Araştırma Makalesi
BibTex RIS Kaynak Göster

GRAFEN NANOPLATELET-MİNERAL TRİOKSİD AGREGAT KARIŞIMININ RAT DİŞLERİNDE PULPA KUAFAJ MATERYALİ OLARAK DEĞERLENDİRİLMESİ

Yıl 2022, Cilt: 10 Sayı: 1, 225 - 240, 10.03.2022
https://doi.org/10.33715/inonusaglik.1010510

Öz

Çalışmanın amacı Mineral Trioksid Agregat (MTA)’a farklı oranlarda grafen nanoplatelet (GNP) eklenerek oluşturulan karışımların rat diş pulpaları üzerindeki etkisinin histolojik olarak değerlendirilmesidir. GNP (Nanografi, Türkiye) saf haldeki Angelus MTA’ya (Angelus, Londrina, PR, Brezilya) ağırlıkça %0.1 ve %0.3 oranlarında hassas terazide tartılarak katıldı ve homojen bir karışım oluşana kadar agat havanda karıştırıldı. 16 adet dişi Wistar Albino rat 4 gruba ayrıldı. Angelus MTA+%0.1 GNP, Angelus MTA+%0.3 GNP, kalsiyum hidroksit (Dycal, Dentsply, Almanya) ve saf haldeki Angelus MTA ratların alt iki keser dişlerinde oluşturulan sınıf V kavitelerdeki pulpa perforasyon alanlarında direkt pulpa kuafaj materyali olarak kullanıldı (n=8). Dişler 1 ve 4. haftalarda dentin köprüsü oluşumu ve pulpal doku yanıtları açısından histolojik olarak incelendi. Çalışma verileri IBM SPSS Statistics V22 for Windows (SPSS Inc., Chicago, IL, ABD) ile analiz edildi. Rejeneratif dentin köprüsü oluşumu 1. haftadan itibaren gözlemlendi. 4. haftada Angelus MTA+%0.3 GNP grubunda yangısal reaksiyonun en hafif olduğu görüldü. 4. haftada hiperemi en hafif Angelus MTA+%0.1 GNP ve Angelus MTA+%0.3 GNP gruplarında belirlendi. Yangısal reaksiyon ve hipereminin varlığı açısından gruplar arasında 1 ve 4. haftalarda anlamlı bir farka rastlanmadı (p>0.05). GNP’nin Angelus MTA’ya katılması direkt pulpa kuafajında pulpal doku yanıtını hafifleterek tedavide başarıyı arttırabilir.

