewed: Racial and Ethnic Disparities in Adult Obesity in the United States: CDC’s Tracking to Inform State and Local Action. Preventing Chronic Disease, 16, 1-6.
  • Rafińska, K., Pomastowski, P., Rudnicka, J., Krakowska, A., Maruśka, A., Narkute, M., Buszewski, B., 2019. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chemistry, 289, 16-25.
  • Rafiqi, U.N., Gul, I., Saifi, M., Nasrullah, N., Ahmad, J., Dash, P., Abdin, M.Z., 2019. Cloning, identification, and in silico analysis of terpene synthases involved in the competing pathways of artemisinin biosynthesis pathway in Artemisia annua L. Pharmacognosy Magazine, 15(62), 38-46.
  • Raghavendra, R.H., Akhilender Naidu, K., 2011. Eugenol and n-3 rich garden cress seed oil as modulators of platelet aggregation and eicosanoids in Wistar albino rats. The Open Nutraceuticals Journal, 4(1), 144-150.
  • Rajasree, R.S., Sibi, P.I., Francis, F., William, H., 2016. Phytochemicals of Cucurbitaceae family—A review. International Journal of Pharmacognosy and Phytochemical Research, 8(1), 113-123.
  • Ratnam, N., Naijibullah, M., Ibrahim, M.D., 2017. A review on Cucurbita pepo. International Journal of Pharmacognosy and Phytochemical Research, 9, 1190-1194.
  • Rodríguez-Pérez, C., Segura-Carretero, A., del Mar Contreras, M., 2019. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical Reviews in Food Science and Nutrition, 59(8), 1212-1229.
  • Roughani, A., Miri, S.M., 2018. Lepidium species as antidiabetic herbal medicines. In The First National Congress and International Fair of Medicinal Plants and Strategies for Persian Medicine that Affect Diabetes (pp. 9-11).
  • Rubavathi, S., Ayyappadasan, G., Sangeetha, N., Harini, T., Saranya, D., Harshapradha, P., 2020. Studies on Antioxidant and Anti-obesity Activity of Salvia hispanica (Chia) Seeds Extracts. Journal of Drug Delivery and Therapeutics, 10(3-s), 98-106.
  • Ruiz, A., Espinosa, B., Guillén, G., 2017. Effect of quinua (Chenopodium quinoa) consumption as a coadjuvant in nutritional intervention in prediabetic subjects. Nutricion Hospitalaria, 34(5), 1163-1169.
  • Saxena, S., Shahani, L., Bhatnagar, P., 2017. Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian Journal of Pharmaceutical and Clinical Research, 10(11), 273-276.
  • Scapin, G., Schmidt, M.M., Prestes, R.C., Rosa, C.S., 2016. Phenolics compounds, flavonoids and antioxidant activity of chia seed extracts (Salvia hispanica) obtained by different extraction conditions. International Food Research Journal, 23(6), 2341-2346.
  • Shah, M.B., Dudhat, V.A., Gadhvi, K.V., 2021. Lepidium sativum: A potential functional food. Journal of Ayurvedic and Herbal Medicine, 7(2), 140-149.
  • Sharma, P., Kaur, G., Kehinde, B.A., Chhikara, N., Panghal, A., Kaur, H., 2020. Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: a review. International Journal of Vegetable Science, 26(1), 79-95.
  • Shende, P., Narvenker, R., 2020. Herbal nanotherapy: A new paradigm over conventional obesity treatment. Journal of Drug Delivery Science and Technology, 102291.
  • Srinivasan, K., 2019. Fenugreek (Trigonella foenum-graecum L.) seeds used as functional food supplements to derive diverse health benefits. In Nonvitamin and nonmineral nutritional supplements (pp. 217-221). Academic press.
  • Stikić, R.I., Milinčić, D.D., Kostić, A.Ž., Jovanović, Z.B., Gašić, U.M., Tešić, Ž.L., Pešić, M.B,. 2020. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry, 97(3), 626-633.
  • Syed, Q.A., Akram, M., Shukat, R., 2019. Nutritional and therapeutic importance of the pumpkin seeds. Seed, 21(2), 15798-15803.
  • Tamargo, A., Martin, D., Del Hierro, J.N., Moreno-Arribas, M.V., Muñoz, L.A., 2020. Intake of soluble fibre from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi®. Food Research International, 137, 109364.
  • Tang, Y., Tsao, R., 2017. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767.
  • Tavakoly, R., Maracy, M.R., Karimifar, M., Entezari, M.H., 2018. Does fenugreek (Trigonella foenum-graecum) seed improve inflammation, and oxidative stress in patients with type 2 diabetes mellitus? A parallel group randomized clinical trial. European Journal of Integrative Medicine, 18, 13-17.
