İnceleme Makalesi
BibTex RIS Kaynak Göster

Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies

Yıl 2025, Cilt: 4 Sayı: 2, 32 - 52, 29.07.2025

Öz

As computerization and AI have advanced, the healthcare industry, particularly the field of cancer research, has undergone a complete revolution. The combination of nanorobots and AI in healthcare is designed to enhance the delivery, diagnosis, and treatment of drugs. Unlike chemotherapy and radiation therapy, nanoroborts delivers drugs precisely to the affected areas with fewer side effects and better results. Like, doxorubicin which is a powerful chemotherapy drug, could be enclosed in a nanorobot that moves on its own or controlled to precisely deliver the medication to the cancerous area.
Moreover, nanorobots can have a passive or active purpose, and different categories include Magnetic, enzyme based, bacterial, and AI-based nanorobots. Nevertheless, these systems encounter challenges related to biocompatibility, power supply, and real-time monitoring. These can be overcome by using, AI and machine learning, offer vital answers to enhance the self-navigating and decision making processes that support the use of nanorobots.
Overall, while there have been significant advancements in cancer treatment, there are still several issues that need to be resolved before utilizing nanorobots for improved and safer therapies for cancer patients in the future, to enhance their quality of life. This article will explore the different types of nanorobots, how and why they are used including the use of doxorubicin and there future aspects.

Etik Beyan

This review article is an original work by the authors and has not been published or submitted elsewhere. All sources of information and data used in this review are appropriately cited, and proper credit has been given to the original authors and publications. No funding from any organization or entity with a potential conflict of interest influenced the content or findings of this review. The authors have declared no competing interests related to this article. This manuscript adheres to ethical standards, ensuring integrity, accuracy, and respect for the scientific community.

