Araştırma Makalesi
BibTex RIS Kaynak Göster

Bulk Fill Kompozitlerin Mikrosertliklerinin Karşılaştırılması

Yıl 2022, , 414 - 421, 20.06.2022
https://doi.org/10.33715/inonusaglik.1096768

Öz

Bu çalışmanın amacı beş farklı bulk fill kompozitin mikrosertliklerinin karşılaştırılmasıdır (SDR, TEC, XTF, SF, FBF). Toplam 25 adet silindirik kalıp hazırlandı. Sırası ile her bir kalıba tek seferde kompozit rezin iyice kondanse edilerek yerleştirildi. Daha sonra 20 sn uygulanan LED ışık cihazı ile kompozitlerin polimerizasyonu sağlandı. Örneklerin mikrosertlik ölçümleri klasik Vicker’s testi ile yapıldı. Çalışmamızın verileri SPSS 20.0 paket programı ile Kruskal Wallis H testi kullanılarak değerlendirildi. Ölçülen üst yüzey mikrosertlik değerleri gruplar arasında karşılaştırıldığında; SDR ve FBF grubunun mikrosertlik değeri, TEC, XTF ve KSF gruplarına göre anlamlı derecede daha düşük bulundu (p<0.05). Gruplar arasında alt yüzey mikrosertlik değerleri karşılaştırıldığında; SDR grubunun mikrosertlik değeri FBF grubuna göre anlamlı derecede daha yüksek, TEC, XTF ve KSF gruplarına göre ise anlamlı derecede daha düşük bulundu (p<0.05). Hem alt hem de üst yüzey mikrosertlik değerleri gruplar arasında karşılaştırıldığında, XTF en iyi mikrosertliğe sahip bulk fill kompozit grubu olarak bulundu.

Kaynakça

  • Alkan, F., Arisu, H. D. & Dalkiliç, E. E. (2020). Bulk-fill kompozitlerde kalınlığın artışının mikrosertlik üzerine etkisi. Selcuk Dental Journal, 7(2), 141-147.
  • Bouschlicher, M. R., Rueggeberg, F. A. & Wilson, B. M. (2004). Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent, 29(6), 698-704.
  • Cabadağ, Ö. G., Misilli, T. & Gönülol, N. (2021). Bulk-fill kompozit rezinlere güncel bakış. Selcuk Dental Journal, 8(1), 220-228.
  • Cekic-Nagas, I., Egilmez, F. & Ergun, G. (2010). The effect of irradiation distance on microhardness of resin composites cured with different light curing units. Eur J Dent, 4(4), 440-446.
  • Cohen, M. E., Leonard, D. L., Charlton, D. G., Roberts, H. W. & Ragain, J. C. (2004). Statistical estimation of resin composite polymerization sufficiency using microhardness. Dent Mater, 20(2), 158-166.
  • El-Damanhoury, H. & Platt, J. (2014). Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent, 39(4), 374-382.
  • El-Safty, S., Akhtar, R., Silikas, N. & Watts, D. C. (2012). Nanomechanical properties of dental resin-composites. Dent Mater, 28(12), 1292-1300.
  • Ferracane, J. L. (1985). Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater, 1(1), 11-14.
  • Flury, S., Hayoz, S., Peutzfeldt, A., Husler, J. & Lussi, A. (2012). Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater, 28(5), 521-528.
  • Frauscher, K. E. & Ilie, N. (2012). Depth of cure and mechanical properties of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig, 16(5), 1425-1434.
  • Ilie, N., Bucuta, S. & Draenert, M. (2013). Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent, 38(6), 618-625.
  • Ilie, N. & Hickel, R. (2011). Investigations on a methacrylate-based flowable composite based on the SDR technology. Dent Mater, 27(4), 348-355.
  • Ilie, N. & Stark, K. (2014). Curing behaviour of high-viscosity bulk-fill composites. J Dent, 42(8), 977-985.
  • Jang, J. H., Park, S. H. & Hwang, I. N. (2014). Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent.
  • Kusgoz, A., Ulker, M., Yesilyurt, C., Yoldas, O. H., Ozil, M. & Tanriver, M. (2011). Silorane-based composite: depth of cure, surface hardness, degree of conversion, and cervical microleakage in Class II cavities. J Esthet Restor Dent, 23(5), 324-335.
  • Moorthy, A., Hogg, C. H., Dowling, A. H., Grufferty, B. F., Benetti, A. R. & Fleming, G. J. (2012). Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent, 40(6), 500-505.
  • Park, J., Chang, J., Ferracane, J. & Lee, I. B. (2008). How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater, 24(11), 1501-1505.
  • Roggendorf, M. J., Kramer, N., Appelt, A., Naumann, M. & Frankenberger, R. (2011). Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent, 39(10), 643-647.
  • Rueggeberg, F. A. & Margeson, D. H. (1990). The effect of oxygen inhibition on an unfilled/filled composite system. J Dent Res, 69(10), 1652-1658.
  • Scougall-Vilchis, R. J., Hotta, Y., Hotta, M., Idono, T. & Yamamoto, K. (2009). Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J, 28(1), 102-112.
  • Wieczkowski, G., Jr., Joynt, R. B., Klockowski, R. & Davis, E. L. (1988). Effects of incremental versus bulk fill technique on resistance to cuspal fracture of teeth restored with posterior composites. J Prosthet Dent, 60(3), 283-287.
  • Yap, A. U. (2000). Effectiveness of polymerization in composite restoratives claiming bulk placement: impact of cavity depth and exposure time. Oper Dent, 25(2), 113-120.

