Araştırma Makalesi
BibTex RIS Kaynak Göster

Fe2O3, TiO2 VE ZnO NANOPARÇACIKLARININ CHLAMYDOMONAS REINHARDTII ÜZERİNE ETKİSİNİN İNCELENMESİ

Yıl 2024, Cilt: 12 Sayı: 1, 289 - 304, 19.02.2024
https://doi.org/10.33715/inonusaglik.1401595

Öz

Bu çalışmada tek hücreli bir alg olan Chlamydomonas reinhardtii’nin Fe2O3, TiO2, ve ZnO NPların farklı konsantrasyonlarına (Fe2O3ve TiO2 için 1.8-61.22 mg/L, ZnO için 0.39-10.48 mg/L aralığında) 24, 72 ve 120 saat süre ile maruz bırakması sonucu ortaya çıkan toksik etkilerin değerlendirilmesi amaçlandı. Bu NP konsantrasyonları ön testlere göre belirlendi. Toksisitenin ölçütü olarak, NP’lerin kullanılan her konsantrasyonu için belirtilen süre sonunda kültür ortamlarında toplam hücre sayıları, ortamdaki canlı hücre sayıları, toplam hücre kütlesi ve hücre boyutlarındaki değişim kullanıldı. Sonuçlar istatistiksel olarak değerlendirilmiş ve kullanılan her üç nanoparçacığın da kültürdeki toplam hücre sayısını azalttığı (Ti< Fe