  • Teng, C., Shi, Z., Yao, Y., Ren, G., 2020. Structural Characterization of Quinoa Polysaccharide and Its Inhibitory Effects on 3T3-L1 Adipocyte Differentiation. Foods, 9(10), 1511.
  • Umesha, S.S., Naidu, K.A., 2015. Antioxidants and antioxidant enzymes status of rats fed on n-3 PUFA rich Garden cress (Lepidium sativum L) seed oil and its blended oils. Journal of Food Science and Technology, 52(4), 1993-2002.
  • Wu, Z., Cai, Y.S., Yuan, R., Wan, Q., Xiao, D., Lei, J., Yu, J., 2020. Bioactive pterocarpans from Trigonella foenum-graecum L. Food Chemistry, 313, 126092.
  • Yao, D., Zhang, B., Zhu, J., Zhang, Q., Hu, Y., Wang, S., Xiao, J., 2020. Advances on application of fenugreek seeds as functional foods: Pharmacology, clinical application, products, patents and market. Critical Reviews in Food Science and Nutrition, 60(14), 2342-2352.
  • Yao, Y., Zhu, Y., Gao, Y., Shi, Z., Hu, Y., Ren, G., 2015. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation. Food & Function, 6(10), 3282-3290.
  • Yokoyama, S.I., Kodera, M., Hirai, A., Nakada, M., Ueno, Y., Osawa, T., 2020. Benzyl Isothiocyanate Produced by Garden Cress (Lepidium sativum) Prevents Accumulation of Hepatic Lipids. Journal of Nutritional Science and Vitaminology, 66(5), 481-487.
  • Zameer, S., Najmi, A.K., Vohora, D., Akhtar, M., 2018. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutritional Neuroscience, 21(8), 539-545.
  • Zhou, C., Qin, Y., Chen, R., Gao, F., Zhang, J., Lu, F., 2020. Fenugreek attenuates obesity-induced inflammation and improves insulin resistance through downregulation of iRhom2/TACE. Life Sciences, 258, 118222.
Yıl 2022, Cilt: 2 Sayı: 1, 64 - 81, 15.06.2022

Öz

Kaynakça

  • Abdulmalek, S.A., Fessal, M., El-Sayed, M., 2021. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. Journal of Ethnopharmacology, 266, 113439.
  • Achari, A.E., Jain, S.K., 2017. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International Journal of Molecular Sciences, 18(6), 1321.
  • Achilonu, M.C., Nwafor, I.C., Umesiobi, D.O., Sedibe, M.M., 2018. Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well‐being of poultry species. Journal of Animal Physiology and Animal Nutrition, 102(1), 5-16.
  • Ademiluyi, A.O., Oyeniran, O.H., Jimoh, T.O., Oboh, G., Boligon, A.A., 2019. Fluted pumpkin (Telfairia occidentalis) seed modulates some markers of erectile function in isolated rat’s corpus cavernosum: Influence of polyphenol and amino acid constituents. Journal of Food Biochemistry, 43(11), e13037.
  • Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A., Yaqoob, S., Aziz, M.A., 2017. A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of Cucurbita pepo L. The Journal of Phytopharmacology, 6(2), 133-139.
  • Adsul, S., Madkaikar, V., 2021. Pumpkin (Cucurbita pepo) Seed. In Oilseeds: Health Attributes and Food Applications (pp. 473-506). Springer, Singapore.
  • Afzal, B., Pasha, I., Zahoor, T., Nawaz, H., 2016. Nutritional potential of fenugreek supplemented bread with special reference to antioxidant profiling. Pakistan Journal of Agricultural Sciences, 53(1), 217-223.
  • Ahmad, A., Jan, B.L., Raish, M., Alkharfy, K.M., Ahad, A., Khan, A., Hamidaddin, M.A.A., 2018. Inhibitory effects of Lepidium sativum polysaccharide extracts on TNF-α production in Escherichia coli-stimulated mouse. 3 Biotech, 8(6), 1-8.
  • Akbar, S., 2020. Handbook of 200 medicinal plants: A comprehensive review of their traditional medical uses and scientific justifications. Springer.
  • Akinfenwa, A.O., Cheikhyoussef, A., Cheikhyoussef, N., Hussein, A.A., 2020. Cold pressed chia (Salvia hispanica L.) seed oil. In Cold Pressed Oils (pp. 181-190). Academic Press.
  • Alamri, E., 2019. The Influence of Two Types of Chia Seed on Some Physiological Parameters in Diabetic Rats. International Journal of Pharmaceutical Research & Allied Sciences, 8(3), 131-136.
