Araştırma Makalesi
BibTex RIS Kaynak Göster

PREPARATION OF ALLANTOIN LOADED CHITOSAN NANOPARTICLES AND INFLUENCE OF MOLECULAR WEIGHT OF CHITOSAN ON DRUG RELEASE

Yıl 2020, Cilt: 8 Sayı: 3, 725 - 740, 30.11.2020
https://doi.org/10.33715/inonusaglik.759872

Öz

In this study, allantoin-loaded chitosan nanoparticles were prepared and the effect of molecular weights (low, medium, and high) of chitosan was investigated on the release of allantoin. The allantoin-loaded chitosan nanoparticles were characterized by various methods. The morphology, size, zeta potential, and loading efficiency were affected by the molecular weight of chitosan. The results displayed that the average hydrodynamic diameter of chitosan nanoparticles was in the range of 427–768 nm and the zeta potential values from 5.97 to 5.12 mV was obtained. The allantoin release from chitosan nanoparticles reached the plateau level in 96 hours. Cumulative allantoin release values of low, medium, and high molecular mass chitosan nanoparticles were determined as 43%, 30%, and 27%, respectively. According to the results, the molecular weight of chitosan influenced on allantoin release.

Teşekkür

The author thanks Prof. Dr. Burhan Ateş.

Kaynakça

  • Araújo, L. U., Grabe-Guimarães, A., Mosqueira, V. C. F., Carneiro, C. M., Silva-Barcellos, N. M. (2010). Profile of wound healing process induced by allantoin1. Acta Cirurgica Brasileira, 25(5), 460–466.
  • Becker, L. C., Bergfeld, W. F., Belsito, D. V., Klaassen, C. D., Marks Jr, J. G., Shank, R. C., … Andersen, F. A. (2010). Final report of the safety assessment of allantoin and its related complexes. International Journal of Toxicology, 29(2), 84-97.
  • Calvo, P., Remuñan-López, C., Vila-Jato, J. L., Alonso, M. J. (1997). Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical Research, 14(10), 1431–1436.
  • Cetin, M., Aktas, Y., Vural, I., Capan, Y., Dogan, L. A., Duman, M., … Dalkara, T. (2007). Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Delivery, 14(8), 525–529.
  • Desai, K. G. H., Park, H. J. (2005). Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. Journal of Microencapsulation, 22(2), 179–192.
  • Desai, K. G., Liu, C., Park, H. J. (2006). Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight. Journal of Microencapsulation, 23(1), 79–90.
  • Fan, Y., Yi, J., Zhang, Y., Yokoyama, W. (2017). Improved chemical stability and antiproliferative activities of curcumin-loaded nanoparticles with a chitosan chlorogenic acid conjugate. Journal of Agricultural and Food Chemistry, 65(49), 10812–10819.
  • Feyzioglu, G. C., Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT - Food Science and Technology, 70, 104–110.
  • Filipović-Grčić, J., Perissutti, B., Moneghini, M., Voinovich, D., Martinac, A., Jalšenjak, I. (2003). Spray-dried carbamazepine-loaded chitosan and HPMC microspheres: preparation and characterisation. Journal of Pharmacy and Pharmacology, 55(7), 921–931.
  • Kahdestani, S. A., Shahriari, M. H., Abdouss, M. (2020). Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol–gel. Polymer Bulletin, 1-16.
  • Ke, M., Wahab, J. A., Hyunsik, B., Song, K. H., Lee, J. S., Gopiraman, M., … Kim, I. S. (2016). Allantoin-loaded porous silica nanoparticles/ polycaprolactone nanofiber composites: fabrication, characterization, and drug release properties. RSC Advances, 6, 4593-4600.
