Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen Oksit/Poliimid Temelli Biyosensör Kullanarak Melatonin ve Dopaminin Voltametrik Analizi

Yıl 2020, , 367 - 382, 21.06.2020
https://doi.org/10.33715/inonusaglik.736510

Öz

Bu araştırmada, melatonin (MET) ve dopaminin (DP) eş zamanlı analizi için, Pt elektrodun modifikasyonu ile grafen oksit/poliimit (GO/PI) kompozit elektrot hazırlanmıştır. İlk olarak, GO/PI kompozit yapısı, 2,6-diaminopiridin temelli PI ve % 5 GO'den sentezlenmiştir. Daha sonra membran olarak elde edilen kompozit yapı elektrot yüzeyi üzerine kaplanmıştır. Hazırlanan GO/PI kompozit elektrodunun MET ve DP yanıtları Diferansiyel Puls Voltametri (DPV) tekniği ile araştırılmıştır. MET ölçümleri için doğrusallık 85- 105 µM (R2=0.9976) konsantrasyon aralığında elde edilmiştir. DP analizi için de doğrusallık 85-105 µM konsantrasyon aralığında izlenmiştir (R2=0.9988). GO/PI ile modifiye edilmiş elektrodun tayin limitleri, MET ve DP için sırasıyla yaklaşık 13.45x10−5 M ve 9.61x10−5 M’dı. Hazırlanan GO/PI kompozit modifiye elektrot, MET ve DP için iyi tekrarlanabilirlik, geniş doğrusal aralık ve hassasiyet sergilemiştir. Elde edilen sonuçlar, GO/PI kompozitinin ortamda ürik asit (UA) varlığında, MET ve DP’i eş zamanlı olarak analiz etmek için mükemmel bir membran olarak kullanılabileceğini göstermiştir.