  • Al-Fuhaid, N., 2018. Can a Garden Cress (Lepidium sativum: Cruciferae) Seeds be a Poisonous Bait for the Larvae of Trogoderma granarium Everts?. World Journal of Agricultural Research, 6(2), 31-36.
  • Alharbi, F.K., Hanan, M.S., 2017. Influence of dietary supplementation of Garden cress (Lepidium sativum L.) on histopathology and serum biochemistry in Diabetic Rats. Egyptian Journal of Chemistry and Environmental Health, 3(1), 1-19.
  • Almatroodi, S.A., Almatroudi, A., Alsahli, M.A., Rahmani, A.H., 2021. Fenugreek (Trigonella Foenum-Graecum) and its Active Compounds: A Review of its Effects on Human Health through Modulating Biological Activities. Pharmacognosy Journal, 13(3), 813–821.
  • Al-Okbi, S.Y., Mohamed, D.A., Hamed, T.E.S., Kassem, A.A., Abd El-Alim, S.H., Mostafa, D.M., 2017. Enhanced prevention of progression of non alcoholic fatty liver to steatohepatitis by incorporating pumpkin seed oil in nanoemulsions. Journal of Molecular Liquids, 225, 822-832.
  • Alqahtani, F.Y., Aleanizy, F.S., Mahmoud, A.Z., Farshori, N.N., Alfaraj, R., Al-Sheddi, E.S., Alsarra, I.A., 2019. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi Journal of Biological Sciences, 26(5), 1089-1092.
  • Alshammari, G.M., Balakrishnan, A., 2019. Pumpkin (Cucurbita ficifolia Bouché) extract attenuate the adipogenesis in human mesenchymal stem cells by controlling adipogenic gene expression. Saudi Journal of Biological Sciences, 26(4), 744-751.
  • Alsieni, M.A., El Rabey, H.A., Al-Sieni, A.I., Al-Seeni, M.N., 2021. Comparison between the Antioxidant and Antidiabetic Activity of Fenugreek and Buckthorn in Streptozotocin-Induced Diabetic Male Rats. BioMed Research International, 2021, 1-12.
  • Al-Snafi, A.E., 2019. Chemical constituents and pharmacological effects of Lepidium sativum-A Review. International Journal of Current Pharmaceutical Research, 11(6), 1-10.
  • Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M.W., Hamar, A., Khajehei, F., Piatti, C., 2020. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “Golden Grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2), 216.
  • Bakhtavar, M.A., Afzal, I., 2020. Climate smart Dry Chain Technology for safe storage of quinoa seeds. Scientific Reports, 10(1), 1-12.
  • Balgoon, M.J., 2019. Assessment of the protective effect of Lepidium sativum against aluminum-induced liver and kidney effects in albino rat. BioMed Research International, 2019.
  • Baregama, C., Goyal, A., 2019. Phytoconstituents, pharmacological activity, and medicinal use of Lepidium sativum Linn.: A review. Asian Journal of Pharmaceutical and Clinical Research, 12(4), 45-50.
  • Bezerraa, K.G., Durvala, I.J., Silvab, I.A., Fabiola, C.G., 2020. Emulsifying capacity of biosurfactants from Chenopodium quinoa and Pseudomonas aeruginosa UCP 0992 with focus of application in the cosmetic Industry. Chemical Engineering Transactions, 79, 211-216.
  • Blüher, M., 2019. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288-298.
  • Buitrago, D., Buitrago-Villanueva, I., Barbosa-Cornelio, R., Coy-Barrera, E., 2019. Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions. Antioxidants, 8(8), 238.
  • Burrieza, H.P., Rizzo, A.J., Vale, E.M., Silveira, V., Maldonado, S., 2019. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chemistry, 293, 299-306.
  • Capraro, J., De Benedetti, S., Di Dio, M., Bona, E., Abate, A., Corsetto, P.A., Scarafoni, A., 2020. Characterization of Chenopodin Isoforms from Quinoa Seeds and Assessment of Their Potential Anti-Inflammatory Activity in Caco-2 Cells. Biomolecules, 10(5), 795.
  • Carciochi, R.A., Manrique, G.D., Dimitrov, K., 2014. Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal, 21, 767-773.
  • Caruso, M.C., Favati, F., Di Cairano, M., Galgano, F., Labella, R., Scarpa, T., Condelli, N., 2018. Shelf-life evaluation and nutraceutical properties of chia seeds from a recent long-day flowering genotype cultivated in Mediterranean area. LWT Food Science and Technology, 87, 400-405.
  • Chooi, Y.C., Ding, C., Magkos, F., 2019. The epidemiology of obesity. Metabolism: Clinical and Experimental, 92, 6-10.