Destekleyen Kurum

GIET SCHOOL OF PHARMACY

Kaynakça

  • Ahmad, A., Imran, M., & Sharma, N. (2022). Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics, 14(11), 2463. https://doi.org/10.3390/pharmaceutics14112463
  • Akhtar, N., Mohammed, H. A., Yusuf, M., Al-Subaiyel, A., Sulaiman, G. M., & Khan, R. A. (2022). SPIONs Conjugate Supported Anticancer Drug Doxorubicin’s Delivery: Current Status, Challenges, and Prospects. Nanomaterials, 12(20), 3686. DOI: 10.3390/nano12203686.
  • Aladesuyi, O. A., &Oluwafemi, O. S.(2023). The role of magnetic nanoparticles in cancer management.Nano-Structures&Nano-Objects,36,101053. https://doi.org/10.1016/j.nanoso.2023.101053
  • Ajaykumar, C. (2020). Overview on the side effects of doxorubicin. IntechOpen. https://doi.org/10.5772/intechopen.94896
  • Alapan, Y., Bozuyuk, U., Erkoc, P., Karacakol, A. C., &Sitti, M. (2020). Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Science Robotics, 5(42), eaba5726. https://doi.org/10.1126/scirobotics.aba5726
  • An, M., Feng, Y., Liu, Y., & Yang, H. (2023). External power-driven micro/nanorobots: Design, fabrication, and functionalization for tumor diagnosis and therapy. Progress in Materials Science, 140(101204), 101204. https://doi.org/10.1016/j.pmatsci.2023.101204
  • Andhari, S. S. et al. Self-propelling targeted Magneto-nanobots for deep tumor penetration and pH-responsive intracellular drug delivery. Sci. Rep. 10:4703 (2020) Doi: https://doi.org/10.1038/s41598-020-61586-y
  • Basu, R., G. Schwartz, J., & T. Phillips, W. (2024). Applications of radionuclide-carrying liposomes for diagnosis and treatment of cancer. Advances in Radiotherapy & Nuclear Medicine, 0(0), 4373. https://doi.org/10.36922/arnm.4373
  • Bhattacharya, S., Prajapati, B. G., Ali, N., Mohany, M., Aboul-Soud, M. A. M., & Khan, R. (2023). Therapeutic potential of Methotrexate-loaded superparamagnetic iron oxide nanoparticles coated with poly(lactic-co-glycolic acid) and polyethylene glycol against breast cancer: Development, characterization, and comprehensive in vitro investigation. ACS Omega, 8(30), 27634–27649. https://doi.org/10.1021/acsomega.3c03430
  • Bozuyuk, U., Yasa, O., Yasa, I. C., Ceylan, H., Kizilel, S., &Sitti, M. (2018). Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano, 12(9), 9617–9625. https://doi.org/10.1021/acsnano.8b05997
  • Canton, E. D., Adjunct Professor of Oncology CEMIC Titular Professor of Artificial Intelligence in Medicine CEMIC University Institute, Argentina, Sande, J. F., & Teaching Assistant Artificial Intelligence in Medicine CEMIC University Institute. (2023). AI-driven advancements in breast cancer: Transforming detection, diagnosis, treatment, and monitoring. Journal of Cancer Research Reviews & Reports, 1–4. https://doi.org/10.47363/jcrr/2023(5)178
  • Ceylan, H., Yasa, I. C., Yasa, O., Tabak, A. F., Giltinan, J., &Sitti, M. (2019). 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano, 13(3), 3353–3362. https://doi.org/10.1021/acsnano.8b09233 Ceylan, H., Yasa, I. C., Kilic, U., Hu, W., &Sitti, M. (2019). Translational prospects of untethered medical microrobots. Progress in Biomedical Engineering (Bristol, England), 1(1), 012002. https://doi.org/10.1088/2516-1091/ab22d5
  • Chen, J., Hu, S., Sun, M., Shi, J., Zhang, H., Yu, H., & Yang, Z. (2024). Recent advances and clinical translation of liposomal delivery systems in cancer therapy
  • Chen, Q., Wang, H., Sun, S., &Qiu, S. (2024). Photothermal therapy-enhanced chemotherapy using nanomaterials: Challenges and future perspectives. Journal of Nanobiotechnology,22(1), 145. https://doi.org/10.1186/s12951-023-02072-4
  • Chinnakorn, A., Nuansing, W., Bodaghi, M., Rolfe, B., &Zolfagharian, A. (2023). Recent progress of 4D printing in cancer therapeutics studies. SLAS Technology, 28(3), 127–141. https://doi.org/10.1016/j.slast.2023.02.002
  • Dai, L., Liu, J., Luo, Z., Li, M., &Cai, K. (2016). Tumor therapy: targeted drug delivery systems. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 4(42), 6758–6772. https://doi.org/10.1039/c6tb01743f
  • Dartora, V. F. C., Passos, J.S., Costa-Lotufo, L. V., Lopes, L. B., &Panitch, A. (2024). Thermosensitive polymeric nanoparticles for drug co-encapsulation and breast cancer treatment. Pharmaceutics,16(2), 231. https://doi.org/10.3390/pharmaceutics16020231
  • Das, T., Sultana, S. Multifaceted applications of micro/nanorobots in pharmaceutical drug delivery systems: a comprehensive review. Futur J Pharm Sci 10, 2 (2024). https://doi.org/10.1186/s43094-023-00577-y
  • Deng, X., Su, Y., Xu, M., Gong, D., Cai, J., Akhter, M., Chen, K., Li, S., Pan, J., Gao, C., Li, D., Zhang, W., & Xu, W. (2023). Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosensors & Bioelectronics, 222(114960), 114960. https://doi.org/10.1016/j.bios.2022.114960
  • Deng, Z., Mou, F., Tang, S., Xu, L., Luo, M., & Guan, J. (2018). Swarming and collective migration of micromotors under near infrared light. Applied Materials Today, 13, 45–53. https://doi.org/10.1016/j.apmt.2018.08.004
  • Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK(2012) The transport of nonsurfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in arat model. Biomaterial 33(10):2936–2951. https:// doi. org/ 10. 1016/j. bioma teria ls. 2011. 12. 046
  • Ding, X., Hu, X., Xu, Z., Wu, Z., Zhang, W., Xie, L., & Wang, Z. (2023). Tumor-targeting immune-modulating nanoparticles potentiate cancer immunotherapy. Nature Communications,14(1), 5787. https://doi.org/10.1038/s41467-023-41565-3
  • Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., & Bibette, J. (2005). Microscopic artificial swimmers. Nature, 437(7060), 862–865. https://doi.org/10.1038/nature04090
  • Elbialy NS, Fathy MM, Khalil WM (2015) Doxorubicin loaded magneticgold nanoparticles for in-vivo targeted drug delivery. Int J Pharm490(1–2):190–199. https:// doi. org/ 10. 1016/j. ijpha rm.2015.05. 03252. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 193, 106688. https://doi.org/10.1016/j.ejps.2023.106688
  • Fang, W., Peng, Y., Liao, H., Wei, W., Liu, J., &Xie, X. (2024). Multi-responsive hydrogels for smart drug delivery in cancer therapy. Chemical Engineering Journal, 460, 142260. https://doi.org/10.1016/j.cej.2023.142260 Fernández-Medina, M., Ramos-Docampo, M. A., Hovorka, O., Salgueiriño, V., &Städler, B. (2020). Recent advances in nano‐ and micromotors. Advanced Functional Materials, 30(12), 1908283. https://doi.org/10.1002/adfm.201908283
  • Gao, L., Akhtar, M. U., Yang, F., Ahmad, S., He, J., Lian, Q., Cheng, W., Zhang, J., & Li, D. (2021). Recent progress in engineering functional biohybrid robots actuated by living cells. ActaBiomaterialia, 121, 29–40. https://doi.org/10.1016/j.actbio.2020.12.002
  • Go, G., Yoo, A., Song, H.-W., Min, H.-K., Zheng, S., Nguyen, K. T., Kim, S., Kang, B., Hong, A., Kim, C.-S., Park, J.-O., & Choi, E. (2021). Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano, 15(1), 1059–1076. https://doi.org/10.1021/acsnano.0c07954
  • Gu, X., Li, Z., & Liu, A. (2024). Stimuli-responsive drug delivery system for breast cancer treatment. Theoretical and Natural Science, 10(5), 1355-1364. https://doi.org/10.54254/2753-8818/46/20240512
  • Hamad, A. A. (2023). The first facile optical density-dependent approach for the analysis of doxorubicin, an oncogenic agent accompanied with the co-prescribed drug; paclitaxel. BMC Chemistry,17(1), 59. https://doi.org/10.1186/s13065-023-00976-5
  • He, Z.-H., Qi, L.-J., He, X.-Y., Han, D., & Cheng, S.-X. (2024). Enhancing targeted cancer therapy through multiple drug delivery by silk peptide nanoparticles. Nano Select,5(2), 134-145. https://doi.org/10.1002/nano.202300176
  • Hu, X., Ge, Z., Wang, X., Jiao, N., Tung, S., & Liu, L. (2022). Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Composites. Part B, Engineering, 228(109451), 109451. https://doi.org/10.1016/j.compositesb.2021.109451
  • Hu, C., Liu, Y., Cao, W., Li, N., Gao, S., Wang, Z., & Gu, F. (2024). Efficacy and Mechanism of a Biomimetic Nanosystem Carrying Doxorubicin and an IDO Inhibitor for Treatment of Advanced Triple-Negative Breast Cancer. International Journal of Nanomedicine, 2024(19), 507–526. DOI: 10.2147/IJN.S440332.
  • Izbińska, P., Szlauer, W., & Obłąk, E. (2024). Liposomes in anticancer strategies. Current Cancer Therapy Reviews, 21. https://doi.org/10.2174/0115733947312894240930110609
  • Jakupovic, A., Kovacevic, Z., Gurbeta, L., &Badnjevic, A. (2018). Review of artificial neural network application in nanotechnology. 2018 7th Mediterranean Conference on Embedded Computing (MECO).
  • Jabbari, A., Sameiyan, E., Yaghoobi, E., Ramezani, M., Alibolandi, M., &Taghdisi, S. M. (2023). Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures.InternationalJournalofPharmaceutics,646,123448. https://doi.org/10.1016/j.ijpharm.2023.123448
  • Jayapriya, P., Pardhi, E., Vasave, R., Guru, S. K., Madan, J., &Mehra, N. K. (2023). A review on stimuli-pH responsive liposomal formulation in cancer therapy. Journal of Drug Delivery Science and Technology,90, 105172. https://doi.org/10.1016/j.jddst.2023.105172
  • Jin, S., Lan, Z., Yang, G., Li, X., Shi, J. Q., Liu, Y., & Zhao, C.-X. (2024). Computationally guided design and synthesis of dual-drug loaded polymeric nanoparticles for combination therapy. Aggregate, 5(2), 154-166. https://doi.org/10.1002/agt2.606
  • Joseph, X., Akhil, V., Arathi, A., &Mohanan, P. V. (2022). Nanobiomaterials in support of drug delivery related issues. Materials Science and Engineering: B,279, 115680. https://doi.org/10.1016/j.mseb.2022.115680
  • Jungcharoen, P., Thivakorakot, K., Thientanukij, N., Kosachunhanun, N., Vichapattana, C., Panaampon, J., Saengboonmee, C. (2024). Magnetite nanoparticles: an emerging adjunctive tool for the improvement of cancer immunotherapy. Exploratory Targeted Antitumor Therapy,5, 316–331. https://doi.org/10.37349/etat.2024.00220
  • Kagan, D., Benchimol, M. J., Claussen, J. C., Chuluun-Erdene, E., Esener, S., & Wang, J. (2012). Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angewandte Chemie (International Ed. in English), 51(30), 7519–7522. https://doi.org/10.1002/anie.201201902
  • Karthigai, S., Selvi., Sharmistha, Dey., Siva, Shankar, Ramasamy., Kiran, Jot, Singh. (2024). 1. Nano Robots Promising Advancements and Challenges in Healthcare. Advances in computational intelligence and robotics book series, doi: 10.4018/979-8-3693-6150-4.ch001
  • Kay, E. R., Leigh, D. A., & Zerbetto, F. (2007). Synthetic molecular motors and mechanical machines. Angewandte Chemie (International Ed. in English), 46(1–2), 72–191. https://doi.org/10.1002/anie.200504313
  • Khan, H., Shahab, U., Alshammari, A., Alyahyawi, A. R., Akasha, R., Alharazi, T., Ahmad, R., Khanam, A., Habib, S., Kaur, K., & Ahmad, S. (2024). Nano-therapeutics: The upcoming nanomedicine to treat cancer. IUBMB Life,76(8), 468-484. https://doi.org/10.1002/iub.2814
  • Kim, N., Kwon, S., Kwon, G., Song, N., Jo, H., Kim, C., Park, S., & Lee, D. (2024). Tumor-targeted and stimulus-responsive polymeric prodrug nanoparticles to enhance the anticancer therapeutic efficacy of doxorubicin. Journal of Controlled Release, 350, 303-320. https://doi.org/10.1016/j.jconrel.2024.03.046 Kumari, P., Ghosh, B., & Biswas, S. (2016). Nanocarriers for cancer-targeted drug delivery. Journal of Drug Targeting, 24(3), 179–191. https://doi.org/10.3109/1061186X.2015.1051049 Lang, X., Wang, X., Han, M., &Guo, Y. (2024). Nanoparticle-mediated synergistic chemoimmunotherapy for cancer treatment. International Journal of Nanomedicine,19,4533-4568. https://doi.org/10.2147/IJN.S455213
  • Laís Ramos Monteiro de Lima, Maria Francilene Souza Silva, Gisele S. Araújo, et al., Doxorubicin-galactomannan nanoconjugates for potential cancer treatment, Carbohydrate Polymers, October 1, 2024, Article ID 122356. DOI: 10.1016/j.carbpol.2024.122356.
  • Li, Y. (2023). pH-sensitive polymeric nanoparticles for effective delivery of doxorubicin. In Proceedings of the 2nd International Conference on Modern Medicine Technology and Clinical Science (MMTCS 2023). https://doi.org/10.54097/hset.v65i.11229 Liposomal Nanoparticles: A Viable Nanoscale Drug Carriers for the Treatment of Cancer. (n.d.).
  • Liu, Y., Zhang, J., Wu, C., Lai, Y., Fan, H., Wang, Q., Lin, Z., Chen, J., Zhao, X., & Jiang, X. (2024). Nanoplatform based on carbon nanoparticles loaded with doxorubicin enhances apoptosis by generating reactive oxygen species for effective cancer therapy. Oncology Letters,27(6), 14421. https://doi.org/10.3892/ol.2024.14421
  • Liu, C., Wang, Z., Wei, X., Chen, B., & Luo, Y. (2021). 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. ActaBiomaterialia, 131, 314–325. https://doi.org/10.1016/j.actbio.2021.07.011
  • Liu, B., Sun, L., Lu, X., Yang, Y., Peng, H., Sun, Z., Xu, J., & Chu, H. (2022). Real-time drug release monitoring from pH-responsive CuS-encapsulated metal-organic frameworks. RSC Advances, 12(18), 3546-3559. https://doi.org/10.1039/D2RA10567K
  • Liu, H., Shi, Y., Ji, G., Wang, J., &Gai, B.(2024). Ultrasound-triggered with ROS-responsive SN38 nanoparticle for enhanced combination cancer immunotherapy. Frontiers in Immunology,15. https://doi.org/10.3389/fimmu.2024.1339380
  • Lv, J., Yue, R., Liu, H., Du, H., Lu, C., Zhang, C., Guan, G., Min, S., Kang, H., & Song, G. (2024). Enzyme-activated nanomaterials for MR imaging and tumor therapy. Coordination Chemistry Reviews,510, 215842. https://doi.org/10.1016/j.ccr.2024.215842
  • Ma, D., Wang, G., Lu, J., Zeng, X., Cheng, Y., Zhang, Z., Lin, N., & Chen, Q. (2023). Multifunctional nano MOF drug delivery platform in combination therapy.European Journal of Medicinal Chemistry, 261, 115884. https://doi.org/10.1016/j.ejmech.2023.115884
  • Medina-Sánchez, M., & Schmidt, O. G. (2017). Medical microbots need better imaging and control. Nature, 545(7655), 406–408. https://doi.org/10.1038/545406a
  • Mukherjee, A., & Mukherjee, G. (2024). Bio-inspired nanorobots for cancer diagnosis and therapy. In Modeling, Simulation, and Control of AI Robotics and Autonomous Systems (pp. 196–212). IGI Global.
  • Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https://doi.org/10.1038/nmat3776
  • Naik, M. H., Satyanarayana, J., & Kudari, R. K. (2024). Nanorobots in drug delivery systems and treatment of cancer. Characterization and Application of Nanomaterials, 7(2), 2539. https://doi.org/10.24294/can.v7i2.2539
  • Nie, C., Ye, J., Jiang, J.-H., & Chu, X.(2024). DNA nanodevice as a multi-module co-delivery platform for combination cancer immunotherapy. Journal of Colloid and Interface Science,667, 1-11. https://doi.org/10.1016/j.jcis.2024.04.069
  • Pak, O. S., Gao, W., Wang, J., & Lauga, E. (2011). High-speed propulsion of flexible nanowire motors: Theory and experiments. Soft Matter, 7(18), 8169. https://doi.org/10.1039/c1sm05503h
  • Pang, W., Ding, S., Lin, L., Wang, C., Lei, M., Xu, J., Wang, X., Qu, J., Wei, X., &Gu, B. (2021). Noninvasive and real-time monitoring of Au nanoparticle promoted cancer metastasis using in vivo flow cytometry. Biomedical Optics Express,12(4), 1846-1857. https://doi.org/10.1364/BOE.420123
  • Pham-Nguyen, O.-V., Shin, J., Park, Y., Jin, S., Kim, S. R., &Yoo, H. S. (2022). Fluorescence-shadowing nanoparticle clusters for real-time monitoring of tumor progression. Biomacromolecules,23(8), 4534-4542. https://doi.org/10.1021/acs.biomac.2c00450