  • Li, P., Wang, Y., Peng, Z., She, F., Kong, L. (2011). Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydrate Polymers, 85(3), 698–704.
  • Lustriane, C., Dwivany, F. M., Suendo, V., Reza, M. (2018). Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. Journal of Plant Biotechnology, 45(1), 36–44.
  • Odeniyi, M. A., Omoteso, O. A., Adepoju, A. O., Jaiyeoba, K. T. (2018). Starch nanoparticles in drug delivery: a review. Polimery w Medycynie, 48(1), 41-45.
  • Meng, J., Sturgis, T. F., Youan, B. B. C. (2011). Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences. 44(1-2):57-67.
  • Meng, J., Zhang, T., Agrahari, V., Ezoulin, M. J., Youan, B. B. C. (2014). Comparative biophysical properties of tenofovir-loaded, thiolated and nonthiolated chitosan nanoparticles intended for HIV prevention. Nanomedicine, 9(11), 1595–1612.
  • Mohammadpour Dounighi, N., Eskandari, R., Avadi, M. R., Zolfagharian, H., Mir Mohammad Sadeghi, A., & Rezayat, M. (2012). Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. Journal of Venomous Animals and Toxins Including Tropical Diseases. 18(1), 44-52.
  • Naskar, S., Koutsu, K., Sharma, S. (2019, April 21). Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. Journal of Drug Targeting. 27, 379–393.
  • OH, J.-W., Chun, S. C., Chandrasekaran, M. (2019). Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy, 9(1), 21.
  • Rampino, A., Borgogna, M., Blasi, P., Bellich, B., Cesàro, A. (2013). Chitosan nanoparticles: Preparation, size evolution and stability. International Journal of Pharmaceutics, 455(1–2), 219–228.
  • Senda, T., He, Y., Inoue, Y. (2002). Biodegradable blends of poly(ɛ-caprolactone) with α-chitin and chitosan: specific interactions, thermal properties and crystallization behavior. Polymer International, 51(1), 33–39.
  • Severino, P., da Silva, C. F., Andrade, L. N., de Lima Oliveira, D., Campos, J., Souto, E. B. (2019). Alginate nanoparticles for drug delivery and targeting. Current Pharmaceutical Design, 25(11), 1312–1334.
  • Taghizadeh, M. T., Bahadori, A. (2013). Preparation, characterization and adhesive properties of di- and tri-hydroxy benzoyl chitosan nanoparticles. Chinese Journal of Polymer Science, 31(4), 649–659.
  • Thai, H., Thuy Nguyen, C., Thi Thach, L., Thi Tran, M., Duc Mai, H., Thi Thu Nguyen, T., … Van Le, Q. (2020). Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Scientific Reports, 10(1), 909.
  • Tiǧli Aydin, R. S., Pulat, M. (2012). 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: Evaluation of controlled release kinetics. Journal of Nanomaterials, 313961.
  • Uppal, S., Kaur, K., Kumar, R., Kaur, N. D., Shukla, G., Mehta, S. K. (2018). Chitosan nanoparticles as a biocompatible and efficient nanowagon for benzyl isothiocyanate. International Journal of Biological Macromolecules, 115, 18–28.
  • Villegas-Peralta, Y., López-Cervantes, J., Madera Santana, T. J., Sánchez-Duarte, R. G., Sánchez-Machado, D. I., Martínez-Macías, M. del R., Correa-Murrieta, M. A. (2020). Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application. Polymer Bulletin, 1-20.
  • Yang, H. C., Hon, M. H. (2009). The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal, 92(1), 87–91.
  • Yaşayan, G., Karaca, G., Akgüner, Z. P., Bal Öztürk, A. (2020). Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-13.