Destekleyen Kurum

İnönü Üniversitesi BAP Koordinasyon Birimi

Proje Numarası

TCD-2018-1271

Kaynakça

  • Akhlaghi, N., Khademi, A. (2015). Outcomes of vital pulp therapy in permanent teeth with different medicaments based on review of the literature. Dental Research Journal, 12(5), 406.
  • Barthel, C., Levin, L., Reisner, H., Trope, M. (1997). TNF‐α release in monocytes after exposure to calcium hydroxide treated Escherichia coli LPS. International Endodontic Journal, 30(3), 155-159.
  • Bollella, P., Fusco, G., Tortolini, C., Sanzò, G., Favero, G., Gorton, L., Antiochia, R. (2017). Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosensors and Bioelectronics, 89, 152-166.
  • Bortoluzzi, E. A., Broon, N. J., Bramante, C. M., Consolaro, A., Garcia, R. B., de Moraes, I. G., Bernadineli, N. (2008). Mineral trioxide aggregate with or without calcium chloride in pulpotomy. Journal of Endodontics, 34(2), 172-175.
  • Bramante C. M., Demarchi A. C. C. O., de Moraes I. G., Bernadineli N., Garcia R. B., Spångberg L. S. W., Duarte, M. A. H. (2008). Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 106(6), 909-913.
  • Bregnocchi, A., Zanni, E., Uccelletti, D., Marra, F., Cavallini, D., De Angelis, F., ... Sarto, M. S. (2017). Graphene-based dental adhesive with anti-biofilm activity. Journal of Nanobiotechnology, 15(1), 89. doi: 10.1186/s12951-017-0322-1
  • Brizuela, C., Ormeno, A., Cabrera, C., Cabezas, R., Silva, C. I., Ramirez, V., Mercade, M. (2017). Direct pulp capping with calcium hydroxide, mineral trioxide aggregate, and biodentine in permanent young teeth with caries: a randomized clinical trial. Journal of Endodontics, 43(11), 1776-1780. doi: 10.1016/j.joen.2017.06.031
  • Chatterjee N, Eom H. J., Choi J. (2014). A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials, 35(4), 1109-1127.
  • Chng, E. L. K., Chua, C. K., Pumera, M. (2014). Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale, 6(18), 10792-10797.
  • da Rosa, W. L. O., Cocco, A. R., da Silva, T. M., Mesquita, L. C., Galarca, A. D., da Silva, A. F., Piva, E. (2018). Current trends and future perspectives of dental pulp capping materials: A systematic review. Journal of Biomedical Materials Research Part B: Applied Biomaterials,106(3),1358-1368.
  • D'Souza, R. N., Bachman, T., Baumgardner, K. R., Butler, W. T., Litz, M. (1995). Characterization of cellular responses involved in reparative dentinogenesis in rat molars. Journal of Dental Research, 74(2), 702-709. doi: 10.1177/00220345950740021301
  • Dammaschke, T. (2008). The history of direct pulp capping. Journal of the History of Dentistry, 56(1), 9-23.
  • Dammaschke, T. (2010). Rat molar teeth as a study model for direct pulp capping research in dentistry. Laboratory Animals, 44(1), 1-6. doi: 10.1258/la.2009.008120
  • Du, H., Pang, S. D. (2018). Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Construction and Building Materials, 167, 403-413.
  • Erfanparast, L., Iranparvar, P., Vafaei, A. (2018). Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial. European Archives of Paediatric Dentistry, 19(3), 197-203.
  • Fridland, M., Rosado, R. (2003). Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. Journal of Endodontics, 29(12), 814-817.
  • Geim, A. K., Novoselov, K. S. (2010). Nanoscience and technology: a collection of reviews from nature journals. Assembly Autom, 20, 11-19.
  • Guazzo, R., Gardin, C., Bellin, G., Sbricoli, L., Ferroni, L., Ludovichetti, F. S., … Zavan, B. (2018). Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials, 8(5), 349. doi: 10.3390/nano8050349
  • Guerrero-Girones, J., Alcaina-Lorente, A., Ortiz-Ruiz, C., Ortiz-Ruiz, E., Pecci-Lloret, M. P., Rodriguez-Lozano, F. J., ... Ortiz-Ruiz, A. J. (2020). Melatonin as an Agent for Direct Pulp-Capping Treatment. International Journal of Environmental Research and Public Health, 17(3), 1043. doi: 10.3390/ijerph17031043
  • Guimarães, B. M., Prati, C., Duarte, M. A. H., Bramante, C. M., Gandolfi, M. G. (2018). Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. Journal of Applied Oral Science, 5(26). doi: 10.1590/1678-7757-2017-0115.
  • Gurcan, A. T., Seymen, F. (2019). Clinical and radiographic evaluation of indirect pulp capping with three different materials: a 2-year follow-up study. European Journal of Paediatric Dentistry, 20(2), 105-110. doi: 10.23804/ejpd.2019.20.02.04
  • Hilton, T. J. (2009). Keys to clinical success with pulp capping: a review of the literature. Operative Dentistry, 34(5), 615-625.
  • Hilton, T. J., Ferracane, J. L., Mancl, L. (2013). Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. Journal of Dental Research, 92(7_suppl), 16-22.
  • Huj, C. C., Zhang, C., Yun S. S., Qian Q, Ranly, D. M. (1997). Platelet derived growth factor-BB and epidermal growth factor as pulp capping medicaments in rat incisors. Journal of Hard Tissue Biology, 6(3), 121-129.
  • Jalan, A. L., Warhadpande, M. M., Dakshindas, D. M. (2017). A comparison of human dental pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents. Journal of Conservative Dentistry: JCD, 20(2), 129.
  • Jaleel, J. A., Sruthi, S., Pramod, K. (2017). Reinforcing nanomedicine using graphene family nanomaterials. Journal of Controlled Release, 255, 218-230.
  • Kangarlou, A., Sofiabadi, S., Asgary, S., Mahjour, F., Dianat, O., Yadegari, Z., Younessian, F. (2012). Assessment of antifungal activity of ProRoot mineral trioxide aggregate and mineral trioxide aggregate-Angelus. Dental Research Journal, 9(3), 256.