  • Punia, P., Naagar, M., Chalia, S., Dhar, R., Ravelo, B., Thakur, P., & Thakur, A. (2021). Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- A review. Ceramics International, 47(2), 1526–1550. https://doi.org/10.1016/j.ceramint.2020.09.050
  • Raka, S., Belemkar, S., & Bhattacharya, S. (2024). Hybrid nanoparticles for cancer theranostics: A critical review on design, synthesis, and multifunctional capabilities. Current Medicinal Chemistry https://doi.org/10.2174/0109298673309011240606095639 Ren, J., Hu, P., Ma, E., Zhou, X., Wang, W., Zheng, S., & Wang, H. (2022). Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer. Applied Materials Today, 27(101445), 101445. https://doi.org/10.1016/j.apmt.2022.101445
  • Saurabh, K., &Panchwagh, M. P.(2023). Nanorobotics: A novel approach in the drug delivery system of cancer chemotherapy and its application. In *Futuristic Trends in Chemical Material Sciences & Nano Technology (Vol. 3, pp. 97-109). IIP Series. https://doi.org/10.58532/V3BECS8P3CH1
  • Sahejwani I., D., S. Satpute, A., & V. Sawale, A. (2024). Nanorobotics revolution: Targeted precision for cancer therapy. Research Journal of Science and Technology, 151–158. https://doi.org/10.52711/2349-2988.2024.00022 Sandbhor, P., Palkar, P., Bhat, S., John, G., &Godab, J. S. (2024). Nanomedicine as a multimodal therapeutic paradigm against cancer: On the way forward in advancing precision therapy. Nanoscale. https://doi.org/10.1039/D3NR06131K
  • Shi, X., Cheng, Y., Wang, J., Chen, H., Wang, X., Li, X., Tan, W., & Tan, Z. (2020). 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics, 10(23), 10652–10664. https://doi.org/10.7150/thno.47933
  • Shi, A., Long, L., Liu, Z., Liu, Y., Gong, Q., Zhang, C., Yuan, H., & Zhou, X. (2021). Construction of a Novel Doxorubicin Nanomedicine Using Bindarit as a Carrier: A Multiscale Computer Simulation-Assisted Design-Based Study. Journal of Nanomaterials, 2021, Article ID 1835639, 10 pages. DOI: 10.1155/2021/1835639
  • Shi, X., Lin, Y., Zhang, X., Chen, X., Qiao, Y., Ma, M., Zhang, Y., Liu, T., & Zhang, C.(2024). Integrating upconversion and downshifting nanoparticles for a versatile nanoplatform in cancer therapy. Small,20(8), 2304769. https://doi.org/10.1002/smll.202304769
  • Sing, C. E., Schmid, L., Schneider, M. F., Franke, T., & Alexander-Katz, A. (2010). Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 535–540. https://doi.org/10.1073/pnas.0906489107
  • Singh, A. K., Awasthi, R., &Malviya, R. (2023). Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 354, 439–452. https://doi.org/10.1016/j.jconrel.2023.01.042
  • Singh, A. K., Bahadur, S., Yadav, D., &Dabas, H. (2023). Pharmaceutical and pharmacokinetic aspects of nanoformulation based drug delivery systems for anti-cancer drugs. Current PharmaceuticalDesign,29(24),1896-1906.https://doi.org/10.2174/1381612829666230824144727
  • Soni, S., Purohit, A., Nema, P., Rawal, R., Kumar, A., Soni, V., & Kashaw, S. K. (2024). A significant prospective on nanorobotics in precision medicine and therapeutic interventions. Pharmaceutical Nanotechnology. https://doi.org/10.2174/0122117385310095240913102242
  • Soni, A., Bhandari, M. P., Tripathi, G. K., Bundela, P., Khiriya, P. K., Khare, P. S., &Kashyap, M. K. (2023). Nano-biotechnology in tumour and cancerous disease: A perspective review. *Journal of Cellular and Molecular Medicine,27(4), 1232–1245. https://doi.org/10.1111/jcmm.17677
  • Soto, F., Martin, A., Ibsen, S., Vaidyanathan, M., Garcia-Gradilla, V., Levin, Y., Escarpa, A., Esener, S. C., & Wang, J. (2016). Acoustic microcannons: Toward advanced microballistics. ACS Nano, 10(1), 1522–1528. https://doi.org/10.1021/acsnano.5b07080
  • Soto, F., &Chrostowski, R. (2018). Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses. Frontiers in Bioengineering and Biotechnology, 6, 170. https://doi.org/10.3389/fbioe.2018.00170
  • Sritharan, S., &Sivalingam, N. (2021). A comprehensive review on time-tested anticancer drug doxorubicin. Life Sciences,278, 119527. https://doi.org/10.1016/j.lfs.2021.119527
  • Stadlbauer, A., Marhold, F., Oberndorfer, S., Heinz, G., Buchfelder, M., Kinfe, T. M., & Meyer-Bäse, A. (2022). Radiophysiomics: Brain tumors classification by machine learning and physiological MRI data. Cancers, 14(10), 2363. https://doi.org/10.3390/cancers14102363
  • Stanton, M. M., Simmchen, J., Ma, X., Miguel-López, A., & Sánchez, S. (2016). Biohybrids: Biohybrid Janus Motors Driven by Escherichia coli (Adv. Mater. Interfaces 2/2016). Advanced Materials Interfaces, 3(2). https://doi.org/10.1002/admi.201670007
  • Sun, L., Yu, Y., Chen, Z., Bian, F., Ye, F., Sun, L., & Zhao, Y. (2020). Biohybrid robotics with living cell actuation. Chemical Society Reviews, 49(12), 4043–4069. https://doi.org/10.1039/d0cs00120a
  • Sun, B., Liu, J., Kim, H. J., Rahmat, J. N. B., Neoh, K. G., & Zhang, Y.(2023). Light-responsive smart nanocarriers for wirelessly controlled photodynamic therapy for prostate cancers. Acta Biomaterialia,171, 553-564. https://doi.org/10.1016/j.actbio.2023.09.031
  • Sudipta Mallick, Ramadan Abouomar, David Rivas, Max Sokolich, Fatma Ceren Kirmizitas, Aditya Dutta, Sambeeta Das, Doxorubicin-Loaded Microrobots for Targeted Drug Delivery and Anticancer Therapy, Advanced Healthcare Materials, Volume 13, Issue 28, Article 202300939, December 2023. DOI: 10.1002/adhm.202300939.
  • Su, T., Zhao, F., Ying, Y., Li, W., Li, J., Zheng, J., Qiao, L., & Yu, J. (2023). Self-monitoring theranostic nanomaterials: Emerging visual agents for real-time monitoring of tumor treatment processes. Small Methods,8(5), 2301470. https://doi.org/10.1002/smtd.202301470
  • Talebloo, N., Gudi, M., Robertson, N., & Wang, P. (2020). Magnetic particle imaging: Current applications in biomedical research. Journal of Magnetic Resonance Imaging, 51(6), 1659–1668. https://doi.org/10.1002/jmri.26875 Tang, S., Tang, D., Zhou, H., & Wu, S.(2024). Bacterial outer membrane vesicle nanorobot. Proceedings of the National Academy of Sciences (PNAS), 121(30), e2403460121. https://doi.org/10.1073/pnas.2403460121
  • Teixeira, P. V., Adega, F., Martins-Lopes, P., & Machado, R. (2023). pH-responsive hybrid nanoassemblies for cancer treatment: Formulation development, optimization, and in vitro therapeuticperformance.Pharmaceutics,15(2),326. https://doi.org/10.3390/pharmaceutics15020326
  • Xin, C., Jin, D., Hu, Y., Yang, L., Li, R., Wang, L., Ren, Z., Wang, D., Ji, S., Hu, K., Pan, D., Wu, H., Zhu, W., Shen, Z., Wang, Y., Li, J., Zhang, L., Wu, D., & Chu, J. (2021). Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano, 15(11), 18048–18059. https://doi.org/10.1021/acsnano.1c06651
  • Xu, B., Han, X., Hu, Y., Luo, Y., Chen, C.-H., Chen, Z., & Shi, P. (2019). Intelligent biohybrid robotic systems: A remotely controlled transformable soft robot based on engineered cardiac tissue construct (small 18/2019). Small, 15(18), 1970095. https://doi.org/10.1002/smll.201970095
  • Xu, T., Xu, L.-P., & Zhang, X. (2017). Ultrasound propulsion of micro-/nanomotors. Applied Materials Today, 9, 493–503. https://doi.org/10.1016/j.apmt.2017.07.011
  • Xu, W., Qin, H., Tian, H., Liu, L., Gao, J., Peng, F., &Tu, Y. (2022). Biohybrid micro/nanomotors for biomedical applications. Applied Materials Today, 27(101482), 101482. https://doi.org/10.1016/j.apmt.2022.101482
  • Xu, L., Mou, F., Gong, H., Luo, M., & Guan, J. (2017). Light-driven micro/nanomotors: from fundamentals to applications. Chemical Society Reviews, 46(22), 6905–6926. https://doi.org/10.1039/c7cs00516d
  • Xu Y. (2024). Nanomaterials used in cancer treatment based on drug delivery systems. In Proceedings of the Third International Conference on Biological Engineering and Medical Science (ICBioMed2023) (Vol. 12924, Article 1292420). https://doi.org/10.1117/12.3013205
  • Xuan, M., Wu, Z., Shao, J., Dai, L., Si, T., & He, Q. (2016). Near infrared light-powered Janus mesoporous silica nanoparticle motors. Journal of the American Chemical Society, 138(20), 6492–6497. https://doi.org/10.1021/jacs.6b00902
  • van der Zanden, S. Y., Qiao, X., &Neefjes, J. (2020). New insights into the activities and toxicities of the old anticancer drug doxorubicin. The FEBS Journal, 287(21), 3765–3776. https://doi.org/10.1111/febs.15583
  • Villa, K., & Pumera, M. (2019). Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chemical Society Reviews, 48(19), 4966–4978. https://doi.org/10.1039/c9cs00090a Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H.
  • A., & Bibette, J. (2005). Microscopic artificial swimmers. Nature, 437(7060), 862–865. https://doi.org/10.1038/nature04090
  • Wan, M., Chen, H., Wang, Q., Niu, Q., Xu, P., Yu, Y., Zhu, T., Mao, C., & Shen, J. (2019). Author Correction: Bio-inspired nitric-oxide-driven nanomotor. Nature Communications, 10(1), 2323. https://doi.org/10.1038/s41467-019-10437-0
  • Wang, W., Castro, L. A., Hoyos, M., & Mallouk, T. E. (2012). Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 6(7), 6122–6132. https://doi.org/10.1021/nn301312z
  • Wang, J., Xiong, Z., Zhan, X., Dai, B., Zheng, J., Liu, J., & Tang, J. (2017). A silicon nanowire as a spectrally tunable light‐driven nanomotor. Advanced Materials (Deerfield Beach, Fla.), 29(30), 1701451. https://doi.org/10.1002/adma.201701451
  • Wang, B., Liu, Z., Hou, X., & Zhao, J. (2018). Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of Inconel 718. Materials, 11(4), 461. https://doi.org/10.3390/ma11040461
  • Wang, Z., Liu, C., Chen, B., & Luo, Y. (2021). Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds. International Journal of Biological Macromolecules, 168, 38–45. https://doi.org/10.1016/j.ijbiomac.2020.12.023
  • Wang, J., Dong, Y., Ma, P., Wang, Y., Zhang, F., Cai, B., Chen, P., & Liu, B.-F. (2022). Intelligent micro-/nanorobots for cancer theragnostic.Advanced Materials,34(52), 2201051. https://doi.org/10.1002/adma.202201051
  • Wang, P., Chen, J., Zhong, R., Xia, Y., Wu, Z., Zhang, C., & Yao, H. (2024). Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. European Journal of Pharmaceutics and Biopharmaceutics,198,114246. https://doi.org/10.1016/j.ejpb.2024.114246
  • Wang, X., Hao, X., Zhang, Y., Wu, Q., Zhou, J., Cheng, Z., Chen, J., Liu, S., Pan, J., & Fan, J.-B.(2024). Bioinspired adaptive microdrugs enhance the chemotherapy of malignant glioma: Beyond their nanodrugs. Advanced Materials,36(1), 2209815. https://doi.org/10.1002/adma.202209815
  • Wei, X., Liu, C., Wang, Z., & Luo, Y. (2020). 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. International Journal of Pharmaceutics, 580(119219), 119219. https://doi.org/10.1016/j.ijpharm.2020.119219
  • Wicki, A., Witzigmann, D., Balasubramanian, V., &Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release: Official Journal of the Controlled Release Society, 200, 138–157. https://doi.org/10.1016/j.jconrel.2014.12.030
  • Wicki A, Rodriguez F.(2015) Cancer Nano-Therapies in the Clinic and Clinical Trials. J Control Release.202:1-10. doi:10.1016/j.jconrel.2015.03.002.
  • Wu, Z., Li, T., Li, J., Gao, W., Xu, T., Christianson, C., Gao, W., Galarnyk, M., He, Q., Zhang, L., & Wang, J. (2014). Turning erythrocytes into functional micromotors. ACS Nano, 8(12), 12041–12048. https://doi.org/10.1021/nn506200x
  • Wu, Y., Yakov, S., Fu, A., &Yossifon, G. (2023). A magnetically and electrically powered hybrid micromotor in conductive solutions: Synergistic propulsion effects and label‐free cargo transport and sensing (adv. Sci. 8/2023). Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 10(8). https://doi.org/10.1002/advs.202370044
  • Wu, Z., Lin, X., Zou, X., Sun, J., & He, Q. (2015). Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Applied Materials & Interfaces, 7(1), 250–255. https://doi.org/10.1021/am507680u
  • Yanfang Li, Dingran Dong, Yun Qu, Junyang Li, Han Zhao, Shuxun Chen, Qi Zhang, Yang Jiao, Lei Fan, Dong Sun, A Multidrug Delivery Microrobot for the Synergistic Treatment of Cancer, Small, Volume 19, Issue 44, Article 2301889, July 9, 2023 (online), November 1, 2023 (print). DOI: 10.1002/smll.202301889
  • Ye, Y., Tian, H., Jiang, J., Huang, W., Zhang, R., Li, H., Liu, L., Gao, J., Tan, H., Liu, M., Peng, F., &Tu, Y. (2023). Magnetically actuated biodegradable nanorobots for active immunotherapy. *Advanced Science,10(25), 2300540. https://doi.org/10.1002/advs.202300540
  • Yijie Lu, Shikang Liu, Jiarong Liang, Zhiyi Wang, Yanglong Hou, Self-Propelled Nanomotor for Cancer Precision Combination Therapy, Advanced Healthcare Materials, January 23, 2024. DOI: 10.1002/adhm.202304212.
  • Zhang, H., Li, Z., Gao, C., Fan, X., Pang, Y., Li, T., Wu, Z., Xie, H., & He, Q. (2021). Dual-responsive biohybridneutrobots for active target delivery. Science Robotics, 6(52). https://doi.org/10.1126/scirobotics.aaz9519
  • Zhang, D., Liu, S., Guan, J., &Mou, F. (2022). “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Frontiers in Bioengineering and Biotechnology, 10, 1002171. https://doi.org/10.3389/fbioe.2022.1002171
  • Zhang, C., Wang, W., Xi, N., Wang, Y., & Liu, L. (2018). Development and future challenges of bio-syncretic robots. Engineering (Beijing, China), 4(4), 452–463. https://doi.org/10.1016/j.eng.2018.07.005
  • Zhang, L., Yang, J., Huang, J., Yu, Y., Ding, J., Karges, J., & Xiao, H. (2024). Development of tumor-evolution-targeted anticancer therapeutic nanomedicine. Chemistry of Materials, 10(5), 1337-1356. https://doi.org/10.1016/j.chempr.2023.12.019
  • Zhang, P., Lin, Z., Xu, C., Wang, X., & Shen, Y.(2023). Tumor-microenvironment-responsive nanomedicine: Strategies for enhanced cancer therapy.Materials Today,65, 47-62. https://doi.org/10.1016/j.mattod.2023.06.003
  • Zhang, Y., Gu, X., Huang, L., Yang, Y., & He, J. (2024). Enhancing precision medicine: Bispecific antibody-mediated targeted delivery of lipid nanoparticles for potential cancer therapy. *International Journal of Pharmaceutics,654, 123990. https://doi.org/10.1016/j.ijpharm.2024.123990
  • Zheng, S., Wang, Y., Pan, S., Ma, E., Jin, S., Jiao, M., Wang, W., Li, J., Xu, K., & Wang, H. (2023). Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Advanced Functional Materials, 33(20). https://doi.org/10.1002/adfm.202301477
  • Zhi, S., Huang, M., & Cheng, K. (2024). Enzyme-responsive design combined with photodynamic therapy for cancer treatment. Drug Discovery Today, 29(5), 103965. https://doi.org/10.1016/j.drudis.2024.103965
  • Zhou, R., Yang, W., Liu, X., Liang, H., Zhang, M., & Deng, H. (2024). Engineered nanomaterials in combination therapy for overcoming drug resistance in cancer treatment. Advanced Science, 11(2), 2205304. https://doi.org/10.1002/advs.202205304
  • Zhou, X., Huang, X., Wang, B., Tan, L., Zhang, Y., & Jiao, Y. (2021). Light/gas cascade-propelled Janus micromotors that actively overcome sequential and multi-staged biological barriers for precise drug delivery. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 408(127897), 127897. https://doi.org/10.1016/j.cej.2020.127897
  • Zhu, Y., Huang, H., Zhao, Q., & Qin, J. (2024). Novel micro/nanomotors for tumor diagnosis and therapy: Motion mechanisms, advantages and applications. Journal of Science Advanced Materials and Devices, 9(2), 100718. https://doi.org/10.1016/j.jsamd.2024.100718