Kaynakça

  • Al-Khazali, Z. K., & Alghanmi, H. A. (2023). Environmental Toxicity of Nano Iron Oxides (Fe2O3 NPs) on Algal Growth Klisinema persicum and Cellular DNA Damage Using Comet Assay. Egyptian Journal of Aquatic Biology and Fisheries, 27(1), 431-453.
  • Arunakumara, K. K. I. U., & Zhang, X. (2008). Heavy metal bioaccumulation and toxicity with special reference to microalgae. Journal of ocean university of china, 7, 60-64.
  • Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the total environment, 407(4), 1461-1468. Ates, M., Cimen, I. C., Unal, I., Kutlu, B., Ertit Tastan, B., Danabas, D., ... Arslan, Z. (2020). Assessment of impact of α‐Fe2O3 and γ‐Fe2O3 nanoparticles on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata. Environmental toxicology, 35(3), 385-394.
  • Ates, M., Daniels, J., Arslan, Z., Farah, I. O., & Rivera, H. F. (2013). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environmental science: Processes & impacts, 15(1), 225-233.
  • Banu, A. N., Kudesia, N., Raut, A. M., Pakrudheen, I., & Wahengbam, J. (2021). Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: A review. Environmental Chemistry Letters, 19(6), 275-4296.
  • Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., & Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health: a review. Biological trace element research, 193, 118-129.
  • Biswas, S., & Bellare, J. (2022). Bioactivity, biocompatibility, and toxicity of metal oxides. In Metal Oxides for Biomedical and Biosensor Applications (pp. 3-33). Elsevier.
  • Burges, R., & Varadharajan, S. (2022). A Short Review on Effects of Nano Metals on Human Health. Advances in Sustainable Development: Proceedings of HSFEA 2020, 275-281.
  • Djearamane, S., Wong, L. S., Lim, Y. M., & Lee, P. F. (2020). Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluvialis. Ecology, Environment and Conservation, 26(2), 663-668.
  • Choi, J. S., Kim, R. O., Yoon, S., & Kim, W. K. (2016). Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): a transcriptomic analysis. Plos one, 11(8), e0160763.
  • Czyżowska, A., & Barbasz, A. (2022). A review: zinc oxide nanoparticles–friends or enemies? International journal of environmental health research, 32(4), 885-901.
  • da Silva, B. L., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177, 440-447.
  • Ertit Taştan B., Kars Durukan İ. ve Ateş M., (2020). “Ecotoxicity study of iron oxide nanoparticles on Chlorella sp. and Daphnia magna”, Politeknik Dergisi, 23(4), 1073-1079.
  • Espitia, P. J. P., Soares, N. D. F. F., Coimbra, J. S. D. R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology, 5, 1447-1464.
  • Farsi, L., Khodadadi, M., Sabzalipour, S., Jaafarzadeh Haghighi Fard, N., & Jamali-Sheini, F. (2021). Effects of Fe2o3 and Co2o3 nanoparticles on Organisms in Freshwater. Anthropogenic Pollution, 4(2), 28-34.
  • Fazelian, N., Yousefzadi, M., & Movafeghi, A. (2023). Toxicity of iron-based nanoparticles to Nannochloropsis oculata: effects of Fe2O3-NPs on oxidative stress and fatty acid composition. Marine Biology Research, 1-11.
  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of hazardous materials, 267, 194-205.
  • Gorman, D. S., & Levine, R. P. (1965). Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences, 54(6), 1665-1669.
  • Grande, F., & Tucci, P. (2016). Titanium dioxide nanoparticles: a risk for human health?. Mini reviews in medicinal chemistry, 16(9), 762-769.3.
  • Gunawan, C., Sirimanoonphan, A., Teoh, W. Y., Marquis, C. P., & Amal, R. (2013). Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 260, 984-992.
  • Haynes, V. N., Ward, J. E., Russell, B. J., & Agrios, A. G. (2017). Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—Current knowledge and suggestions for future research. Aquatic Toxicology, 185, 138-148.
  • Hurtado-Gallego, J., Pulido-Reyes, G., González-Pleiter, M., Salas, G., Leganés, F., Rosal, R., & Fernández-Piñas, F. (2020). Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii. Chemosphere, 238, 124562.
  • Izak-Nau, E.; Voetz, M.; Eiden, S.; Duschl, A.; Puntes, V.F. (2013). Altered characteristics of silica nanoparticles in bovine and human serum: The importance of nanomaterial characterization prior to its toxicological evaluation. Part. Fibre Toxicol, 10, 56.
  • Kang, N. K., Lee, B., Choi, G. G., Moon, M., Park, M. S., Lim, J., & Yang, J. W. (2014). Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO 2 nanoparticles. Korean Journal of Chemical Engineering, 31, 861-867.
  • Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R., 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27, 1825-1851.
  • Kumari, K., Singh, P., Bauddh, K., Mallick, S., & Chandra, R. (2019). Implications of metal nanoparticles on aquatic fauna: A review. Nanoscience & Nanotechnology-Asia, 9(1), 30-43.
  • Kráľová, K., & Jampílek, J. (2021). Impact of metal nanoparticles on marine and freshwater algae. Handbook of plant and crop physiology, 889-921.
  • Lei, C., Zhang, L., Yang, K., Zhu, L., & Lin, D. (2016). Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution, 218, 505-512.
  • López, A. F., Fabiani, M., Lassalle, V. L., Spetter, C. V., & Severini, M. F. (2022). Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Marine Pollution Bulletin, 174, 113276.
  • Manzo, S., Miglietta, M. L., Rametta, G., Buono, S., & Di Francia, G. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 445, 371-376.
  • Rashid, M. M., Forte Tavčer, P., & Tomšič, B. (2021). Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials, 11(9), 2354.
  • Ozmen, N., Ozhan Turhan, D., Güngördü, A., Caglar Yilmaz, H., & Ozmen, M. (2023). Investigation of the effects of metal oxide nanoparticle mixtures on Danio rerio and Xenopus laevis embryos. Chemistry and Ecology, 39(3), 215-234.
  • Quigg, A., Chin, W. C., Chen, C. S., Zhang, S., Jiang, Y., Miao, A. J., ... & Santschi, P. H. (2013). Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustainable Chemistry & Engineering, 1(7), 686-702.
  • Saxena, P., Sangela, V., & Harish. (2020). Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris. Environmental science and pollution research, 27, 19650-19660.
  • Schiavo, S., Oliviero, M., Miglietta, M., Rametta, G., & Manzo, S. (2016). Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels. Science of the Total Environment, 550, 619-627.
  • Seabra, A. B., & Haddad, P. S. (2013). Cytotoxicity and genotoxicity of iron oxides nanoparticles. In Nanotoxicology: Materials, Methodologies, and Assessments 265-279. New York, NY: Springer New York.
  • Sruthi, S., Ashtami, J., & Mohanan, P. V. (2018). Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials today chemistry, 10, 175-186.
  • Suman, T. Y., Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and environmental safety, 113, 23-30.
  • Vaseem, M. Umar, A., & Hahn, Y. B. (2010). ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications, 5(1), 10-20.
  • Wong, S. W, Leung, P. T., Djurišić, A. B., & Leung, K. M. (2010). Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and bioanalytical chemistry, 396, 609-618.
  • Yang, X. Zheng, G., Wang, Q., Chen,X., Han, Y., Zhang, D., Zhang,Y. 2022. Functional application of multi-element metal composite materials. J. Alloys Comp., 895, 2, 162622.
  • Yu, Z, Li, Q. Wang, J. Yu, Y.,Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale research letters, 15(1), 115.