  • Cragg, G.M., Newman, D.J., 2013. Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670-3695.
  • da Silva, B.P., Toledo, R.C.L., Grancieri, M., de Castro Moreira, M.E., Medina, N.R., Silva, R.R., Martino, H.S.D., 2019. Effects of chia (Salvia hispanica L.) on calcium bioavailability and inflammation in Wistar rats. Food Research International, 116, 592-599.
  • de Falco, B., Amato, M., Lanzotti, V., 2017. Chia seeds products: an overview. Phytochemistry Reviews, 16, 745-760.
  • Desai, S.S., Walvekar, M.V., Shaikh, N.H., 2017. Cytoprotective effects of Lepidium sativum seed extract on liver and pancreas of HFD/STZ induced type 2 diabetic mice. International Journal of Pharmacognosy and Phytochemistry Research, 9i 502-507.
  • Dong, X.J., Chen, J.Y., Chen, S.F., Li, Y., Zhao, X.J., 2021. The composition and anti-inflammatory properties of pumpkin seeds. Journal of Food Measurement and Characterization, 15(2), 1834-1842.
  • Dotto, J.M., Chacha, J.S., 2020. The potential of pumpkin seeds as a functional food ingredient: a review. Scientific African, 10, e00575.
  • El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., El Kacimi, K., Yasri, A., 2020. An insight into saponins from quinoa (Chenopodium quinoa Willd): a review. Molecules, 25(5), 1059.
  • Ellulu, M.S., Patimah, I., Khaza’ai, H., Rahmat, A., Abed, Y., 2017. Obesity and inflammation: the linking mechanism and the complications. Archives of Medical Science: AMS, 13(4), 851-863.
  • Elshawwa, M.M., 2020. Correlation between Serum and Tissue Levels of Adipokines in Obesity in Adult Male Rats with and without Antioxidant. QJM: An International Journal of Medicine, 113(Supplement_1), 113-114.
  • Felemban, L.F., Al-Attar, A.M., Zeid, I.M.A., 2020. Medicinal and Nutraceutical Benefits of Chia Seed (Salvia hispanica). Journal of Pharmaceutical Research International, 15-26.
  • Feng, T., Liu, P., Zhang, Z., Hu, J., Kong, Z., 2016. Combination of DFP and taurine counteracts the aluminum-induced alterations in oxidative stress and ATPase in cortex and blood of rats. Biological Trace Element Research, 174(1), 142-149.
  • Fernández-López, J., Viuda-Martos, M., Sayas-Barberá, M.E., Navarro-Rodríguez de Vera, C., Lucas-González, R., Roldán-Verdú, A., Botella-Martínez, C., Pérez-Alvarez, J.A., 2020. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. Plants, 9, 1359.
  • Foucault, A.S., Mathé, V., Lafont, R., Even, P., Dioh, W., Veillet, S., Quignard‐Boulangé, A., 2012. Quinoa extract enriched in 20‐hydroxyecdysone protects mice from diet‐induced obesity and modulates adipokines expression. Obesity, 20(2), 270-277.
  • Garcia-Mazcorro, J.F., Mills, D.A., Murphy, K., Noratto, G., 2018. Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. European Journal of Nutrition, 57(7), 2513-2528.
  • Gazem, R.A.A., Chandrashekariah, S.A., 2016. Pharmacological properties of Salvia hispanica (chia) seeds: a review. Journal of Critical Reviews, 3(3), 63-67.
  • Ghahremanloo, A., Hajipour, R., Hemmati, M., Moossavi, M., Mohaqiq, Z., 2018. The beneficial effects of pumpkin extract on atherogenic lipid, insulin resistance and oxidative stress status in high-fat diet-induced obese rats. Journal of Complementary and Integrative Medicine, 15(2), 1-7.
  • Gokavi, S.S., Malleshi, N.G., Guo, M., 2004. Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nutrition, 59(3), 105-111.
  • Gomez, G., 2017. US Health Policy and Prescription Drug Coverage for FDA-Approved Obesity Medications (Doctoral dissertation, Harvard University).
  • Graf, B.L., Rojas‐Silva, P., Rojo, L.E., Delatorre‐Herrera, J., Baldeón, M.E., Raskin, I., 2015. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety, 14(4), 431-445.
  • Grancieri, M., Martino, H.S.D., Gonzalez de Mejia, E., 2021. Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes. Nutrients, 13(1), 176.
  • Gurunath, S., 2019. Antihypertensive and Hypocholesterolemic Activity of a Novel Herbal Formulation of Fenugreek, Cumin and Ajowan in Rats. Journal of Exploratory Research in Pharmacology, 4(4), 41-47.