Nanotıpta Yenilikler: Kanser Tedavilerinde Devrim Yaratmak İçin Nanorobotların Kullanılması

Yıl 2025, Cilt: 4 Sayı: 2, 32 - 52, 29.07.2025

Öz

SOYUT –
Bilgisayarlaşma ve yapay zeka ilerledikçe sağlık sektörü, özellikle de kanser araştırmaları alanı tam bir devrim geçirdi. Sağlık hizmetlerinde nanorobotların ve yapay zekanın birleşimi, ilaçların dağıtımını, teşhisini ve tedavisini geliştirmek için tasarlanmıştır. Kemoterapi ve radyasyon terapisinden farklı olarak nanorobortlar, ilaçları etkilenen bölgelere daha az yan etkiyle ve daha iyi sonuçlarla tam olarak ulaştırır. Mesela güçlü bir kemoterapi ilacı olan doksorubisin, kendi başına hareket eden bir nanorobotun içine yerleştirilebilir veya ilacın kanserli bölgeye hassas bir şekilde iletilmesi için kontrol edilebilir.
Dahası, nanorobotların pasif veya aktif bir amacı olabilir ve farklı kategoriler arasında Manyetik, enzim bazlı, bakteriyel ve yapay zeka bazlı nanorobotlar bulunur. Bununla birlikte, bu sistemler biyouyumluluk, güç kaynağı ve gerçek zamanlı izleme ile ilgili zorluklarla karşılaşmaktadır. Yapay zeka ve makine öğrenimi kullanılarak bunların üstesinden gelinebilir; nanorobotların kullanımını destekleyen kendi kendine gezinme ve karar verme süreçlerini geliştirmek için hayati cevaplar sunar.
Genel olarak, kanser tedavisinde önemli ilerlemeler kaydedilmiş olsa da, gelecekte kanser hastalarına yönelik daha iyi ve daha güvenli tedaviler sağlamak ve yaşam kalitelerini artırmak için nanorobotları kullanmadan önce çözülmesi gereken birkaç sorun var. Bu makale, farklı nanorobot türlerini, bunların nasıl ve neden kullanıldığını, doksorubisin kullanımı ve gelecekteki yönlerini inceleyecektir.