  • Kim, J., Kim, Y. R., Kim, Y., Lim, K. T., Seonwoo, H., Park, S., ... Chung, J. H. (2013). Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry. B, 1(7), 933-938. doi: 10.1039/c2tb00274d
  • Kucukyildiz, E. N., Dayi, B., Altin, S., Yigit, O. (2021). In vitro comparison of physical, chemical, and mechanical properties of graphene nanoplatelet added Angelus mineral trioxide aggregate to pure Angelus mineral trioxide aggregate and calcium hydroxide. Microscopy Research and Technique, 84(5), 929-942. doi: 10.1002/jemt.23654
  • Li, Z., Cao, L., Fan, M., Xu, Q. (2015). Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: A Meta-analysis. Journal of Endodontics, 41(9), 1412-1417. doi: 10.1016/j.joen.2015.04.012
  • Long, Y., Liu, S., Zhu, L., Liang, Q., Chen, X., Dong, Y. (2017). Evaluation of pulp response to novel bioactive glass pulp capping materials. Journal of Endodontics, 43(10), 1647-1650. doi: 10.1016/j.joen.2017.03.011
  • Majeed, W., Bourdo, S., Petibone, D. M., Saini, V., Vang, K. B., Nima, Z. A., ... Watanabe, F. (2017). The role of surface chemistry in the cytotoxicity profile of graphene. Journal of Applied Toxicology, 37(4), 462-470. Orhan, E. O., Maden, M., Senguuven, B. (2012). Odontoblast-like cell numbers and reparative dentine thickness after direct pulp capping with platelet-rich plasma and enamel matrix derivative: a histomorphometric evaluation. International Endodontic Journal, 45(4), 317-325. doi: 10.1111/j.1365-2591.2011.01977.x
  • Parirokh, M., Torabinejad, M. (2010). Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. Journal of Endodontics, 36(1), 16-27. doi: 10.1016/j.joen.2009.09.006
  • Pinzon, R. D., Kozlov, M., Burgh, W. P. (1967). Histology of rat molar pulp at different ages. Journal of Dental Research, 46, 202-208.
  • Poon, J., Batchelor-McAuley, C., Tschulik, K., Compton, R. G. (2015). Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient. Chemical Science, 6(5), 2869-2876.
  • Qu, Y., He, F., Yu, C., Liang, X., Liang, D., Ma, L., ... Wu, J. (2018). Advances on graphene-based nanomaterials for biomedical applications. Materials Science and Engineering: C, 90, 764-780.
  • Qutieshat, A. S., Al-Hiyasat, A. S., Islam, M. R. (2020). The effect of adding graphene oxide nanoplatelets to Portland cement: Potential for dental applications. Journal of Conservative Dentistry, 23(1), 15-20.
  • Ritter, K. A., Lyding, J. W. (2009). The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials, 8(3), 235-242.
  • Radunovic, M., De Colli, M., De Marco, P., Di Nisio, C., Fontana, A., Piattelli, A., ... Zara, S. (2017). Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. Journal of Biomedical Materials Research. Part A, 105(8), 2312-2320. doi: 10.1002/jbm.a.36085
  • Rasaratnam, L. (2016). Review suggests direct pulp capping with MTA more effective than calcium hydroxide. Evid Based Dent, 17(3), 94-95. doi: 10.1038/sj.ebd.6401194
  • Santos, A. D., Moraes, J. C. S., Araújo, E. B., Yukimitu, K., Valério Filho, W. V. (2005). Physico‐chemical properties of MTA and a novel experimental cement. International Endodontic Journal, 38(7), 443-447.
  • Schour, I., Van Dyke D. B. (1934). Changes of the teeth following hypophysectomy. II. Changes in the molar of the white rat. Journal of Dental Research, 14, 69-84.
  • Shin, S. R., Li, Y. C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., … Khademhosseini A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255-274. doi: 10.1016/j.addr.2016.03.007
  • Shokrieh M., Esmkhani M., Shahverdi H. R., Vahedi F. (2013). Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the mechanical properties of epoxy nanocomposites. Science of Advanced Materials, 5(3), 260-266.
  • Sloan, A. J., Smith, A. J. (1999). Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Archives of Oral Biology, 44(2), 149-156. doi: 10.1016/s0003-9969(98)00106-x
  • Stanley, H. R. (1989). Pulp capping: conserving the dental pulp—can it be done? Is it worth it? Oral Surgery, Oral Medicine, Oral Pathology, 68(5), 628-639.
  • Su, I. H., Lee, C. F., Su, Y. P., Wang, L. H. (2016). Evaluating a cobalt-tetraphenylporphyrin complex, functionalized with a reduced graphene oxide nanocomposite, for improved tooth whitening. Journal of Esthetic and Restorative Dentistry, 28(5), 321-329. doi: 10.1111/jerd.12240
  • Sun, N., Yin, S., Lu, Y., Zhang, W., Jiang, X. (2020). Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. Journal of Materials Chemistry. B, 8(26), 5606-5619. doi: 10.1039/d0tb00697a
  • Tahriri, M., Del Monico, M., Moghanian, A., Tavakkoli Yaraki, M., Torres, R., Yadegari, A., Tayebi, L. (2019). Graphene and its derivatives: Opportunities and challenges in dentistry. Materials Science & Engineering. C, Materials for Biological Applications, 102, 171-185. doi: 10.1016/j.msec.2019.04.051
  • Wang, F., Drzal, L. T., Qin, Y., Huang, Z. (2015). Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. Journal of Materials Science, 50(3), 1082-1093.
  • Wu, Z. S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H. M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47(2), 493-499.
  • Zhao, H., Ding, R., Zhao, X., Li, Y., Qu, L., Pei, H., ... Zhang, W. (2017). Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discovery Today, 22(9), 1302-1317. doi: 10.1016/j.drudis.2017.04.002
  • Zhao, J., Pei, S., Ren, W., Gao, L., Cheng, H. M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 4(9), 5245-5252. doi: 10.1021/nn1015506
  • Zhu, C., Ju, B., Ni, R. (2015). Clinical outcome of direct pulp capping with MTA or calcium hydroxide: a systematic review and meta-analysis. International Journal of Clinical and Experimental Medicine, 8(10), 17055-17060.