Allantoin Yüklü Kitosan Nanopartiküllerinin Hazırlanması ve Kitosanın Moleküler Ağırlığının İlaç Salımı Üzerindeki Etkisi

Yıl 2020, Cilt: 8 Sayı: 3, 725 - 740, 30.11.2020
https://doi.org/10.33715/inonusaglik.759872

Öz

Bu çalışmada, allantoin yüklü kitosan nanopartikülleri hazırlanmış ve kitosanın moleküler ağırlıklarının (düşük, orta ve yüksek) allantoin salınımı üzerindeki etkisi araştırılmıştır. Allantoin yüklü kitosan nanopartikülleri çeşitli yöntemlerle karakterize edilmiştir. Morfoloji, boyut, zeta potansiyeli ve yükleme etkinliği, kitosanın moleküler ağırlığından etkilenmiştir. Sonuçlar, kitosan nanopartiküllerinin ortalama hidrodinamik çapının 427-768 nm aralığında olduğunu ve 5.97 ila 5.12 mV'lik zeta potansiyelinin elde edildiğini göstermiştir. Kitosan nanopartiküllerinden allantoin salınımı 96 saat içinde plato seviyesine ulaşmıştır. Kümülatif allantoin salım değerleri düşük, orta ve yüksek molekül ağırlıklı kitosan nanopartikülleri için sırasıyla %43, %30 ve % 27 olarak tespit edilmiştir. Sonuçlara göre kitosanın molekül ağırlığı allantoin salınımını etkilemiştir.