Etik Beyan

Bu derleme makalesi, yazarların orijinal çalışmasıdır ve başka bir yerde yayımlanmamış veya gönderilmemiştir. Bu derlemede kullanılan tüm bilgi ve veri kaynakları uygun şekilde alıntılanmış olup, orijinal yazarlar ve yayınlara gereken kredi verilmiştir. Bu derlemenin içeriğini veya bulgularını etkileyebilecek potansiyel bir çıkar çatışması olan herhangi bir kuruluş veya kuruluştan fon sağlanmamıştır. Yazarlar, bu makale ile ilgili herhangi bir çıkar çatışması bulunmadığını beyan etmektedir. Bu makale, bilim topluluğuna saygı, bütünlük ve doğruluk esaslarına bağlı kalarak etik standartlara uygun olarak hazırlanmıştır.Gönderdiğiniz derginin politikalarıyla uyumlu olduğundan emin olun.

Destekleyen Kurum

GIET SCHOOL OF PHARMACY

Kaynakça

  • Ahmad, A., Imran, M., & Sharma, N. (2022). Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics, 14(11), 2463. https://doi.org/10.3390/pharmaceutics14112463
  • Akhtar, N., Mohammed, H. A., Yusuf, M., Al-Subaiyel, A., Sulaiman, G. M., & Khan, R. A. (2022). SPIONs Conjugate Supported Anticancer Drug Doxorubicin’s Delivery: Current Status, Challenges, and Prospects. Nanomaterials, 12(20), 3686. DOI: 10.3390/nano12203686.
  • Aladesuyi, O. A., &Oluwafemi, O. S.(2023). The role of magnetic nanoparticles in cancer management.Nano-Structures&Nano-Objects,36,101053. https://doi.org/10.1016/j.nanoso.2023.101053
  • Ajaykumar, C. (2020). Overview on the side effects of doxorubicin. IntechOpen. https://doi.org/10.5772/intechopen.94896
  • Alapan, Y., Bozuyuk, U., Erkoc, P., Karacakol, A. C., &Sitti, M. (2020). Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Science Robotics, 5(42), eaba5726. https://doi.org/10.1126/scirobotics.aba5726
  • An, M., Feng, Y., Liu, Y., & Yang, H. (2023). External power-driven micro/nanorobots: Design, fabrication, and functionalization for tumor diagnosis and therapy. Progress in Materials Science, 140(101204), 101204. https://doi.org/10.1016/j.pmatsci.2023.101204
  • Andhari, S. S. et al. Self-propelling targeted Magneto-nanobots for deep tumor penetration and pH-responsive intracellular drug delivery. Sci. Rep. 10:4703 (2020) Doi: https://doi.org/10.1038/s41598-020-61586-y
  • Basu, R., G. Schwartz, J., & T. Phillips, W. (2024). Applications of radionuclide-carrying liposomes for diagnosis and treatment of cancer. Advances in Radiotherapy & Nuclear Medicine, 0(0), 4373. https://doi.org/10.36922/arnm.4373
  • Bhattacharya, S., Prajapati, B. G., Ali, N., Mohany, M., Aboul-Soud, M. A. M., & Khan, R. (2023). Therapeutic potential of Methotrexate-loaded superparamagnetic iron oxide nanoparticles coated with poly(lactic-co-glycolic acid) and polyethylene glycol against breast cancer: Development, characterization, and comprehensive in vitro investigation. ACS Omega, 8(30), 27634–27649. https://doi.org/10.1021/acsomega.3c03430
  • Bozuyuk, U., Yasa, O., Yasa, I. C., Ceylan, H., Kizilel, S., &Sitti, M. (2018). Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano, 12(9), 9617–9625. https://doi.org/10.1021/acsnano.8b05997
  • Canton, E. D., Adjunct Professor of Oncology CEMIC Titular Professor of Artificial Intelligence in Medicine CEMIC University Institute, Argentina, Sande, J. F., & Teaching Assistant Artificial Intelligence in Medicine CEMIC University Institute. (2023). AI-driven advancements in breast cancer: Transforming detection, diagnosis, treatment, and monitoring. Journal of Cancer Research Reviews & Reports, 1–4. https://doi.org/10.47363/jcrr/2023(5)178
  • Ceylan, H., Yasa, I. C., Yasa, O., Tabak, A. F., Giltinan, J., &Sitti, M. (2019). 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano, 13(3), 3353–3362. https://doi.org/10.1021/acsnano.8b09233 Ceylan, H., Yasa, I. C., Kilic, U., Hu, W., &Sitti, M. (2019). Translational prospects of untethered medical microrobots. Progress in Biomedical Engineering (Bristol, England), 1(1), 012002. https://doi.org/10.1088/2516-1091/ab22d5
  • Chen, J., Hu, S., Sun, M., Shi, J., Zhang, H., Yu, H., & Yang, Z. (2024). Recent advances and clinical translation of liposomal delivery systems in cancer therapy
  • Chen, Q., Wang, H., Sun, S., &Qiu, S. (2024). Photothermal therapy-enhanced chemotherapy using nanomaterials: Challenges and future perspectives. Journal of Nanobiotechnology,22(1), 145. https://doi.org/10.1186/s12951-023-02072-4
  • Chinnakorn, A., Nuansing, W., Bodaghi, M., Rolfe, B., &Zolfagharian, A. (2023). Recent progress of 4D printing in cancer therapeutics studies. SLAS Technology, 28(3), 127–141. https://doi.org/10.1016/j.slast.2023.02.002
  • Dai, L., Liu, J., Luo, Z., Li, M., &Cai, K. (2016). Tumor therapy: targeted drug delivery systems. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 4(42), 6758–6772. https://doi.org/10.1039/c6tb01743f
  • Dartora, V. F. C., Passos, J.S., Costa-Lotufo, L. V., Lopes, L. B., &Panitch, A. (2024). Thermosensitive polymeric nanoparticles for drug co-encapsulation and breast cancer treatment. Pharmaceutics,16(2), 231. https://doi.org/10.3390/pharmaceutics16020231
  • Das, T., Sultana, S. Multifaceted applications of micro/nanorobots in pharmaceutical drug delivery systems: a comprehensive review. Futur J Pharm Sci 10, 2 (2024). https://doi.org/10.1186/s43094-023-00577-y
  • Deng, X., Su, Y., Xu, M., Gong, D., Cai, J., Akhter, M., Chen, K., Li, S., Pan, J., Gao, C., Li, D., Zhang, W., & Xu, W. (2023). Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosensors & Bioelectronics, 222(114960), 114960. https://doi.org/10.1016/j.bios.2022.114960
  • Deng, Z., Mou, F., Tang, S., Xu, L., Luo, M., & Guan, J. (2018). Swarming and collective migration of micromotors under near infrared light. Applied Materials Today, 13, 45–53. https://doi.org/10.1016/j.apmt.2018.08.004
  • Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK(2012) The transport of nonsurfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in arat model. Biomaterial 33(10):2936–2951. https:// doi. org/ 10. 1016/j. bioma teria ls. 2011. 12. 046
  • Ding, X., Hu, X., Xu, Z., Wu, Z., Zhang, W., Xie, L., & Wang, Z. (2023). Tumor-targeting immune-modulating nanoparticles potentiate cancer immunotherapy. Nature Communications,14(1), 5787. https://doi.org/10.1038/s41467-023-41565-3
  • Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., & Bibette, J. (2005). Microscopic artificial swimmers. Nature, 437(7060), 862–865. https://doi.org/10.1038/nature04090
  • Elbialy NS, Fathy MM, Khalil WM (2015) Doxorubicin loaded magneticgold nanoparticles for in-vivo targeted drug delivery. Int J Pharm490(1–2):190–199. https:// doi. org/ 10. 1016/j. ijpha rm.2015.05. 03252. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 193, 106688. https://doi.org/10.1016/j.ejps.2023.106688
  • Fang, W., Peng, Y., Liao, H., Wei, W., Liu, J., &Xie, X. (2024). Multi-responsive hydrogels for smart drug delivery in cancer therapy. Chemical Engineering Journal, 460, 142260. https://doi.org/10.1016/j.cej.2023.142260 Fernández-Medina, M., Ramos-Docampo, M. A., Hovorka, O., Salgueiriño, V., &Städler, B. (2020). Recent advances in nano‐ and micromotors. Advanced Functional Materials, 30(12), 1908283. https://doi.org/10.1002/adfm.201908283
  • Gao, L., Akhtar, M. U., Yang, F., Ahmad, S., He, J., Lian, Q., Cheng, W., Zhang, J., & Li, D. (2021). Recent progress in engineering functional biohybrid robots actuated by living cells. ActaBiomaterialia, 121, 29–40. https://doi.org/10.1016/j.actbio.2020.12.002
  • Go, G., Yoo, A., Song, H.-W., Min, H.-K., Zheng, S., Nguyen, K. T., Kim, S., Kang, B., Hong, A., Kim, C.-S., Park, J.-O., & Choi, E. (2021). Multifunctional biodegradable microrobot with programmable morphology for biomedical applications. ACS Nano, 15(1), 1059–1076. https://doi.org/10.1021/acsnano.0c07954
  • Gu, X., Li, Z., & Liu, A. (2024). Stimuli-responsive drug delivery system for breast cancer treatment. Theoretical and Natural Science, 10(5), 1355-1364. https://doi.org/10.54254/2753-8818/46/20240512
  • Hamad, A. A. (2023). The first facile optical density-dependent approach for the analysis of doxorubicin, an oncogenic agent accompanied with the co-prescribed drug; paclitaxel. BMC Chemistry,17(1), 59. https://doi.org/10.1186/s13065-023-00976-5
  • He, Z.-H., Qi, L.-J., He, X.-Y., Han, D., & Cheng, S.-X. (2024). Enhancing targeted cancer therapy through multiple drug delivery by silk peptide nanoparticles. Nano Select,5(2), 134-145. https://doi.org/10.1002/nano.202300176
  • Hu, X., Ge, Z., Wang, X., Jiao, N., Tung, S., & Liu, L. (2022). Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Composites. Part B, Engineering, 228(109451), 109451. https://doi.org/10.1016/j.compositesb.2021.109451
  • Hu, C., Liu, Y., Cao, W., Li, N., Gao, S., Wang, Z., & Gu, F. (2024). Efficacy and Mechanism of a Biomimetic Nanosystem Carrying Doxorubicin and an IDO Inhibitor for Treatment of Advanced Triple-Negative Breast Cancer. International Journal of Nanomedicine, 2024(19), 507–526. DOI: 10.2147/IJN.S440332.
  • Izbińska, P., Szlauer, W., & Obłąk, E. (2024). Liposomes in anticancer strategies. Current Cancer Therapy Reviews, 21. https://doi.org/10.2174/0115733947312894240930110609
  • Jakupovic, A., Kovacevic, Z., Gurbeta, L., &Badnjevic, A. (2018). Review of artificial neural network application in nanotechnology. 2018 7th Mediterranean Conference on Embedded Computing (MECO).
  • Jabbari, A., Sameiyan, E., Yaghoobi, E., Ramezani, M., Alibolandi, M., &Taghdisi, S. M. (2023). Aptamer-based targeted delivery systems for cancer treatment using DNA origami and DNA nanostructures.InternationalJournalofPharmaceutics,646,123448. https://doi.org/10.1016/j.ijpharm.2023.123448
  • Jayapriya, P., Pardhi, E., Vasave, R., Guru, S. K., Madan, J., &Mehra, N. K. (2023). A review on stimuli-pH responsive liposomal formulation in cancer therapy. Journal of Drug Delivery Science and Technology,90, 105172. https://doi.org/10.1016/j.jddst.2023.105172
  • Jin, S., Lan, Z., Yang, G., Li, X., Shi, J. Q., Liu, Y., & Zhao, C.-X. (2024). Computationally guided design and synthesis of dual-drug loaded polymeric nanoparticles for combination therapy. Aggregate, 5(2), 154-166. https://doi.org/10.1002/agt2.606
  • Joseph, X., Akhil, V., Arathi, A., &Mohanan, P. V. (2022). Nanobiomaterials in support of drug delivery related issues. Materials Science and Engineering: B,279, 115680. https://doi.org/10.1016/j.mseb.2022.115680
  • Jungcharoen, P., Thivakorakot, K., Thientanukij, N., Kosachunhanun, N., Vichapattana, C., Panaampon, J., Saengboonmee, C. (2024). Magnetite nanoparticles: an emerging adjunctive tool for the improvement of cancer immunotherapy. Exploratory Targeted Antitumor Therapy,5, 316–331. https://doi.org/10.37349/etat.2024.00220