Evaluation of the Mixture of Graphene Nanoplatelet-Mineral Trioxide Aggregate as a Pulp Capping Material on Rat Teeth

Yıl 2022, Cilt: 10 Sayı: 1, 225 - 240, 10.03.2022
https://doi.org/10.33715/inonusaglik.1010510

Öz

The aim of the study is to histologically evaluate the effect of mixtures formed by adding different ratios of graphene nanoplatelet (GNP) to Mineral Trioxide Aggregate (MTA) on rat dental pulps. 0.1% and 0.3% by weight GNP (Nanography, Ankara, Turkey) which were weighed on precision scales were added to pure Angelus MTA (Angelus, Londrina, PR, Brazil) and mixed in agate mortar until a homogeneous mixture was obtained. 16 female Wistar Albino rats were divided into 4 groups. Angelus MTA+0.1% GNP, Angelus MTA+0.3% GNP, calcium hydroxide (Dycal, Dentsply, Germany), and pure Angelus MTA were used as direct capping material on pulp perforation areas of the classV cavities of the lower two incisors of the rats (n=8). The teeth were histologically examined for dentin bridge formation and pulpal tissue responses at 1st and 4th weeks. The data of the study were analyzed with IBM SPSS Statistics V22 for Windows (SPSS Inc., Chicago, IL, USA). A regenerative dentin bridge was seen from the 1st week. In the 4th week, the inflammatory reaction was mildest in the Angelus MTA+0.3% GNP group. At 4th week, the mildest hyperemia was seen in Angelus MTA+0.1%GNP and Angelus MTA+0.3%GNP groups. No significant difference was found between the groups in terms of inflammatory reaction and presence of hyperemia at 1st and 4th weeks (p>0.05). The inclusion of GNP in Angelus MTA may increase the success of the treatment by alleviating the pulpal tissue response in direct pulp capping.