Kaynakça

  • Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH. Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine, Microchimica Acta, 2014; 181(5): 671-677.
  • Bagheri H, Afkhami A, Hashemi P, Ghanei M. Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode, RSC Advances, 2015; 5(28): 21659-21669.
  • Cai J, Ma L, Niu H, Zhao P, Lian Y, Wang W. Near infrared electrochromic naphthalene-based polyimides containing triarylamine: Synthesis and electrochemical properties, Electrochimica Acta, 2013; 112: 59-67.
  • Chen L. An Amperometric Sensitive Hydrogen Peroxide Sensor Based on a Silver Nanoparticle-Doped Polyimide-Modified Glassy Carbon Electrode, International Journal of Electrochemical Science, 2018; 13: 10961-10972.
  • Choi S-J, Kim S-J, Kim I-D. Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors, NPG Asia Materials, 2016; 8: e315.
  • Compton O, Nguyen S. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, Small (Weinheim an der Bergstrasse, Germany), 2010; 6: 711-723. Dai W, Yu J, Wang Y, Song Y, Bai H, Nishimura K, Liao H, Jiang N. Enhanced thermal and mechanical properties of polyimide/graphene composites, Macromolecular Research, 2014; 22(9): 983-989.
  • Ekinci E, Köytepe S, Paşahan A, Seckin T. Preparation and characterization of an aromatic polyimide and its use as a selective membrane for H2O2, Turkish Journal of Chemistry, 2006; 30: 277-285.
  • Escriva L, Manyes L, Barbera M, Martinez-Torres D, Meca G. Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry, J Insect Physiol, 2016; 86: 48-53.
  • Fang B, Liu H, wang G, Zhou Y, Jiao S, Gao X. Preparation of poly(9-aminoacridine)-modified electrode and its application in the determination of dopamine and ascorbic acid simultaneously, Journal of Applied Polymer Science, 2007; 104(6): 3864-3870.
  • Hardeland R. Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction, ScientificWorldJournal, 2012; 2012: 640389.
  • Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling, J Pineal Res, 2012; 52(2): 139-166.
  • Hsiao S-H, Liou G-S, Kung Y-C, Pan H-Y, Kuo C-H. Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units, European Polymer Journal, 2009; 45(8): 2234-2248.
  • Jia L, Zhou Y, Jiang Y, Zhang A, Li X, Wang C. A novel dopamine sensor based on Mo doped reduced graphene oxide/polyimide composite membrane, Journal of Alloys and Compounds, 2016; 685: 167-174.
  • Khajehsharifi H, Pourbasheer E, Tavallali H, Sarvi S, Sadeghi M. The comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samples, Arabian Journal of Chemistry, 2017; 10: S3451-S3458.
  • Kim S, Lee H-i, Jeong HM, Kim B, Kim J, Cheol Min S. Effect of Pyrene Treatment on the Properties of Graphene/Epoxy Nanocomposites, Macromolecular Research - MACROMOL RES, 2010; 18: 1125-1128.
  • Kumar N, Sharma R, Goyal R. Nanopalladium grained polymer nanocomposite based sensor for the sensitive determination of Melatonin, Electrochimica Acta, 2016; 211: 18-26.
  • Kvetnoy IM, Ingel IE, Kvetnaia TV, Malinovskaya NK, Rapoport SI, Raikhlin NT, Trofimov AV, Yuzhakov VV. Gastrointestinal melatonin: cellular identification and biological role, Neuro Endocrinol Lett, 2002; 23(2): 121-132.
  • Lau KSY. (2014). 10 - High-Performance Polyimides and High Temperature Resistant Polymers. In H. Dodiuk & S. H. Goodman (Eds.), Handbook of Thermoset Plastics (Third Edition) (pp. 297-424). Boston: William Andrew Publishing.
  • Lee C, Wei X, Kysar J, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science (New York, N.Y.), 2008; 321: 385-388.
  • Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan, Talanta, 2016; 146: 114-121.
  • Lu J, Lau C, Lee M, Kai M. Simple and convenient chemiluminescent method for the determination of melatonin, Anal Chim Acta, 2002; 455: 193-198.
  • Manikandan PN, Dharuman V. Electrochemical Simultaneous Sensing of Melatonin, Dopamine and Acetaminophen at Platinum Doped and Decorated Alpha Iron Oxide, Electroanalysis, 2017; 29(6): 1524-1531.
  • Martins LG, khalil NM, Mainardes RM. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles, Journal of Pharmaceutical Analysis, 2017; 7(6): 388-393.
  • McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. Melatonin secretion and the incidence of type 2 diabetes, JAMA, 2013; 309(13): 1388-1396.
  • Molaakbari E, Mostafavi A, Beitollahi H. Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine, Sensors and Actuators B: Chemical, 2015; 208: 195-203.
  • Paşahan A, Köytepe S, Ekinci E. Synthesis, Characterization of a New Organosoluble Polyimide and Its Application in Development of Glucose Biosensor, Polymer-Plastics Technology and Engineering, 2011; 50: 1239-1246.
  • Reddy S, Kumara Swamy BE, Jayadevappa H. CuO nanoparticle sensor for the electrochemical determination of dopamine, Electrochimica Acta, 2012; 61: 78-86.
  • Sánchez-Barceló EJ, Cos S, Mediavilla D, Martínez-Campa C, González A, Alonso-Gonzalez C. Melatonin-estrogen interactions in breast cancer, Journal of pineal research, 2005; 38: 217-222.
  • Shen X, Xia X, Du Y, Wang C. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol, Frontiers of Materials Science, 2017; 11.
  • Siu SW, Lau KW, Tam PC, Shiu SY. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity, Prostate, 2002; 52(2): 106-122.
  • Smajdor J, Piech R, Pięk M, Paczosa-Bator B. Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination, Journal of Electroanalytical Chemistry, 2017; 799: 278-284.
  • Soltani N, Tavakkoli N, Shahdost-Fard F, Salavati H, Abdoli F. A carbon paste electrode modified with Al2O3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen, Mikrochim Acta, 2019; 186(8): 540.
  • Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care, Cell Death Dis, 2019; 10(4): 317.
  • Wang HY, Sun Y, Tang B. Study on fluorescence property of dopamine and determination of dopamine by fluorimetry, Talanta, 2002; 57(5): 899-907.
  • Wang Y, Yang X, Hou C, Zhao M, Li Z, Meng Q, Liang C. Fabrication of MnOx/Ni(OH)2 electro-deposited sulfonated polyimides/graphene nano-sheets membrane and used for electrochemical sensing of glucose, Journal of Electroanalytical Chemistry, 2019; 837: 95-102.
  • Wightman RM, May LJ, Michael AC. Detection of dopamine dynamics in the brain, Analytical Chemistry, 1988; 60(13): 769A-779A. Ye N, Gao T, Li J. Hollow fiber-supported graphene oxide molecularly imprinted polymers for the determination of dopamine using HPLC-PDA, Anal. Methods, 2014; 6.
  • Yoonessi M, Scheiman DA, Dittler M, Peck JA, Ilavsky J, Gaier JR, Meador MA. High-temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites, Polymer, 2013; 54(11): 2776-2784.
  • Zhang D, Li L, Ma W, Chen X, Zhang Y. Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Materials Science and Engineering: C, 2017; 70: 241-249.
  • Zhang Y, Fan W, Huang Y, Zhang C, Liu T. Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors, RSC Advances, 2015; 5(2): 1301-1308.

VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR

Yıl 2020, , 367 - 382, 21.06.2020
https://doi.org/10.33715/inonusaglik.736510

Öz

In this research, for the simultaneous analysis of melatonin (MET) and dopamine (DP), graphene oxide/polyimide (GO/PI) composite electrode was prepared with the modification of Pt electrode. Firstly, GO/PI composite structure was synthesized from 2,6-diaminopyridine based polyimide and 5% GO. Then, the obtained composite structure as the membrane was coated on the electrode surface. MET and DP responses of the prepared GO/PI composite electrode were investigated by Differential Pulse Voltammetry (DPV) technique. Linearity was obtained over a concentration range of 85-105 µM for MET (R2 = 0.9976). For DP analysis, the linearity was also monitored over a concentration range of 85-105 µM (R2=0.9988). The detection limits of GO/PI modified electrode were approximately 13.45×10−5 M and 9.61×10−5 M for MET and DP, respectively. The prepared GO/PI composite modified electrode exhibited good repeatability, wide linear range and sensitivity for MET and DP. The obtained results indicated that while uric acid (UA) is present in the medium, GO/PI composite can be used as an excellent membrane in the design of voltammetric sensors to analyze MET and DP simultaneously.

Kaynakça

  • Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH. Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine, Microchimica Acta, 2014; 181(5): 671-677.
  • Bagheri H, Afkhami A, Hashemi P, Ghanei M. Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode, RSC Advances, 2015; 5(28): 21659-21669.
  • Cai J, Ma L, Niu H, Zhao P, Lian Y, Wang W. Near infrared electrochromic naphthalene-based polyimides containing triarylamine: Synthesis and electrochemical properties, Electrochimica Acta, 2013; 112: 59-67.
  • Chen L. An Amperometric Sensitive Hydrogen Peroxide Sensor Based on a Silver Nanoparticle-Doped Polyimide-Modified Glassy Carbon Electrode, International Journal of Electrochemical Science, 2018; 13: 10961-10972.
  • Choi S-J, Kim S-J, Kim I-D. Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors, NPG Asia Materials, 2016; 8: e315.
  • Compton O, Nguyen S. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, Small (Weinheim an der Bergstrasse, Germany), 2010; 6: 711-723. Dai W, Yu J, Wang Y, Song Y, Bai H, Nishimura K, Liao H, Jiang N. Enhanced thermal and mechanical properties of polyimide/graphene composites, Macromolecular Research, 2014; 22(9): 983-989.
  • Ekinci E, Köytepe S, Paşahan A, Seckin T. Preparation and characterization of an aromatic polyimide and its use as a selective membrane for H2O2, Turkish Journal of Chemistry, 2006; 30: 277-285.
  • Escriva L, Manyes L, Barbera M, Martinez-Torres D, Meca G. Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry, J Insect Physiol, 2016; 86: 48-53.
  • Fang B, Liu H, wang G, Zhou Y, Jiao S, Gao X. Preparation of poly(9-aminoacridine)-modified electrode and its application in the determination of dopamine and ascorbic acid simultaneously, Journal of Applied Polymer Science, 2007; 104(6): 3864-3870.
  • Hardeland R. Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction, ScientificWorldJournal, 2012; 2012: 640389.
  • Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling, J Pineal Res, 2012; 52(2): 139-166.
  • Hsiao S-H, Liou G-S, Kung Y-C, Pan H-Y, Kuo C-H. Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units, European Polymer Journal, 2009; 45(8): 2234-2248.
  • Jia L, Zhou Y, Jiang Y, Zhang A, Li X, Wang C. A novel dopamine sensor based on Mo doped reduced graphene oxide/polyimide composite membrane, Journal of Alloys and Compounds, 2016; 685: 167-174.
  • Khajehsharifi H, Pourbasheer E, Tavallali H, Sarvi S, Sadeghi M. The comparison of partial least squares and principal component regression in simultaneous spectrophotometric determination of ascorbic acid, dopamine and uric acid in real samples, Arabian Journal of Chemistry, 2017; 10: S3451-S3458.
  • Kim S, Lee H-i, Jeong HM, Kim B, Kim J, Cheol Min S. Effect of Pyrene Treatment on the Properties of Graphene/Epoxy Nanocomposites, Macromolecular Research - MACROMOL RES, 2010; 18: 1125-1128.
  • Kumar N, Sharma R, Goyal R. Nanopalladium grained polymer nanocomposite based sensor for the sensitive determination of Melatonin, Electrochimica Acta, 2016; 211: 18-26.
  • Kvetnoy IM, Ingel IE, Kvetnaia TV, Malinovskaya NK, Rapoport SI, Raikhlin NT, Trofimov AV, Yuzhakov VV. Gastrointestinal melatonin: cellular identification and biological role, Neuro Endocrinol Lett, 2002; 23(2): 121-132.