  • Kagan, D., Benchimol, M. J., Claussen, J. C., Chuluun-Erdene, E., Esener, S., & Wang, J. (2012). Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angewandte Chemie (International Ed. in English), 51(30), 7519–7522. https://doi.org/10.1002/anie.201201902
  • Karthigai, S., Selvi., Sharmistha, Dey., Siva, Shankar, Ramasamy., Kiran, Jot, Singh. (2024). 1. Nano Robots Promising Advancements and Challenges in Healthcare. Advances in computational intelligence and robotics book series, doi: 10.4018/979-8-3693-6150-4.ch001
  • Kay, E. R., Leigh, D. A., & Zerbetto, F. (2007). Synthetic molecular motors and mechanical machines. Angewandte Chemie (International Ed. in English), 46(1–2), 72–191. https://doi.org/10.1002/anie.200504313
  • Khan, H., Shahab, U., Alshammari, A., Alyahyawi, A. R., Akasha, R., Alharazi, T., Ahmad, R., Khanam, A., Habib, S., Kaur, K., & Ahmad, S. (2024). Nano-therapeutics: The upcoming nanomedicine to treat cancer. IUBMB Life,76(8), 468-484. https://doi.org/10.1002/iub.2814
  • Kim, N., Kwon, S., Kwon, G., Song, N., Jo, H., Kim, C., Park, S., & Lee, D. (2024). Tumor-targeted and stimulus-responsive polymeric prodrug nanoparticles to enhance the anticancer therapeutic efficacy of doxorubicin. Journal of Controlled Release, 350, 303-320. https://doi.org/10.1016/j.jconrel.2024.03.046 Kumari, P., Ghosh, B., & Biswas, S. (2016). Nanocarriers for cancer-targeted drug delivery. Journal of Drug Targeting, 24(3), 179–191. https://doi.org/10.3109/1061186X.2015.1051049 Lang, X., Wang, X., Han, M., &Guo, Y. (2024). Nanoparticle-mediated synergistic chemoimmunotherapy for cancer treatment. International Journal of Nanomedicine,19,4533-4568. https://doi.org/10.2147/IJN.S455213
  • Laís Ramos Monteiro de Lima, Maria Francilene Souza Silva, Gisele S. Araújo, et al., Doxorubicin-galactomannan nanoconjugates for potential cancer treatment, Carbohydrate Polymers, October 1, 2024, Article ID 122356. DOI: 10.1016/j.carbpol.2024.122356.
  • Li, Y. (2023). pH-sensitive polymeric nanoparticles for effective delivery of doxorubicin. In Proceedings of the 2nd International Conference on Modern Medicine Technology and Clinical Science (MMTCS 2023). https://doi.org/10.54097/hset.v65i.11229 Liposomal Nanoparticles: A Viable Nanoscale Drug Carriers for the Treatment of Cancer. (n.d.).
  • Liu, Y., Zhang, J., Wu, C., Lai, Y., Fan, H., Wang, Q., Lin, Z., Chen, J., Zhao, X., & Jiang, X. (2024). Nanoplatform based on carbon nanoparticles loaded with doxorubicin enhances apoptosis by generating reactive oxygen species for effective cancer therapy. Oncology Letters,27(6), 14421. https://doi.org/10.3892/ol.2024.14421
  • Liu, C., Wang, Z., Wei, X., Chen, B., & Luo, Y. (2021). 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. ActaBiomaterialia, 131, 314–325. https://doi.org/10.1016/j.actbio.2021.07.011
  • Liu, B., Sun, L., Lu, X., Yang, Y., Peng, H., Sun, Z., Xu, J., & Chu, H. (2022). Real-time drug release monitoring from pH-responsive CuS-encapsulated metal-organic frameworks. RSC Advances, 12(18), 3546-3559. https://doi.org/10.1039/D2RA10567K
  • Liu, H., Shi, Y., Ji, G., Wang, J., &Gai, B.(2024). Ultrasound-triggered with ROS-responsive SN38 nanoparticle for enhanced combination cancer immunotherapy. Frontiers in Immunology,15. https://doi.org/10.3389/fimmu.2024.1339380
  • Lv, J., Yue, R., Liu, H., Du, H., Lu, C., Zhang, C., Guan, G., Min, S., Kang, H., & Song, G. (2024). Enzyme-activated nanomaterials for MR imaging and tumor therapy. Coordination Chemistry Reviews,510, 215842. https://doi.org/10.1016/j.ccr.2024.215842
  • Ma, D., Wang, G., Lu, J., Zeng, X., Cheng, Y., Zhang, Z., Lin, N., & Chen, Q. (2023). Multifunctional nano MOF drug delivery platform in combination therapy.European Journal of Medicinal Chemistry, 261, 115884. https://doi.org/10.1016/j.ejmech.2023.115884
  • Medina-Sánchez, M., & Schmidt, O. G. (2017). Medical microbots need better imaging and control. Nature, 545(7655), 406–408. https://doi.org/10.1038/545406a
  • Mukherjee, A., & Mukherjee, G. (2024). Bio-inspired nanorobots for cancer diagnosis and therapy. In Modeling, Simulation, and Control of AI Robotics and Autonomous Systems (pp. 196–212). IGI Global.
  • Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003. https://doi.org/10.1038/nmat3776
  • Naik, M. H., Satyanarayana, J., & Kudari, R. K. (2024). Nanorobots in drug delivery systems and treatment of cancer. Characterization and Application of Nanomaterials, 7(2), 2539. https://doi.org/10.24294/can.v7i2.2539
  • Nie, C., Ye, J., Jiang, J.-H., & Chu, X.(2024). DNA nanodevice as a multi-module co-delivery platform for combination cancer immunotherapy. Journal of Colloid and Interface Science,667, 1-11. https://doi.org/10.1016/j.jcis.2024.04.069
  • Pak, O. S., Gao, W., Wang, J., & Lauga, E. (2011). High-speed propulsion of flexible nanowire motors: Theory and experiments. Soft Matter, 7(18), 8169. https://doi.org/10.1039/c1sm05503h
  • Pang, W., Ding, S., Lin, L., Wang, C., Lei, M., Xu, J., Wang, X., Qu, J., Wei, X., &Gu, B. (2021). Noninvasive and real-time monitoring of Au nanoparticle promoted cancer metastasis using in vivo flow cytometry. Biomedical Optics Express,12(4), 1846-1857. https://doi.org/10.1364/BOE.420123
  • Pham-Nguyen, O.-V., Shin, J., Park, Y., Jin, S., Kim, S. R., &Yoo, H. S. (2022). Fluorescence-shadowing nanoparticle clusters for real-time monitoring of tumor progression. Biomacromolecules,23(8), 4534-4542. https://doi.org/10.1021/acs.biomac.2c00450
  • Punia, P., Naagar, M., Chalia, S., Dhar, R., Ravelo, B., Thakur, P., & Thakur, A. (2021). Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- A review. Ceramics International, 47(2), 1526–1550. https://doi.org/10.1016/j.ceramint.2020.09.050
  • Raka, S., Belemkar, S., & Bhattacharya, S. (2024). Hybrid nanoparticles for cancer theranostics: A critical review on design, synthesis, and multifunctional capabilities. Current Medicinal Chemistry https://doi.org/10.2174/0109298673309011240606095639 Ren, J., Hu, P., Ma, E., Zhou, X., Wang, W., Zheng, S., & Wang, H. (2022). Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer. Applied Materials Today, 27(101445), 101445. https://doi.org/10.1016/j.apmt.2022.101445
  • Saurabh, K., &Panchwagh, M. P.(2023). Nanorobotics: A novel approach in the drug delivery system of cancer chemotherapy and its application. In *Futuristic Trends in Chemical Material Sciences & Nano Technology (Vol. 3, pp. 97-109). IIP Series. https://doi.org/10.58532/V3BECS8P3CH1
  • Sahejwani I., D., S. Satpute, A., & V. Sawale, A. (2024). Nanorobotics revolution: Targeted precision for cancer therapy. Research Journal of Science and Technology, 151–158. https://doi.org/10.52711/2349-2988.2024.00022 Sandbhor, P., Palkar, P., Bhat, S., John, G., &Godab, J. S. (2024). Nanomedicine as a multimodal therapeutic paradigm against cancer: On the way forward in advancing precision therapy. Nanoscale. https://doi.org/10.1039/D3NR06131K
  • Shi, X., Cheng, Y., Wang, J., Chen, H., Wang, X., Li, X., Tan, W., & Tan, Z. (2020). 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics, 10(23), 10652–10664. https://doi.org/10.7150/thno.47933
  • Shi, A., Long, L., Liu, Z., Liu, Y., Gong, Q., Zhang, C., Yuan, H., & Zhou, X. (2021). Construction of a Novel Doxorubicin Nanomedicine Using Bindarit as a Carrier: A Multiscale Computer Simulation-Assisted Design-Based Study. Journal of Nanomaterials, 2021, Article ID 1835639, 10 pages. DOI: 10.1155/2021/1835639
  • Shi, X., Lin, Y., Zhang, X., Chen, X., Qiao, Y., Ma, M., Zhang, Y., Liu, T., & Zhang, C.(2024). Integrating upconversion and downshifting nanoparticles for a versatile nanoplatform in cancer therapy. Small,20(8), 2304769. https://doi.org/10.1002/smll.202304769
  • Sing, C. E., Schmid, L., Schneider, M. F., Franke, T., & Alexander-Katz, A. (2010). Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 535–540. https://doi.org/10.1073/pnas.0906489107
  • Singh, A. K., Awasthi, R., &Malviya, R. (2023). Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 354, 439–452. https://doi.org/10.1016/j.jconrel.2023.01.042
  • Singh, A. K., Bahadur, S., Yadav, D., &Dabas, H. (2023). Pharmaceutical and pharmacokinetic aspects of nanoformulation based drug delivery systems for anti-cancer drugs. Current PharmaceuticalDesign,29(24),1896-1906.https://doi.org/10.2174/1381612829666230824144727
  • Soni, S., Purohit, A., Nema, P., Rawal, R., Kumar, A., Soni, V., & Kashaw, S. K. (2024). A significant prospective on nanorobotics in precision medicine and therapeutic interventions. Pharmaceutical Nanotechnology. https://doi.org/10.2174/0122117385310095240913102242
  • Soni, A., Bhandari, M. P., Tripathi, G. K., Bundela, P., Khiriya, P. K., Khare, P. S., &Kashyap, M. K. (2023). Nano-biotechnology in tumour and cancerous disease: A perspective review. *Journal of Cellular and Molecular Medicine,27(4), 1232–1245. https://doi.org/10.1111/jcmm.17677
  • Soto, F., Martin, A., Ibsen, S., Vaidyanathan, M., Garcia-Gradilla, V., Levin, Y., Escarpa, A., Esener, S. C., & Wang, J. (2016). Acoustic microcannons: Toward advanced microballistics. ACS Nano, 10(1), 1522–1528. https://doi.org/10.1021/acsnano.5b07080
  • Soto, F., &Chrostowski, R. (2018). Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses. Frontiers in Bioengineering and Biotechnology, 6, 170. https://doi.org/10.3389/fbioe.2018.00170
  • Sritharan, S., &Sivalingam, N. (2021). A comprehensive review on time-tested anticancer drug doxorubicin. Life Sciences,278, 119527. https://doi.org/10.1016/j.lfs.2021.119527
  • Stadlbauer, A., Marhold, F., Oberndorfer, S., Heinz, G., Buchfelder, M., Kinfe, T. M., & Meyer-Bäse, A. (2022). Radiophysiomics: Brain tumors classification by machine learning and physiological MRI data. Cancers, 14(10), 2363. https://doi.org/10.3390/cancers14102363
  • Stanton, M. M., Simmchen, J., Ma, X., Miguel-López, A., & Sánchez, S. (2016). Biohybrids: Biohybrid Janus Motors Driven by Escherichia coli (Adv. Mater. Interfaces 2/2016). Advanced Materials Interfaces, 3(2). https://doi.org/10.1002/admi.201670007
  • Sun, L., Yu, Y., Chen, Z., Bian, F., Ye, F., Sun, L., & Zhao, Y. (2020). Biohybrid robotics with living cell actuation. Chemical Society Reviews, 49(12), 4043–4069. https://doi.org/10.1039/d0cs00120a