Proje Numarası

TCD-2018-1271

Kaynakça

  • Akhlaghi, N., Khademi, A. (2015). Outcomes of vital pulp therapy in permanent teeth with different medicaments based on review of the literature. Dental Research Journal, 12(5), 406.
  • Barthel, C., Levin, L., Reisner, H., Trope, M. (1997). TNF‐α release in monocytes after exposure to calcium hydroxide treated Escherichia coli LPS. International Endodontic Journal, 30(3), 155-159.
  • Bollella, P., Fusco, G., Tortolini, C., Sanzò, G., Favero, G., Gorton, L., Antiochia, R. (2017). Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosensors and Bioelectronics, 89, 152-166.
  • Bortoluzzi, E. A., Broon, N. J., Bramante, C. M., Consolaro, A., Garcia, R. B., de Moraes, I. G., Bernadineli, N. (2008). Mineral trioxide aggregate with or without calcium chloride in pulpotomy. Journal of Endodontics, 34(2), 172-175.
  • Bramante C. M., Demarchi A. C. C. O., de Moraes I. G., Bernadineli N., Garcia R. B., Spångberg L. S. W., Duarte, M. A. H. (2008). Presence of arsenic in different types of MTA and white and gray Portland cement. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 106(6), 909-913.
  • Bregnocchi, A., Zanni, E., Uccelletti, D., Marra, F., Cavallini, D., De Angelis, F., ... Sarto, M. S. (2017). Graphene-based dental adhesive with anti-biofilm activity. Journal of Nanobiotechnology, 15(1), 89. doi: 10.1186/s12951-017-0322-1
  • Brizuela, C., Ormeno, A., Cabrera, C., Cabezas, R., Silva, C. I., Ramirez, V., Mercade, M. (2017). Direct pulp capping with calcium hydroxide, mineral trioxide aggregate, and biodentine in permanent young teeth with caries: a randomized clinical trial. Journal of Endodontics, 43(11), 1776-1780. doi: 10.1016/j.joen.2017.06.031
  • Chatterjee N, Eom H. J., Choi J. (2014). A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials, 35(4), 1109-1127.
  • Chng, E. L. K., Chua, C. K., Pumera, M. (2014). Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale, 6(18), 10792-10797.
  • da Rosa, W. L. O., Cocco, A. R., da Silva, T. M., Mesquita, L. C., Galarca, A. D., da Silva, A. F., Piva, E. (2018). Current trends and future perspectives of dental pulp capping materials: A systematic review. Journal of Biomedical Materials Research Part B: Applied Biomaterials,106(3),1358-1368.
  • D'Souza, R. N., Bachman, T., Baumgardner, K. R., Butler, W. T., Litz, M. (1995). Characterization of cellular responses involved in reparative dentinogenesis in rat molars. Journal of Dental Research, 74(2), 702-709. doi: 10.1177/00220345950740021301
  • Dammaschke, T. (2008). The history of direct pulp capping. Journal of the History of Dentistry, 56(1), 9-23.
  • Dammaschke, T. (2010). Rat molar teeth as a study model for direct pulp capping research in dentistry. Laboratory Animals, 44(1), 1-6. doi: 10.1258/la.2009.008120
  • Du, H., Pang, S. D. (2018). Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites. Construction and Building Materials, 167, 403-413.
  • Erfanparast, L., Iranparvar, P., Vafaei, A. (2018). Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial. European Archives of Paediatric Dentistry, 19(3), 197-203.
  • Fridland, M., Rosado, R. (2003). Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. Journal of Endodontics, 29(12), 814-817.
  • Geim, A. K., Novoselov, K. S. (2010). Nanoscience and technology: a collection of reviews from nature journals. Assembly Autom, 20, 11-19.
  • Guazzo, R., Gardin, C., Bellin, G., Sbricoli, L., Ferroni, L., Ludovichetti, F. S., … Zavan, B. (2018). Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials, 8(5), 349. doi: 10.3390/nano8050349
  • Guerrero-Girones, J., Alcaina-Lorente, A., Ortiz-Ruiz, C., Ortiz-Ruiz, E., Pecci-Lloret, M. P., Rodriguez-Lozano, F. J., ... Ortiz-Ruiz, A. J. (2020). Melatonin as an Agent for Direct Pulp-Capping Treatment. International Journal of Environmental Research and Public Health, 17(3), 1043. doi: 10.3390/ijerph17031043