  • Han, K., Li, X.Y., Zhang, Y.Q., He, Y.L., Hu, R., Lu, X.L., Hui, J., 2020. Chia Seed Oil Prevents High Fat Diet Induced Hyperlipidemia and Oxidative Stress in Mice. European Journal of Lipid Science and Technology, 122(4), 1900443.
  • Hernández-Pérez, T., Valverde, M.E., Paredes-López, O., 2021. Seeds from ancient food crops with the potential for antiobesity promotion. Critical Reviews in Food Science and Nutrition, 1-8.
  • Hirich, A., Choukr-Allah, R., Ragab, R., 2020. Emerging Research in Alternative Crops. Springer International Publishing.
  • Hussain, M.S., Hossain, M.S., Rashid, M.M.O., 2019. Antiobesity and Lipid Lowering Activitiy of Vigna unguiculata (L) Walp. Seed in High Fat Diet Induced Obese Mice. Journal of Pharmacy and Nutrition Sciences, 9, 000-000.
  • Jain, T., Grover, K., 2018. A comprehensive review on the nutritional and nutraceutical aspects of garden cress (Lepidium sativum Linn.). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88(3), 829-836.
  • Jhajhria, A., Kumar, K., 2016. Fenugreek with its medicinal applications. International Journal of Pharmaceutical Sciences Review and Research, 41(1), 194-201.
  • Joebstl, D., Bandoniene, D., Meisel, T., Chatzistathis, S., 2010 Identification of the geographical origin of pumpkin seed oil by the use of rare earth elements and discriminant analysis. Food Chemistry, 123, 1303-1309.
  • Kalaivani, A., Sathibabu Uddandrao, V.V., Brahmanaidu, P., Saravanan, G., Nivedha, P.R., Tamilmani, P., Vadivukkarasi, S., 2018. Anti obese potential of Cucurbita maxima seeds oil: effect on lipid profile and histoarchitecture in high fat diet induced obese rats. Natural Product Research, 32(24), 2950-2953.
  • Kalaivani, A., Vadivukkarasi, S., Uddandrao, V.S., Saravanan, G., 2020. Attenuation of obesity-associated oxidative stress by Cucurbita maxima seed oil in high fat diet-induced obese rats. In Pathophysiology of Obesity-Induced Health Complications (pp. 305-316). Springer, Cham.
  • Kandhare, A.D., Bandyopadhyay, D., Thakurdesai, P.A., 2018. Low molecular weight galactomannans-based standardized fenugreek seed extract ameliorates high-fat diet-induced obesity in mice via modulation of FASn, IL-6, leptin, and TRIP-Br2. RSC Advances, 8(57), 32401-32416.
  • Katunzi-Kilewela, A., Kaale, L.D., Kibazohi, O., Rweyemamu, L.M., 2021. Nutritional, health benefits and usage of chia seeds (Salvia hispanica): A review. African Journal of Food Science, 15(2), 48-59.
  • Kaur, S., Panghal, A., Garg, M.K., Mann, S., Khatkar, S.K., Sharma, P., Chhikara, N., 2019. Functional and nutraceutical properties of pumpkin–a review. Nutrition & Food Science, 50, 384-401.
  • Khound, R., Shen, J., Song, Y., Santra, D., Su, Q., 2018. Phytoceuticals in fenugreek ameliorate VLDL overproduction and insulin resistance via the insig signaling pathway. Molecular Nutrition & Food Research, 62(5), 1700541.
  • Kimbonguila, A., Matos, L., Petit, J., Scher, J., Nzikou, J.M., 2019. Effect of physical treatment on the physicochemical, rheological and functional properties of yam meal of the cultivar “Ngumvu” from Dioscorea alata L. of Congo. International Journal of Recent Scientific Research, 8, 22213-22217.
  • Knez Hrnčič, M., Ivanovski, M., Cör, D., Knez, Ž., 2020. Chia Seeds (Salvia hispanica L.): an overview—phytochemical profile, isolation methods, and application. Molecules, 25(1), 11.
  • Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., Gramza-Michałowska, A., 2019. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11(6), 1242.
  • Kushawaha, D.K., Yadav, M., Chatterji, S., Srivastava, A.K., Watal, G., 2017. Evidence based study of antidiabetic potential of C. maxima seeds–In vivo. Journal of Traditional and Complementary Medicine, 7(4), 466-470.
  • L’hadj, I., Azzi, R., Lahfa, F., Koceir, E.A., Omari, N., 2019. The nutraceutical potential of Lepidium sativum L. seed flavonoid‐rich extract in managing metabolic syndrome components. Journal of Food Biochemistry, 43(3), e12725.