  • Sun, B., Liu, J., Kim, H. J., Rahmat, J. N. B., Neoh, K. G., & Zhang, Y.(2023). Light-responsive smart nanocarriers for wirelessly controlled photodynamic therapy for prostate cancers. Acta Biomaterialia,171, 553-564. https://doi.org/10.1016/j.actbio.2023.09.031
  • Sudipta Mallick, Ramadan Abouomar, David Rivas, Max Sokolich, Fatma Ceren Kirmizitas, Aditya Dutta, Sambeeta Das, Doxorubicin-Loaded Microrobots for Targeted Drug Delivery and Anticancer Therapy, Advanced Healthcare Materials, Volume 13, Issue 28, Article 202300939, December 2023. DOI: 10.1002/adhm.202300939.
  • Su, T., Zhao, F., Ying, Y., Li, W., Li, J., Zheng, J., Qiao, L., & Yu, J. (2023). Self-monitoring theranostic nanomaterials: Emerging visual agents for real-time monitoring of tumor treatment processes. Small Methods,8(5), 2301470. https://doi.org/10.1002/smtd.202301470
  • Talebloo, N., Gudi, M., Robertson, N., & Wang, P. (2020). Magnetic particle imaging: Current applications in biomedical research. Journal of Magnetic Resonance Imaging, 51(6), 1659–1668. https://doi.org/10.1002/jmri.26875 Tang, S., Tang, D., Zhou, H., & Wu, S.(2024). Bacterial outer membrane vesicle nanorobot. Proceedings of the National Academy of Sciences (PNAS), 121(30), e2403460121. https://doi.org/10.1073/pnas.2403460121
  • Teixeira, P. V., Adega, F., Martins-Lopes, P., & Machado, R. (2023). pH-responsive hybrid nanoassemblies for cancer treatment: Formulation development, optimization, and in vitro therapeuticperformance.Pharmaceutics,15(2),326. https://doi.org/10.3390/pharmaceutics15020326
  • Xin, C., Jin, D., Hu, Y., Yang, L., Li, R., Wang, L., Ren, Z., Wang, D., Ji, S., Hu, K., Pan, D., Wu, H., Zhu, W., Shen, Z., Wang, Y., Li, J., Zhang, L., Wu, D., & Chu, J. (2021). Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano, 15(11), 18048–18059. https://doi.org/10.1021/acsnano.1c06651
  • Xu, B., Han, X., Hu, Y., Luo, Y., Chen, C.-H., Chen, Z., & Shi, P. (2019). Intelligent biohybrid robotic systems: A remotely controlled transformable soft robot based on engineered cardiac tissue construct (small 18/2019). Small, 15(18), 1970095. https://doi.org/10.1002/smll.201970095
  • Xu, T., Xu, L.-P., & Zhang, X. (2017). Ultrasound propulsion of micro-/nanomotors. Applied Materials Today, 9, 493–503. https://doi.org/10.1016/j.apmt.2017.07.011
  • Xu, W., Qin, H., Tian, H., Liu, L., Gao, J., Peng, F., &Tu, Y. (2022). Biohybrid micro/nanomotors for biomedical applications. Applied Materials Today, 27(101482), 101482. https://doi.org/10.1016/j.apmt.2022.101482
  • Xu, L., Mou, F., Gong, H., Luo, M., & Guan, J. (2017). Light-driven micro/nanomotors: from fundamentals to applications. Chemical Society Reviews, 46(22), 6905–6926. https://doi.org/10.1039/c7cs00516d
  • Xu Y. (2024). Nanomaterials used in cancer treatment based on drug delivery systems. In Proceedings of the Third International Conference on Biological Engineering and Medical Science (ICBioMed2023) (Vol. 12924, Article 1292420). https://doi.org/10.1117/12.3013205
  • Xuan, M., Wu, Z., Shao, J., Dai, L., Si, T., & He, Q. (2016). Near infrared light-powered Janus mesoporous silica nanoparticle motors. Journal of the American Chemical Society, 138(20), 6492–6497. https://doi.org/10.1021/jacs.6b00902
  • van der Zanden, S. Y., Qiao, X., &Neefjes, J. (2020). New insights into the activities and toxicities of the old anticancer drug doxorubicin. The FEBS Journal, 287(21), 3765–3776. https://doi.org/10.1111/febs.15583
  • Villa, K., & Pumera, M. (2019). Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chemical Society Reviews, 48(19), 4966–4978. https://doi.org/10.1039/c9cs00090a Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H.
  • A., & Bibette, J. (2005). Microscopic artificial swimmers. Nature, 437(7060), 862–865. https://doi.org/10.1038/nature04090
  • Wan, M., Chen, H., Wang, Q., Niu, Q., Xu, P., Yu, Y., Zhu, T., Mao, C., & Shen, J. (2019). Author Correction: Bio-inspired nitric-oxide-driven nanomotor. Nature Communications, 10(1), 2323. https://doi.org/10.1038/s41467-019-10437-0
  • Wang, W., Castro, L. A., Hoyos, M., & Mallouk, T. E. (2012). Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 6(7), 6122–6132. https://doi.org/10.1021/nn301312z
  • Wang, J., Xiong, Z., Zhan, X., Dai, B., Zheng, J., Liu, J., & Tang, J. (2017). A silicon nanowire as a spectrally tunable light‐driven nanomotor. Advanced Materials (Deerfield Beach, Fla.), 29(30), 1701451. https://doi.org/10.1002/adma.201701451
  • Wang, B., Liu, Z., Hou, X., & Zhao, J. (2018). Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of Inconel 718. Materials, 11(4), 461. https://doi.org/10.3390/ma11040461
  • Wang, Z., Liu, C., Chen, B., & Luo, Y. (2021). Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds. International Journal of Biological Macromolecules, 168, 38–45. https://doi.org/10.1016/j.ijbiomac.2020.12.023
  • Wang, J., Dong, Y., Ma, P., Wang, Y., Zhang, F., Cai, B., Chen, P., & Liu, B.-F. (2022). Intelligent micro-/nanorobots for cancer theragnostic.Advanced Materials,34(52), 2201051. https://doi.org/10.1002/adma.202201051
  • Wang, P., Chen, J., Zhong, R., Xia, Y., Wu, Z., Zhang, C., & Yao, H. (2024). Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. European Journal of Pharmaceutics and Biopharmaceutics,198,114246. https://doi.org/10.1016/j.ejpb.2024.114246
  • Wang, X., Hao, X., Zhang, Y., Wu, Q., Zhou, J., Cheng, Z., Chen, J., Liu, S., Pan, J., & Fan, J.-B.(2024). Bioinspired adaptive microdrugs enhance the chemotherapy of malignant glioma: Beyond their nanodrugs. Advanced Materials,36(1), 2209815. https://doi.org/10.1002/adma.202209815
  • Wei, X., Liu, C., Wang, Z., & Luo, Y. (2020). 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. International Journal of Pharmaceutics, 580(119219), 119219. https://doi.org/10.1016/j.ijpharm.2020.119219
  • Wicki, A., Witzigmann, D., Balasubramanian, V., &Huwyler, J. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release: Official Journal of the Controlled Release Society, 200, 138–157. https://doi.org/10.1016/j.jconrel.2014.12.030
  • Wicki A, Rodriguez F.(2015) Cancer Nano-Therapies in the Clinic and Clinical Trials. J Control Release.202:1-10. doi:10.1016/j.jconrel.2015.03.002.
  • Wu, Z., Li, T., Li, J., Gao, W., Xu, T., Christianson, C., Gao, W., Galarnyk, M., He, Q., Zhang, L., & Wang, J. (2014). Turning erythrocytes into functional micromotors. ACS Nano, 8(12), 12041–12048. https://doi.org/10.1021/nn506200x
  • Wu, Y., Yakov, S., Fu, A., &Yossifon, G. (2023). A magnetically and electrically powered hybrid micromotor in conductive solutions: Synergistic propulsion effects and label‐free cargo transport and sensing (adv. Sci. 8/2023). Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 10(8). https://doi.org/10.1002/advs.202370044
  • Wu, Z., Lin, X., Zou, X., Sun, J., & He, Q. (2015). Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Applied Materials & Interfaces, 7(1), 250–255. https://doi.org/10.1021/am507680u
  • Yanfang Li, Dingran Dong, Yun Qu, Junyang Li, Han Zhao, Shuxun Chen, Qi Zhang, Yang Jiao, Lei Fan, Dong Sun, A Multidrug Delivery Microrobot for the Synergistic Treatment of Cancer, Small, Volume 19, Issue 44, Article 2301889, July 9, 2023 (online), November 1, 2023 (print). DOI: 10.1002/smll.202301889
  • Ye, Y., Tian, H., Jiang, J., Huang, W., Zhang, R., Li, H., Liu, L., Gao, J., Tan, H., Liu, M., Peng, F., &Tu, Y. (2023). Magnetically actuated biodegradable nanorobots for active immunotherapy. *Advanced Science,10(25), 2300540. https://doi.org/10.1002/advs.202300540
  • Yijie Lu, Shikang Liu, Jiarong Liang, Zhiyi Wang, Yanglong Hou, Self-Propelled Nanomotor for Cancer Precision Combination Therapy, Advanced Healthcare Materials, January 23, 2024. DOI: 10.1002/adhm.202304212.
  • Zhang, H., Li, Z., Gao, C., Fan, X., Pang, Y., Li, T., Wu, Z., Xie, H., & He, Q. (2021). Dual-responsive biohybridneutrobots for active target delivery. Science Robotics, 6(52). https://doi.org/10.1126/scirobotics.aaz9519
  • Zhang, D., Liu, S., Guan, J., &Mou, F. (2022). “Motile-targeting” drug delivery platforms based on micro/nanorobots for tumor therapy. Frontiers in Bioengineering and Biotechnology, 10, 1002171. https://doi.org/10.3389/fbioe.2022.1002171
  • Zhang, C., Wang, W., Xi, N., Wang, Y., & Liu, L. (2018). Development and future challenges of bio-syncretic robots. Engineering (Beijing, China), 4(4), 452–463. https://doi.org/10.1016/j.eng.2018.07.005
  • Zhang, L., Yang, J., Huang, J., Yu, Y., Ding, J., Karges, J., & Xiao, H. (2024). Development of tumor-evolution-targeted anticancer therapeutic nanomedicine. Chemistry of Materials, 10(5), 1337-1356. https://doi.org/10.1016/j.chempr.2023.12.019
  • Zhang, P., Lin, Z., Xu, C., Wang, X., & Shen, Y.(2023). Tumor-microenvironment-responsive nanomedicine: Strategies for enhanced cancer therapy.Materials Today,65, 47-62. https://doi.org/10.1016/j.mattod.2023.06.003
  • Zhang, Y., Gu, X., Huang, L., Yang, Y., & He, J. (2024). Enhancing precision medicine: Bispecific antibody-mediated targeted delivery of lipid nanoparticles for potential cancer therapy. *International Journal of Pharmaceutics,654, 123990. https://doi.org/10.1016/j.ijpharm.2024.123990
  • Zheng, S., Wang, Y., Pan, S., Ma, E., Jin, S., Jiao, M., Wang, W., Li, J., Xu, K., & Wang, H. (2023). Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Advanced Functional Materials, 33(20). https://doi.org/10.1002/adfm.202301477
  • Zhi, S., Huang, M., & Cheng, K. (2024). Enzyme-responsive design combined with photodynamic therapy for cancer treatment. Drug Discovery Today, 29(5), 103965. https://doi.org/10.1016/j.drudis.2024.103965
  • Zhou, R., Yang, W., Liu, X., Liang, H., Zhang, M., & Deng, H. (2024). Engineered nanomaterials in combination therapy for overcoming drug resistance in cancer treatment. Advanced Science, 11(2), 2205304. https://doi.org/10.1002/advs.202205304
  • Zhou, X., Huang, X., Wang, B., Tan, L., Zhang, Y., & Jiao, Y. (2021). Light/gas cascade-propelled Janus micromotors that actively overcome sequential and multi-staged biological barriers for precise drug delivery. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 408(127897), 127897. https://doi.org/10.1016/j.cej.2020.127897
  • Zhu, Y., Huang, H., Zhao, Q., & Qin, J. (2024). Novel micro/nanomotors for tumor diagnosis and therapy: Motion mechanisms, advantages and applications. Journal of Science Advanced Materials and Devices, 9(2), 100718. https://doi.org/10.1016/j.jsamd.2024.100718
Toplam 121 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Anil Kumar Vadaga Bu kişi benim 0000-0002-6506-2144