Investigation of the Effect of Fe2O3, TiO2 and ZnO Nanoparticles on Microalgea Chlamydomonas reinhardtii

Yıl 2024, Cilt: 12 Sayı: 1, 289 - 304, 19.02.2024
https://doi.org/10.33715/inonusaglik.1401595

Öz

The aim of this study was to evaluate the toxic effects of Chlamydomonas reinhardtii, a single-celled alga, exposed to different concentrations of Fe2O3, TiO2, and ZnO NPs (1.8-61.22 mg/L for Fe2O3 and TiO2, 0.39-10.48 mg/L for ZnO) for 24, 72 and 120 hours. These NP concentrations were determined according to preliminary tests. As a measure of toxicity, the total number of cells in the culture media, the number of viable cells in the media, the total cell mass and the change in cell size at the end of the specified time for each concentration of NPs used were used. The results were statistically evaluated and it was observed that all three nanoparticles used decreased the total number of cells in culture (Ti< Fe

Kaynakça

  • Al-Khazali, Z. K., & Alghanmi, H. A. (2023). Environmental Toxicity of Nano Iron Oxides (Fe2O3 NPs) on Algal Growth Klisinema persicum and Cellular DNA Damage Using Comet Assay. Egyptian Journal of Aquatic Biology and Fisheries, 27(1), 431-453.
  • Arunakumara, K. K. I. U., & Zhang, X. (2008). Heavy metal bioaccumulation and toxicity with special reference to microalgae. Journal of ocean university of china, 7, 60-64.
  • Aruoja, V., Dubourguier, H. C., Kasemets, K., & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the total environment, 407(4), 1461-1468. Ates, M., Cimen, I. C., Unal, I., Kutlu, B., Ertit Tastan, B., Danabas, D., ... Arslan, Z. (2020). Assessment of impact of α‐Fe2O3 and γ‐Fe2O3 nanoparticles on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata. Environmental toxicology, 35(3), 385-394.
  • Ates, M., Daniels, J., Arslan, Z., Farah, I. O., & Rivera, H. F. (2013). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environmental science: Processes & impacts, 15(1), 225-233.
  • Banu, A. N., Kudesia, N., Raut, A. M., Pakrudheen, I., & Wahengbam, J. (2021). Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: A review. Environmental Chemistry Letters, 19(6), 275-4296.
  • Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., & Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health: a review. Biological trace element research, 193, 118-129.
  • Biswas, S., & Bellare, J. (2022). Bioactivity, biocompatibility, and toxicity of metal oxides. In Metal Oxides for Biomedical and Biosensor Applications (pp. 3-33). Elsevier.
  • Burges, R., & Varadharajan, S. (2022). A Short Review on Effects of Nano Metals on Human Health. Advances in Sustainable Development: Proceedings of HSFEA 2020, 275-281.
  • Djearamane, S., Wong, L. S., Lim, Y. M., & Lee, P. F. (2020). Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluvialis. Ecology, Environment and Conservation, 26(2), 663-668.
  • Choi, J. S., Kim, R. O., Yoon, S., & Kim, W. K. (2016). Developmental toxicity of zinc oxide nanoparticles to zebrafish (Danio rerio): a transcriptomic analysis. Plos one, 11(8), e0160763.
  • Czyżowska, A., & Barbasz, A. (2022). A review: zinc oxide nanoparticles–friends or enemies? International journal of environmental health research, 32(4), 885-901.
  • da Silva, B. L., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177, 440-447.
  • Ertit Taştan B., Kars Durukan İ. ve Ateş M., (2020). “Ecotoxicity study of iron oxide nanoparticles on Chlorella sp. and Daphnia magna”, Politeknik Dergisi, 23(4), 1073-1079.
  • Espitia, P. J. P., Soares, N. D. F. F., Coimbra, J. S. D. R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology, 5, 1447-1464.
  • Farsi, L., Khodadadi, M., Sabzalipour, S., Jaafarzadeh Haghighi Fard, N., & Jamali-Sheini, F. (2021). Effects of Fe2o3 and Co2o3 nanoparticles on Organisms in Freshwater. Anthropogenic Pollution, 4(2), 28-34.
  • Fazelian, N., Yousefzadi, M., & Movafeghi, A. (2023). Toxicity of iron-based nanoparticles to Nannochloropsis oculata: effects of Fe2O3-NPs on oxidative stress and fatty acid composition. Marine Biology Research, 1-11.
  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of hazardous materials, 267, 194-205.
  • Gorman, D. S., & Levine, R. P. (1965). Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences, 54(6), 1665-1669.
  • Grande, F., & Tucci, P. (2016). Titanium dioxide nanoparticles: a risk for human health?. Mini reviews in medicinal chemistry, 16(9), 762-769.3.