  • Guimarães, B. M., Prati, C., Duarte, M. A. H., Bramante, C. M., Gandolfi, M. G. (2018). Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. Journal of Applied Oral Science, 5(26). doi: 10.1590/1678-7757-2017-0115.
  • Gurcan, A. T., Seymen, F. (2019). Clinical and radiographic evaluation of indirect pulp capping with three different materials: a 2-year follow-up study. European Journal of Paediatric Dentistry, 20(2), 105-110. doi: 10.23804/ejpd.2019.20.02.04
  • Hilton, T. J. (2009). Keys to clinical success with pulp capping: a review of the literature. Operative Dentistry, 34(5), 615-625.
  • Hilton, T. J., Ferracane, J. L., Mancl, L. (2013). Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. Journal of Dental Research, 92(7_suppl), 16-22.
  • Huj, C. C., Zhang, C., Yun S. S., Qian Q, Ranly, D. M. (1997). Platelet derived growth factor-BB and epidermal growth factor as pulp capping medicaments in rat incisors. Journal of Hard Tissue Biology, 6(3), 121-129.
  • Jalan, A. L., Warhadpande, M. M., Dakshindas, D. M. (2017). A comparison of human dental pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents. Journal of Conservative Dentistry: JCD, 20(2), 129.
  • Jaleel, J. A., Sruthi, S., Pramod, K. (2017). Reinforcing nanomedicine using graphene family nanomaterials. Journal of Controlled Release, 255, 218-230.
  • Kangarlou, A., Sofiabadi, S., Asgary, S., Mahjour, F., Dianat, O., Yadegari, Z., Younessian, F. (2012). Assessment of antifungal activity of ProRoot mineral trioxide aggregate and mineral trioxide aggregate-Angelus. Dental Research Journal, 9(3), 256.
  • Kim, J., Kim, Y. R., Kim, Y., Lim, K. T., Seonwoo, H., Park, S., ... Chung, J. H. (2013). Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry. B, 1(7), 933-938. doi: 10.1039/c2tb00274d
  • Kucukyildiz, E. N., Dayi, B., Altin, S., Yigit, O. (2021). In vitro comparison of physical, chemical, and mechanical properties of graphene nanoplatelet added Angelus mineral trioxide aggregate to pure Angelus mineral trioxide aggregate and calcium hydroxide. Microscopy Research and Technique, 84(5), 929-942. doi: 10.1002/jemt.23654
  • Li, Z., Cao, L., Fan, M., Xu, Q. (2015). Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: A Meta-analysis. Journal of Endodontics, 41(9), 1412-1417. doi: 10.1016/j.joen.2015.04.012
  • Long, Y., Liu, S., Zhu, L., Liang, Q., Chen, X., Dong, Y. (2017). Evaluation of pulp response to novel bioactive glass pulp capping materials. Journal of Endodontics, 43(10), 1647-1650. doi: 10.1016/j.joen.2017.03.011
  • Majeed, W., Bourdo, S., Petibone, D. M., Saini, V., Vang, K. B., Nima, Z. A., ... Watanabe, F. (2017). The role of surface chemistry in the cytotoxicity profile of graphene. Journal of Applied Toxicology, 37(4), 462-470. Orhan, E. O., Maden, M., Senguuven, B. (2012). Odontoblast-like cell numbers and reparative dentine thickness after direct pulp capping with platelet-rich plasma and enamel matrix derivative: a histomorphometric evaluation. International Endodontic Journal, 45(4), 317-325. doi: 10.1111/j.1365-2591.2011.01977.x
  • Parirokh, M., Torabinejad, M. (2010). Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. Journal of Endodontics, 36(1), 16-27. doi: 10.1016/j.joen.2009.09.006
  • Pinzon, R. D., Kozlov, M., Burgh, W. P. (1967). Histology of rat molar pulp at different ages. Journal of Dental Research, 46, 202-208.
  • Poon, J., Batchelor-McAuley, C., Tschulik, K., Compton, R. G. (2015). Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient. Chemical Science, 6(5), 2869-2876.
  • Qu, Y., He, F., Yu, C., Liang, X., Liang, D., Ma, L., ... Wu, J. (2018). Advances on graphene-based nanomaterials for biomedical applications. Materials Science and Engineering: C, 90, 764-780.
  • Qutieshat, A. S., Al-Hiyasat, A. S., Islam, M. R. (2020). The effect of adding graphene oxide nanoplatelets to Portland cement: Potential for dental applications. Journal of Conservative Dentistry, 23(1), 15-20.