Uday Raj Dokuburra Bu kişi benim 0009-0005-7468-7153

Harmya Nekkanti 0009-0004-1462-468X

Yayımlanma Tarihi 29 Temmuz 2025
Gönderilme Tarihi 29 Ekim 2024
Kabul Tarihi 13 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Vadaga, A. K., Dokuburra, U. R., & Nekkanti, H. (2025). Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies. Istanbul Kent University Journal of Health Sciences, 4(2), 32-52.
AMA Vadaga AK, Dokuburra UR, Nekkanti H. Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies. IKUJHS. Temmuz 2025;4(2):32-52.
Chicago Vadaga, Anil Kumar, Uday Raj Dokuburra, ve Harmya Nekkanti. “Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies”. Istanbul Kent University Journal of Health Sciences 4, sy. 2 (Temmuz 2025): 32-52.
EndNote Vadaga AK, Dokuburra UR, Nekkanti H (01 Temmuz 2025) Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies. Istanbul Kent University Journal of Health Sciences 4 2 32–52.
IEEE A. K. Vadaga, U. R. Dokuburra, ve H. Nekkanti, “Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies”, IKUJHS, c. 4, sy. 2, ss. 32–52, 2025.
ISNAD Vadaga, Anil Kumar vd. “Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies”. Istanbul Kent University Journal of Health Sciences 4/2 (Temmuz2025), 32-52.
JAMA Vadaga AK, Dokuburra UR, Nekkanti H. Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies. IKUJHS. 2025;4:32–52.
MLA Vadaga, Anil Kumar vd. “Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies”. Istanbul Kent University Journal of Health Sciences, c. 4, sy. 2, 2025, ss. 32-52.
Vancouver Vadaga AK, Dokuburra UR, Nekkanti H. Innovations in Nanomedicine: Using Nanorobots to Revolutionise Cancer Therapies. IKUJHS. 2025;4(2):32-5.