  • Gunawan, C., Sirimanoonphan, A., Teoh, W. Y., Marquis, C. P., & Amal, R. (2013). Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 260, 984-992.
  • Haynes, V. N., Ward, J. E., Russell, B. J., & Agrios, A. G. (2017). Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—Current knowledge and suggestions for future research. Aquatic Toxicology, 185, 138-148.
  • Hurtado-Gallego, J., Pulido-Reyes, G., González-Pleiter, M., Salas, G., Leganés, F., Rosal, R., & Fernández-Piñas, F. (2020). Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii. Chemosphere, 238, 124562.
  • Izak-Nau, E.; Voetz, M.; Eiden, S.; Duschl, A.; Puntes, V.F. (2013). Altered characteristics of silica nanoparticles in bovine and human serum: The importance of nanomaterial characterization prior to its toxicological evaluation. Part. Fibre Toxicol, 10, 56.
  • Kang, N. K., Lee, B., Choi, G. G., Moon, M., Park, M. S., Lim, J., & Yang, J. W. (2014). Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO 2 nanoparticles. Korean Journal of Chemical Engineering, 31, 861-867.
  • Klaine, S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R., 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27, 1825-1851.
  • Kumari, K., Singh, P., Bauddh, K., Mallick, S., & Chandra, R. (2019). Implications of metal nanoparticles on aquatic fauna: A review. Nanoscience & Nanotechnology-Asia, 9(1), 30-43.
  • Kráľová, K., & Jampílek, J. (2021). Impact of metal nanoparticles on marine and freshwater algae. Handbook of plant and crop physiology, 889-921.
  • Lei, C., Zhang, L., Yang, K., Zhu, L., & Lin, D. (2016). Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution, 218, 505-512.
  • López, A. F., Fabiani, M., Lassalle, V. L., Spetter, C. V., & Severini, M. F. (2022). Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Marine Pollution Bulletin, 174, 113276.
  • Manzo, S., Miglietta, M. L., Rametta, G., Buono, S., & Di Francia, G. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 445, 371-376.
  • Rashid, M. M., Forte Tavčer, P., & Tomšič, B. (2021). Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials, 11(9), 2354.
  • Ozmen, N., Ozhan Turhan, D., Güngördü, A., Caglar Yilmaz, H., & Ozmen, M. (2023). Investigation of the effects of metal oxide nanoparticle mixtures on Danio rerio and Xenopus laevis embryos. Chemistry and Ecology, 39(3), 215-234.
  • Quigg, A., Chin, W. C., Chen, C. S., Zhang, S., Jiang, Y., Miao, A. J., ... & Santschi, P. H. (2013). Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustainable Chemistry & Engineering, 1(7), 686-702.
  • Saxena, P., Sangela, V., & Harish. (2020). Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris. Environmental science and pollution research, 27, 19650-19660.
  • Schiavo, S., Oliviero, M., Miglietta, M., Rametta, G., & Manzo, S. (2016). Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels. Science of the Total Environment, 550, 619-627.
  • Seabra, A. B., & Haddad, P. S. (2013). Cytotoxicity and genotoxicity of iron oxides nanoparticles. In Nanotoxicology: Materials, Methodologies, and Assessments 265-279. New York, NY: Springer New York.
  • Sruthi, S., Ashtami, J., & Mohanan, P. V. (2018). Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials today chemistry, 10, 175-186.
  • Suman, T. Y., Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and environmental safety, 113, 23-30.
  • Vaseem, M. Umar, A., & Hahn, Y. B. (2010). ZnO nanoparticles: growth, properties, and applications. Metal oxide nanostructures and their applications, 5(1), 10-20.
  • Wong, S. W, Leung, P. T., Djurišić, A. B., & Leung, K. M. (2010). Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and bioanalytical chemistry, 396, 609-618.
  • Yang, X. Zheng, G., Wang, Q., Chen,X., Han, Y., Zhang, D., Zhang,Y. 2022. Functional application of multi-element metal composite materials. J. Alloys Comp., 895, 2, 162622.
  • Yu, Z, Li, Q. Wang, J. Yu, Y.,Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale research letters, 15(1), 115.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Halk Sağlığı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Nesrin Özmen 0000-0003-1080-3360

Erken Görünüm Tarihi 11 Şubat 2024
Yayımlanma Tarihi 19 Şubat 2024
Gönderilme Tarihi 7 Aralık 2023
Kabul Tarihi 11 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Özmen, N. (2024). Fe2O3, TiO2 VE ZnO NANOPARÇACIKLARININ CHLAMYDOMONAS REINHARDTII ÜZERİNE ETKİSİNİN İNCELENMESİ. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 12(1), 289-304. https://doi.org/10.33715/inonusaglik.1401595