  • Lahiri, B., Rani, R., 2020. Garden Cress Seeds: chemistry, medicinal properties, application in dairy and food industry: A Review. Emergent Life Sciences Research, 6, 1-4.
  • Liu, M., Zhu, K., Yao, Y., Chen, Y., Guo, H., Ren, G., Li, J., 2020. Antioxidant, anti‐inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry, 97(3), 703-713.
  • Lu, A., Yu, M., Fang, Z., Xiao, B., Guo, L., Wang, W., Zhang, Y., 2019. Preparation of the controlled acid hydrolysates from pumpkin polysaccharides and their antioxidant and antidiabetic evaluation. International Journal of Biological Macromolecules, 121, 261-269.
  • Mala, S.K., Aathira, P., Anjali, E.K., Srinivasulu, K., Sulochanamma, G., 2018. Effect of pumpkin powder incorporation on the physico-chemical, sensory and nutritional characteristics of wheat flour muffins. International Food Research Journal, 25(3), 1081-1087.
  • Marcinek, K., Krejpcio, Z., 2017. Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications-a review. Roczniki Państwowego Zakładu Higieny, 68(2), 123-129.
  • Marrelli, M., Statti, G., Conforti, F., 2020. A review of biologically active natural products from Mediterranean wild edible plants: benefits in the treatment of obesity and its related disorders. Molecules, 25(3), 649.
  • Melo, D., Machado, T.B., Oliveira, M.B.P., 2019. Chia seeds: an ancient grain trending in modern human diets. Food & Function, 10(6), 3068-3089.
  • Mohamadi, N., Sharififar, F., Pournamdari, M., Ansari, M., 2018. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. Journal of Dietary Supplements, 15(2), 207-222.
  • Monteiro, C.A., Cannon, G.J., 2019. The role of the transnational ultra-processed food industry in the pandemic of obesity and its associated diseases: problems and solutions. World Nutrition, 10(1), 89-99.
  • Montesano, D., Blasi, F., Simonetti, M.S., Santini, A., Cossignani, L., 2018. Chemical and nutritional characterization of seed oil from Cucurbita maxima L.(var. Berrettina) pumpkin. Foods, 7(3), 30.
  • Moreno-Valdespino, C.A., Luna-Vital, D., Camacho-Ruiz, R.M., Mojica, L., 2020. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Research International, 130, 108905.
  • Mukthamba, P., Srinivasan, K., 2016. Hypolipidemic and antioxidant effects of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) in high-fat fed rats. Food Bioscience, 14, 1-9.
  • Navruz-Varli, S., Sanlier, N., 2016. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376.
  • Ng, C.Y., Wang, M., 2021. The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Frontiers, 2(3), 329-356.
  • Noratto, G.D., Murphy, K., Chew, B.P., 2019. Quinoa intake reduces plasma and liver cholesterol, lessens obesity-associated inflammation, and helps to prevent hepatic steatosis in obese db/db mouse. Food Chemistry, 287, 107-114.
  • Nowak, V., Du, J., Charrondière, U.R., 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47-54.
  • Obaroakpo, J.U., Nan, W., Hao, L., Liu, L., Zhang, S., Lu, J., Lv, J., 2020. The hyperglycemic regulatory effect of sprouted quinoa yoghurt in high-fat-diet and streptozotocin-induced type 2 diabetic mice via glucose and lipid homeostasis. Food & Function, 11(9), 8354-8368.
  • Oliva, M.E., del Rosario Ferreira, M., Joubert, M.B.V., D'Alessandro, M.E., 2021. Salvia hispanica L.(chia) seed promotes body fat depletion and modulates adipocyte lipid handling in sucrose-rich diet-fed rats. Food Research International, 139, 109842.
  • Pachi, V.K., Mikropoulou, E.V., Gkiouvetidis, P., Siafakas, K., Argyropoulou, A., Angelis, A., Halabalaki, M., 2020. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. chia, Anacardiaceae): A review. Journal of Ethnopharmacology, 254, 112485.
  • Panchal, S.K., 2012. Cardioprotective and hepatoprotective effects of natural products in metabolic syndrome (Doctoral dissertation, University of Southern Queensland).
  • Paśko, P., Zagrodzki, P., Bartoń, H., Chłopicka, J., Gorinstein, S., 2010. Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition, 65(4), 333-338.
  • Patel, U., Kulkarni, M., Undale, V., Bhosale, A., 2009. Evaluation of diuretic activity of aqueous and methanol extracts of Lepidium sativum garden cress (Cruciferae) in rats. Tropical Journal of Pharmaceutical Research, 8(3).