  • Ritter, K. A., Lyding, J. W. (2009). The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials, 8(3), 235-242.
  • Radunovic, M., De Colli, M., De Marco, P., Di Nisio, C., Fontana, A., Piattelli, A., ... Zara, S. (2017). Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. Journal of Biomedical Materials Research. Part A, 105(8), 2312-2320. doi: 10.1002/jbm.a.36085
  • Rasaratnam, L. (2016). Review suggests direct pulp capping with MTA more effective than calcium hydroxide. Evid Based Dent, 17(3), 94-95. doi: 10.1038/sj.ebd.6401194
  • Santos, A. D., Moraes, J. C. S., Araújo, E. B., Yukimitu, K., Valério Filho, W. V. (2005). Physico‐chemical properties of MTA and a novel experimental cement. International Endodontic Journal, 38(7), 443-447.
  • Schour, I., Van Dyke D. B. (1934). Changes of the teeth following hypophysectomy. II. Changes in the molar of the white rat. Journal of Dental Research, 14, 69-84.
  • Shin, S. R., Li, Y. C., Jang, H. L., Khoshakhlagh, P., Akbari, M., Nasajpour, A., … Khademhosseini A. (2016). Graphene-based materials for tissue engineering. Advanced Drug Delivery Reviews, 105, 255-274. doi: 10.1016/j.addr.2016.03.007
  • Shokrieh M., Esmkhani M., Shahverdi H. R., Vahedi F. (2013). Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the mechanical properties of epoxy nanocomposites. Science of Advanced Materials, 5(3), 260-266.
  • Sloan, A. J., Smith, A. J. (1999). Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Archives of Oral Biology, 44(2), 149-156. doi: 10.1016/s0003-9969(98)00106-x
  • Stanley, H. R. (1989). Pulp capping: conserving the dental pulp—can it be done? Is it worth it? Oral Surgery, Oral Medicine, Oral Pathology, 68(5), 628-639.
  • Su, I. H., Lee, C. F., Su, Y. P., Wang, L. H. (2016). Evaluating a cobalt-tetraphenylporphyrin complex, functionalized with a reduced graphene oxide nanocomposite, for improved tooth whitening. Journal of Esthetic and Restorative Dentistry, 28(5), 321-329. doi: 10.1111/jerd.12240
  • Sun, N., Yin, S., Lu, Y., Zhang, W., Jiang, X. (2020). Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. Journal of Materials Chemistry. B, 8(26), 5606-5619. doi: 10.1039/d0tb00697a
  • Tahriri, M., Del Monico, M., Moghanian, A., Tavakkoli Yaraki, M., Torres, R., Yadegari, A., Tayebi, L. (2019). Graphene and its derivatives: Opportunities and challenges in dentistry. Materials Science & Engineering. C, Materials for Biological Applications, 102, 171-185. doi: 10.1016/j.msec.2019.04.051
  • Wang, F., Drzal, L. T., Qin, Y., Huang, Z. (2015). Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. Journal of Materials Science, 50(3), 1082-1093.
  • Wu, Z. S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H. M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47(2), 493-499.
  • Zhao, H., Ding, R., Zhao, X., Li, Y., Qu, L., Pei, H., ... Zhang, W. (2017). Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discovery Today, 22(9), 1302-1317. doi: 10.1016/j.drudis.2017.04.002
  • Zhao, J., Pei, S., Ren, W., Gao, L., Cheng, H. M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 4(9), 5245-5252. doi: 10.1021/nn1015506
  • Zhu, C., Ju, B., Ni, R. (2015). Clinical outcome of direct pulp capping with MTA or calcium hydroxide: a systematic review and meta-analysis. International Journal of Clinical and Experimental Medicine, 8(10), 17055-17060.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Burak Dayı 0000-0002-5289-438X

Elif Nihan Küçükyıldız 0000-0002-7844-2023

Hatice Eröksüz 0000-0002-8407-5792

Proje Numarası TCD-2018-1271
Erken Görünüm Tarihi 4 Mart 2022
Yayımlanma Tarihi 10 Mart 2022
Gönderilme Tarihi 16 Ekim 2021
Kabul Tarihi 22 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Dayı, B., Küçükyıldız, E. N., & Eröksüz, H. (2022). GRAFEN NANOPLATELET-MİNERAL TRİOKSİD AGREGAT KARIŞIMININ RAT DİŞLERİNDE PULPA KUAFAJ MATERYALİ OLARAK DEĞERLENDİRİLMESİ. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(1), 225-240. https://doi.org/10.33715/inonusaglik.1010510