Kaynakça

  • Araújo, L. U., Grabe-Guimarães, A., Mosqueira, V. C. F., Carneiro, C. M., Silva-Barcellos, N. M. (2010). Profile of wound healing process induced by allantoin1. Acta Cirurgica Brasileira, 25(5), 460–466.
  • Becker, L. C., Bergfeld, W. F., Belsito, D. V., Klaassen, C. D., Marks Jr, J. G., Shank, R. C., … Andersen, F. A. (2010). Final report of the safety assessment of allantoin and its related complexes. International Journal of Toxicology, 29(2), 84-97.
  • Calvo, P., Remuñan-López, C., Vila-Jato, J. L., Alonso, M. J. (1997). Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical Research, 14(10), 1431–1436.
  • Cetin, M., Aktas, Y., Vural, I., Capan, Y., Dogan, L. A., Duman, M., … Dalkara, T. (2007). Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Delivery, 14(8), 525–529.
  • Desai, K. G. H., Park, H. J. (2005). Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. Journal of Microencapsulation, 22(2), 179–192.
  • Desai, K. G., Liu, C., Park, H. J. (2006). Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight. Journal of Microencapsulation, 23(1), 79–90.
  • Fan, Y., Yi, J., Zhang, Y., Yokoyama, W. (2017). Improved chemical stability and antiproliferative activities of curcumin-loaded nanoparticles with a chitosan chlorogenic acid conjugate. Journal of Agricultural and Food Chemistry, 65(49), 10812–10819.
  • Feyzioglu, G. C., Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT - Food Science and Technology, 70, 104–110.
  • Filipović-Grčić, J., Perissutti, B., Moneghini, M., Voinovich, D., Martinac, A., Jalšenjak, I. (2003). Spray-dried carbamazepine-loaded chitosan and HPMC microspheres: preparation and characterisation. Journal of Pharmacy and Pharmacology, 55(7), 921–931.
  • Kahdestani, S. A., Shahriari, M. H., Abdouss, M. (2020). Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol–gel. Polymer Bulletin, 1-16.
  • Ke, M., Wahab, J. A., Hyunsik, B., Song, K. H., Lee, J. S., Gopiraman, M., … Kim, I. S. (2016). Allantoin-loaded porous silica nanoparticles/ polycaprolactone nanofiber composites: fabrication, characterization, and drug release properties. RSC Advances, 6, 4593-4600.
  • Li, P., Wang, Y., Peng, Z., She, F., Kong, L. (2011). Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydrate Polymers, 85(3), 698–704.
  • Lustriane, C., Dwivany, F. M., Suendo, V., Reza, M. (2018). Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. Journal of Plant Biotechnology, 45(1), 36–44.
  • Odeniyi, M. A., Omoteso, O. A., Adepoju, A. O., Jaiyeoba, K. T. (2018). Starch nanoparticles in drug delivery: a review. Polimery w Medycynie, 48(1), 41-45.
  • Meng, J., Sturgis, T. F., Youan, B. B. C. (2011). Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. European Journal of Pharmaceutical Sciences. 44(1-2):57-67.
  • Meng, J., Zhang, T., Agrahari, V., Ezoulin, M. J., Youan, B. B. C. (2014). Comparative biophysical properties of tenofovir-loaded, thiolated and nonthiolated chitosan nanoparticles intended for HIV prevention. Nanomedicine, 9(11), 1595–1612.
  • Mohammadpour Dounighi, N., Eskandari, R., Avadi, M. R., Zolfagharian, H., Mir Mohammad Sadeghi, A., & Rezayat, M. (2012). Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. Journal of Venomous Animals and Toxins Including Tropical Diseases. 18(1), 44-52.
  • Naskar, S., Koutsu, K., Sharma, S. (2019, April 21). Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. Journal of Drug Targeting. 27, 379–393.
  • OH, J.-W., Chun, S. C., Chandrasekaran, M. (2019). Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy, 9(1), 21.
  • Rampino, A., Borgogna, M., Blasi, P., Bellich, B., Cesàro, A. (2013). Chitosan nanoparticles: Preparation, size evolution and stability. International Journal of Pharmaceutics, 455(1–2), 219–228.
  • Senda, T., He, Y., Inoue, Y. (2002). Biodegradable blends of poly(ɛ-caprolactone) with α-chitin and chitosan: specific interactions, thermal properties and crystallization behavior. Polymer International, 51(1), 33–39.
  • Severino, P., da Silva, C. F., Andrade, L. N., de Lima Oliveira, D., Campos, J., Souto, E. B. (2019). Alginate nanoparticles for drug delivery and targeting. Current Pharmaceutical Design, 25(11), 1312–1334.
  • Taghizadeh, M. T., Bahadori, A. (2013). Preparation, characterization and adhesive properties of di- and tri-hydroxy benzoyl chitosan nanoparticles. Chinese Journal of Polymer Science, 31(4), 649–659.
  • Thai, H., Thuy Nguyen, C., Thi Thach, L., Thi Tran, M., Duc Mai, H., Thi Thu Nguyen, T., … Van Le, Q. (2020). Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Scientific Reports, 10(1), 909.
  • Tiǧli Aydin, R. S., Pulat, M. (2012). 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: Evaluation of controlled release kinetics. Journal of Nanomaterials, 313961.
  • Uppal, S., Kaur, K., Kumar, R., Kaur, N. D., Shukla, G., Mehta, S. K. (2018). Chitosan nanoparticles as a biocompatible and efficient nanowagon for benzyl isothiocyanate. International Journal of Biological Macromolecules, 115, 18–28.
  • Villegas-Peralta, Y., López-Cervantes, J., Madera Santana, T. J., Sánchez-Duarte, R. G., Sánchez-Machado, D. I., Martínez-Macías, M. del R., Correa-Murrieta, M. A. (2020). Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application. Polymer Bulletin, 1-20.
  • Yang, H. C., Hon, M. H. (2009). The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal, 92(1), 87–91.
  • Yaşayan, G., Karaca, G., Akgüner, Z. P., Bal Öztürk, A. (2020). Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-13.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Ulu 0000-0002-4447-6233

Yayımlanma Tarihi 30 Kasım 2020
Gönderilme Tarihi 29 Haziran 2020
Kabul Tarihi 7 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 3

Kaynak Göster

APA Ulu, A. (2020). PREPARATION OF ALLANTOIN LOADED CHITOSAN NANOPARTICLES AND INFLUENCE OF MOLECULAR WEIGHT OF CHITOSAN ON DRUG RELEASE. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8(3), 725-740. https://doi.org/10.33715/inonusaglik.759872