  • Lau KSY. (2014). 10 - High-Performance Polyimides and High Temperature Resistant Polymers. In H. Dodiuk & S. H. Goodman (Eds.), Handbook of Thermoset Plastics (Third Edition) (pp. 297-424). Boston: William Andrew Publishing.
  • Lee C, Wei X, Kysar J, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science (New York, N.Y.), 2008; 321: 385-388.
  • Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan, Talanta, 2016; 146: 114-121.
  • Lu J, Lau C, Lee M, Kai M. Simple and convenient chemiluminescent method for the determination of melatonin, Anal Chim Acta, 2002; 455: 193-198.
  • Manikandan PN, Dharuman V. Electrochemical Simultaneous Sensing of Melatonin, Dopamine and Acetaminophen at Platinum Doped and Decorated Alpha Iron Oxide, Electroanalysis, 2017; 29(6): 1524-1531.
  • Martins LG, khalil NM, Mainardes RM. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles, Journal of Pharmaceutical Analysis, 2017; 7(6): 388-393.
  • McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. Melatonin secretion and the incidence of type 2 diabetes, JAMA, 2013; 309(13): 1388-1396.
  • Molaakbari E, Mostafavi A, Beitollahi H. Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine, Sensors and Actuators B: Chemical, 2015; 208: 195-203.
  • Paşahan A, Köytepe S, Ekinci E. Synthesis, Characterization of a New Organosoluble Polyimide and Its Application in Development of Glucose Biosensor, Polymer-Plastics Technology and Engineering, 2011; 50: 1239-1246.
  • Reddy S, Kumara Swamy BE, Jayadevappa H. CuO nanoparticle sensor for the electrochemical determination of dopamine, Electrochimica Acta, 2012; 61: 78-86.
  • Sánchez-Barceló EJ, Cos S, Mediavilla D, Martínez-Campa C, González A, Alonso-Gonzalez C. Melatonin-estrogen interactions in breast cancer, Journal of pineal research, 2005; 38: 217-222.
  • Shen X, Xia X, Du Y, Wang C. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol, Frontiers of Materials Science, 2017; 11.
  • Siu SW, Lau KW, Tam PC, Shiu SY. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity, Prostate, 2002; 52(2): 106-122.
  • Smajdor J, Piech R, Pięk M, Paczosa-Bator B. Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination, Journal of Electroanalytical Chemistry, 2017; 799: 278-284.
  • Soltani N, Tavakkoli N, Shahdost-Fard F, Salavati H, Abdoli F. A carbon paste electrode modified with Al2O3-supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen, Mikrochim Acta, 2019; 186(8): 540.
  • Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care, Cell Death Dis, 2019; 10(4): 317.
  • Wang HY, Sun Y, Tang B. Study on fluorescence property of dopamine and determination of dopamine by fluorimetry, Talanta, 2002; 57(5): 899-907.
  • Wang Y, Yang X, Hou C, Zhao M, Li Z, Meng Q, Liang C. Fabrication of MnOx/Ni(OH)2 electro-deposited sulfonated polyimides/graphene nano-sheets membrane and used for electrochemical sensing of glucose, Journal of Electroanalytical Chemistry, 2019; 837: 95-102.
  • Wightman RM, May LJ, Michael AC. Detection of dopamine dynamics in the brain, Analytical Chemistry, 1988; 60(13): 769A-779A. Ye N, Gao T, Li J. Hollow fiber-supported graphene oxide molecularly imprinted polymers for the determination of dopamine using HPLC-PDA, Anal. Methods, 2014; 6.
  • Yoonessi M, Scheiman DA, Dittler M, Peck JA, Ilavsky J, Gaier JR, Meador MA. High-temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites, Polymer, 2013; 54(11): 2776-2784.
  • Zhang D, Li L, Ma W, Chen X, Zhang Y. Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Materials Science and Engineering: C, 2017; 70: 241-249.
  • Zhang Y, Fan W, Huang Y, Zhang C, Liu T. Graphene/carbon aerogels derived from graphene crosslinked polyimide as electrode materials for supercapacitors, RSC Advances, 2015; 5(2): 1301-1308.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Öznur Güngör 0000-0002-0664-1218

Aziz Paşahan 0000-0002-0657-3884

Büşra Aksoy

Süleyman Köytepe 0000-0002-4788-278X

Turgay Seçkin 0000-0001-8483-7366

Yayımlanma Tarihi 21 Haziran 2020
Gönderilme Tarihi 12 Mayıs 2020
Kabul Tarihi 28 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Güngör, Ö., Paşahan, A., Aksoy, B., Köytepe, S., vd. (2020). VOLTAMMETRIC ANALYSIS OF MELATONIN AND DOPAMINE BY USING GRAPHENE OXIDE/POLYIMIDE BASED BIOSENSOR. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8(2), 367-382. https://doi.org/10.33715/inonusaglik.736510