COMPARISON OF THE MICROHARDNESS OF BULK FILL COMPOSITES

Yıl 2022, , 414 - 421, 20.06.2022
https://doi.org/10.33715/inonusaglik.1096768

Öz

The aim of this study is to compare the microhardness of five different bulk fill composites (SDR, TEC, XTF, SF, FBF). A total of 25 cylindrical molds were prepared. Composite resin was placed in each mold in sequence, at one time, by condensing it thoroughly. Then, the polymerization of the composites was achieved with the LED light device which was applied for 20 seconds. Microhardness measurements of the samples were made with the classical Vicker's test. The data of our study were evaluated by using the Kruskal Wallis H test with the SPSS 20.0 package program. When the measured surface microhardness values were compared between the groups; microhardness values SDR and FBF groups were found to be significantly lower than TEC, XTF and KSF groups (p<0.05). When the sub-surface microhardness values were compared between the groups; the microhardness value of the SDR group was found to be significantly higher than the FBF group, and significantly lower than the TEC, XTF and KSF groups (p<0.05). When both the lower and upper surface microhardness values were compared between the groups, XTF was found to be the bulk fill composite group with the best microhardness.

Kaynakça

  • Alkan, F., Arisu, H. D. & Dalkiliç, E. E. (2020). Bulk-fill kompozitlerde kalınlığın artışının mikrosertlik üzerine etkisi. Selcuk Dental Journal, 7(2), 141-147.
  • Bouschlicher, M. R., Rueggeberg, F. A. & Wilson, B. M. (2004). Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent, 29(6), 698-704.
  • Cabadağ, Ö. G., Misilli, T. & Gönülol, N. (2021). Bulk-fill kompozit rezinlere güncel bakış. Selcuk Dental Journal, 8(1), 220-228.
  • Cekic-Nagas, I., Egilmez, F. & Ergun, G. (2010). The effect of irradiation distance on microhardness of resin composites cured with different light curing units. Eur J Dent, 4(4), 440-446.
  • Cohen, M. E., Leonard, D. L., Charlton, D. G., Roberts, H. W. & Ragain, J. C. (2004). Statistical estimation of resin composite polymerization sufficiency using microhardness. Dent Mater, 20(2), 158-166.
  • El-Damanhoury, H. & Platt, J. (2014). Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent, 39(4), 374-382.
  • El-Safty, S., Akhtar, R., Silikas, N. & Watts, D. C. (2012). Nanomechanical properties of dental resin-composites. Dent Mater, 28(12), 1292-1300.
  • Ferracane, J. L. (1985). Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater, 1(1), 11-14.
  • Flury, S., Hayoz, S., Peutzfeldt, A., Husler, J. & Lussi, A. (2012). Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater, 28(5), 521-528.
  • Frauscher, K. E. & Ilie, N. (2012). Depth of cure and mechanical properties of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig, 16(5), 1425-1434.
  • Ilie, N., Bucuta, S. & Draenert, M. (2013). Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent, 38(6), 618-625.
  • Ilie, N. & Hickel, R. (2011). Investigations on a methacrylate-based flowable composite based on the SDR technology. Dent Mater, 27(4), 348-355.
  • Ilie, N. & Stark, K. (2014). Curing behaviour of high-viscosity bulk-fill composites. J Dent, 42(8), 977-985.
  • Jang, J. H., Park, S. H. & Hwang, I. N. (2014). Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent.
  • Kusgoz, A., Ulker, M., Yesilyurt, C., Yoldas, O. H., Ozil, M. & Tanriver, M. (2011). Silorane-based composite: depth of cure, surface hardness, degree of conversion, and cervical microleakage in Class II cavities. J Esthet Restor Dent, 23(5), 324-335.
  • Moorthy, A., Hogg, C. H., Dowling, A. H., Grufferty, B. F., Benetti, A. R. & Fleming, G. J. (2012). Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent, 40(6), 500-505.
  • Park, J., Chang, J., Ferracane, J. & Lee, I. B. (2008). How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater, 24(11), 1501-1505.
  • Roggendorf, M. J., Kramer, N., Appelt, A., Naumann, M. & Frankenberger, R. (2011). Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent, 39(10), 643-647.
  • Rueggeberg, F. A. & Margeson, D. H. (1990). The effect of oxygen inhibition on an unfilled/filled composite system. J Dent Res, 69(10), 1652-1658.
  • Scougall-Vilchis, R. J., Hotta, Y., Hotta, M., Idono, T. & Yamamoto, K. (2009). Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J, 28(1), 102-112.
  • Wieczkowski, G., Jr., Joynt, R. B., Klockowski, R. & Davis, E. L. (1988). Effects of incremental versus bulk fill technique on resistance to cuspal fracture of teeth restored with posterior composites. J Prosthet Dent, 60(3), 283-287.
  • Yap, A. U. (2000). Effectiveness of polymerization in composite restoratives claiming bulk placement: impact of cavity depth and exposure time. Oper Dent, 25(2), 113-120.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Reyhan Şişman 0000-0001-7734-239X

Burak Dayı 0000-0002-5289-438X

Hacer Turgut 0000-0003-1714-6025

Enis Şimşek 0000-0001-7723-1390

Yayımlanma Tarihi 20 Haziran 2022
Gönderilme Tarihi 31 Mart 2022
Kabul Tarihi 20 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Şişman, R., Dayı, B., Turgut, H., Şimşek, E. (2022). COMPARISON OF THE MICROHARDNESS OF BULK FILL COMPOSITES. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(2), 414-421. https://doi.org/10.33715/inonusaglik.1096768