  • Petersen, R., Pan, L., Blanck, H.M., 2019. Peer Reviewed: Racial and Ethnic Disparities in Adult Obesity in the United States: CDC’s Tracking to Inform State and Local Action. Preventing Chronic Disease, 16, 1-6.
  • Rafińska, K., Pomastowski, P., Rudnicka, J., Krakowska, A., Maruśka, A., Narkute, M., Buszewski, B., 2019. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chemistry, 289, 16-25.
  • Rafiqi, U.N., Gul, I., Saifi, M., Nasrullah, N., Ahmad, J., Dash, P., Abdin, M.Z., 2019. Cloning, identification, and in silico analysis of terpene synthases involved in the competing pathways of artemisinin biosynthesis pathway in Artemisia annua L. Pharmacognosy Magazine, 15(62), 38-46.
  • Raghavendra, R.H., Akhilender Naidu, K., 2011. Eugenol and n-3 rich garden cress seed oil as modulators of platelet aggregation and eicosanoids in Wistar albino rats. The Open Nutraceuticals Journal, 4(1), 144-150.
  • Rajasree, R.S., Sibi, P.I., Francis, F., William, H., 2016. Phytochemicals of Cucurbitaceae family—A review. International Journal of Pharmacognosy and Phytochemical Research, 8(1), 113-123.
  • Ratnam, N., Naijibullah, M., Ibrahim, M.D., 2017. A review on Cucurbita pepo. International Journal of Pharmacognosy and Phytochemical Research, 9, 1190-1194.
  • Rodríguez-Pérez, C., Segura-Carretero, A., del Mar Contreras, M., 2019. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical Reviews in Food Science and Nutrition, 59(8), 1212-1229.
  • Roughani, A., Miri, S.M., 2018. Lepidium species as antidiabetic herbal medicines. In The First National Congress and International Fair of Medicinal Plants and Strategies for Persian Medicine that Affect Diabetes (pp. 9-11).
  • Rubavathi, S., Ayyappadasan, G., Sangeetha, N., Harini, T., Saranya, D., Harshapradha, P., 2020. Studies on Antioxidant and Anti-obesity Activity of Salvia hispanica (Chia) Seeds Extracts. Journal of Drug Delivery and Therapeutics, 10(3-s), 98-106.
  • Ruiz, A., Espinosa, B., Guillén, G., 2017. Effect of quinua (Chenopodium quinoa) consumption as a coadjuvant in nutritional intervention in prediabetic subjects. Nutricion Hospitalaria, 34(5), 1163-1169.
  • Saxena, S., Shahani, L., Bhatnagar, P., 2017. Hepatoprotective effect of Chenopodium quinoa seed against CCL4-induced liver toxicity in Swiss albino male mice. Asian Journal of Pharmaceutical and Clinical Research, 10(11), 273-276.
  • Scapin, G., Schmidt, M.M., Prestes, R.C., Rosa, C.S., 2016. Phenolics compounds, flavonoids and antioxidant activity of chia seed extracts (Salvia hispanica) obtained by different extraction conditions. International Food Research Journal, 23(6), 2341-2346.
  • Shah, M.B., Dudhat, V.A., Gadhvi, K.V., 2021. Lepidium sativum: A potential functional food. Journal of Ayurvedic and Herbal Medicine, 7(2), 140-149.
  • Sharma, P., Kaur, G., Kehinde, B.A., Chhikara, N., Panghal, A., Kaur, H., 2020. Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: a review. International Journal of Vegetable Science, 26(1), 79-95.
  • Shende, P., Narvenker, R., 2020. Herbal nanotherapy: A new paradigm over conventional obesity treatment. Journal of Drug Delivery Science and Technology, 102291.
  • Srinivasan, K., 2019. Fenugreek (Trigonella foenum-graecum L.) seeds used as functional food supplements to derive diverse health benefits. In Nonvitamin and nonmineral nutritional supplements (pp. 217-221). Academic press.
  • Stikić, R.I., Milinčić, D.D., Kostić, A.Ž., Jovanović, Z.B., Gašić, U.M., Tešić, Ž.L., Pešić, M.B,. 2020. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry, 97(3), 626-633.
  • Syed, Q.A., Akram, M., Shukat, R., 2019. Nutritional and therapeutic importance of the pumpkin seeds. Seed, 21(2), 15798-15803.
  • Tamargo, A., Martin, D., Del Hierro, J.N., Moreno-Arribas, M.V., Muñoz, L.A., 2020. Intake of soluble fibre from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model simgi®. Food Research International, 137, 109364.
  • Tang, Y., Tsao, R., 2017. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767.
  • Tavakoly, R., Maracy, M.R., Karimifar, M., Entezari, M.H., 2018. Does fenugreek (Trigonella foenum-graecum) seed improve inflammation, and oxidative stress in patients with type 2 diabetes mellitus? A parallel group randomized clinical trial. European Journal of Integrative Medicine, 18, 13-17.
  • Teng, C., Shi, Z., Yao, Y., Ren, G., 2020. Structural Characterization of Quinoa Polysaccharide and Its Inhibitory Effects on 3T3-L1 Adipocyte Differentiation. Foods, 9(10), 1511.
  • Umesha, S.S., Naidu, K.A., 2015. Antioxidants and antioxidant enzymes status of rats fed on n-3 PUFA rich Garden cress (Lepidium sativum L) seed oil and its blended oils. Journal of Food Science and Technology, 52(4), 1993-2002.
  • Wu, Z., Cai, Y.S., Yuan, R., Wan, Q., Xiao, D., Lei, J., Yu, J., 2020. Bioactive pterocarpans from Trigonella foenum-graecum L. Food Chemistry, 313, 126092.
  • Yao, D., Zhang, B., Zhu, J., Zhang, Q., Hu, Y., Wang, S., Xiao, J., 2020. Advances on application of fenugreek seeds as functional foods: Pharmacology, clinical application, products, patents and market. Critical Reviews in Food Science and Nutrition, 60(14), 2342-2352.
  • Yao, Y., Zhu, Y., Gao, Y., Shi, Z., Hu, Y., Ren, G., 2015. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation. Food & Function, 6(10), 3282-3290.
  • Yokoyama, S.I., Kodera, M., Hirai, A., Nakada, M., Ueno, Y., Osawa, T., 2020. Benzyl Isothiocyanate Produced by Garden Cress (Lepidium sativum) Prevents Accumulation of Hepatic Lipids. Journal of Nutritional Science and Vitaminology, 66(5), 481-487.
  • Zameer, S., Najmi, A.K., Vohora, D., Akhtar, M., 2018. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutritional Neuroscience, 21(8), 539-545.
  • Zhou, C., Qin, Y., Chen, R., Gao, F., Zhang, J., Lu, F., 2020. Fenugreek attenuates obesity-induced inflammation and improves insulin resistance through downregulation of iRhom2/TACE. Life Sciences, 258, 118222.
Toplam 121 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Reviews
Yazarlar

Heba Hosny Bu kişi benim 0000-0003-1587-2023

Nayra Omran Bu kişi benim 0000-0001-5999-8563

Heba Handoussa 0000-0001-5552-1725

Yayımlanma Tarihi 15 Haziran 2022
Gönderilme Tarihi 17 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 2 Sayı: 1

Kaynak Göster

APA Hosny, H., Omran, N., & Handoussa, H. (2022). Edible seeds with potential anti-obesity impact: A Review. International Journal of Plant Based Pharmaceuticals, 2(1), 64-81.
AMA Hosny H, Omran N, Handoussa H. Edible seeds with potential anti-obesity impact: A Review. Int. J. Plant Bas. Pharm. Haziran 2022;2(1):64-81.
Chicago Hosny, Heba, Nayra Omran, ve Heba Handoussa. “Edible Seeds With Potential Anti-Obesity Impact: A Review”. International Journal of Plant Based Pharmaceuticals 2, sy. 1 (Haziran 2022): 64-81.
EndNote Hosny H, Omran N, Handoussa H (01 Haziran 2022) Edible seeds with potential anti-obesity impact: A Review. International Journal of Plant Based Pharmaceuticals 2 1 64–81.
IEEE H. Hosny, N. Omran, ve H. Handoussa, “Edible seeds with potential anti-obesity impact: A Review”, Int. J. Plant Bas. Pharm., c. 2, sy. 1, ss. 64–81, 2022.
ISNAD Hosny, Heba vd. “Edible Seeds With Potential Anti-Obesity Impact: A Review”. International Journal of Plant Based Pharmaceuticals 2/1 (Haziran 2022), 64-81.
JAMA Hosny H, Omran N, Handoussa H. Edible seeds with potential anti-obesity impact: A Review. Int. J. Plant Bas. Pharm. 2022;2:64–81.
MLA Hosny, Heba vd. “Edible Seeds With Potential Anti-Obesity Impact: A Review”. International Journal of Plant Based Pharmaceuticals, c. 2, sy. 1, 2022, ss. 64-81.
Vancouver Hosny H, Omran N, Handoussa H. Edible seeds with potential anti-obesity impact: A Review. Int. J. Plant Bas. Pharm. 2022;2(1):64-81.