Derleme
BibTex RIS Kaynak Göster

The Energy Carrier of the Future: A New Era of Molten Salt Reactors in Nuclear Energy

Yıl 2025, Cilt: 4 Sayı: 2, 58 - 65, 30.12.2025
https://doi.org/10.5281/zenodo.18038980

Öz

Molten Salt Reactors (MSRs) have emerged as one of the most promising Generation IV reactor technologies due to their inherent safety, high thermal efficiency, and compatibility with thorium-based fuel cycles. Unlike conventional light-water reactors (LWRs), MSRs operate using a liquid mixture of fluoride or chloride salts that simultaneously serves as both fuel and coolant, enabling direct heat transfer, improved neutron economy, and stable temperature control. This study employs an integrated methodology combining thermodynamic modeling, Computational Fluid Dynamics (CFD), and Monte Carlo neutronic analysis to evaluate the performance, safety behavior, and material compatibility of candidate molten salt systems such as FLiBe and LiF–ThF₄. Quantitative assessments indicate that 1 kg of Th-232 can theoretically yield approximately 19.8 MWh of thermal energy, depending on conversion efficiency and reactor spectrum characteristics. The research further examines the regional feasibility of MSR deployment in Turkey and Azerbaijan by assessing thorium resources, institutional readiness, and national decarbonization goals. The findings highlight the strategic potential of MSRs to support long-term energy resilience, climate commitments, and domestic fuel independence in both countries.

Kaynakça

  • [1] Azerbaijan National Academy of Sciences, Azerbaijan’s Nuclear Research Landscape, ANAS Yearbook, Baku, Azerbaijan, 2020.
  • [2] Axios, “Dutch look to build safer nuclear power using thorium,” 2017. [Online]. Available: https://www.axios.com. Accessed: 2025.
  • [3] Baku State University, “Nuclear physics and energy research initiatives,” BSU Science Journal, vol. 27, no. 2, pp. 1–10, 2019.
  • [4] Canadian Nuclear Laboratories, Advanced Materials for Generation IV Reactors, CNL Technical Report, Chalk River, Canada, 2020.
  • [5] A. Chitu, “Materials challenges in molten salt reactors,” Journal of Nuclear Materials, vol. 543, Art. no. 152574, 2021.
  • [6] C. W. Forsberg, “Sustainability by combining nuclear, fossil, and renewable energy sources,” Progress in Nuclear Energy, vol. 57, pp. 146–174, 2012.
  • [7] F. Ganda, Nuclear Fuel Cycle Evaluation and Screening: Final Report, U.S. Department of Energy, Washington, DC, USA, 2017.
  • [8] R. Hargraves and R. Moir, “Liquid fluoride thorium reactors,” American Scientist, vol. 98, no. 4, pp. 304–313, 2010.
  • [9] International Atomic Energy Agency, Thorium Fuel Cycle—Potential Benefits and Challenges, IAEA-TECDOC-1450, Vienna, Austria, 2005.
  • [10] International Atomic Energy Agency, Advances in Molten Salt Reactor Technologies, Technical Report Series No. 476, Vienna, Austria, 2018.
  • [11] International Atomic Energy Agency, Status of Molten Salt Reactor Technology, Technical Report Series No. 489, Vienna, Austria, 2023.
  • [12]International Atomic Energy Agency, “Molten salt reactors,” 2024. [Online]. Available: https://www.iaea.org/topics/molten-salt-reactors. Accessed: 2025.
  • [13] International Atomic Energy Agency, “Status of molten salt reactor technology,” 2024. [Online]. Available: https://www.iaea.org/publications/14998. Accessed: 2025.
  • [14] International Atomic Energy Agency, “What are molten salt reactors (MSRs)?,” 2024. [Online]. Available: https://www.iaea.org. Accessed: 2025.
  • [15] International Energy Agency, World Energy Outlook, Paris, France, 2020.
  • [16] M. S. Kazimi, Thorium Fuel Cycle for Generation IV Reactors, MIT Nuclear Engineering Report, Cambridge, MA, USA, 2003.
  • [17] D. LeBlanc, “Molten salt reactors: A new beginning for an old idea,” Nuclear Engineering and Design, vol. 240, no. 6, pp. 1644–1656, 2010.
  • [18] MIT Energy Initiative, The Future of Nuclear Energy in a Carbon-Constrained World, Massachusetts Institute of Technology, Cambridge, MA, USA, 2021.
  • [19] The New Yorker, “A new way to do nuclear,” 2012. [Online]. Available: https://www.newyorker.com. Accessed: 2025.
  • [20] OECD Nuclear Energy Agency, Introduction to Generation IV Reactor Concepts, Paris, France, 2015.
  • [21] OECD Nuclear Energy Agency, Molten Salt Reactor Fuel Cycles: Towards a Common Language, Paris, France, 2025.
  • [22] Oak Ridge National Laboratory, MSRE Design and Operations Report, ORNL-TM-728, Oak Ridge, TN, USA, 1972.
  • [23] Rosatom, “Prospects of thorium-based fuel cycle,” Rosatom Research Bulletin, vol. 12, no. 3, pp. 88–94, 2022.
  • [24] ScienceDirect, “Safety assessment of molten salt reactors in comparison with light water reactors,” 2013. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [25] ScienceDirect, “Aggregation and data analysis of corrosion studies in molten fluoride and chloride salts,” 2018. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [26] ScienceDirect, “The corrosion effects of neutron activation of 2LiF–BeF₂ (FLiBe),” 2022. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [27] ScienceDirect, “Assessing the benefit of thorium fuel in a once-through molten salt reactor,” 2024. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [28] Springer Materials, Corrosion of Structural Alloys in High-Temperature Molten Fluoride Salt Systems, Berlin, Germany: Springer, 2018.
  • [29] Turkish Atomic Energy Authority, Thorium Resource Mapping in Turkey, Ankara, Turkey, 2020.
  • [30] TUBITAK, Turkey’s National Energy Research Strategy, Energy Policy Brief, Ankara, Turkey, 2021.
  • [31] Y. Wang and J. Chen, “Simulation studies on FLiBe coolant dynamics,” Annals of Nuclear Energy, vol. 155, Art. no. 108153, 2021.
  • [32]Wikipedia,“Liquidfluoridethoriumreactor,”2025.[Online].Available :https://en.wikipedia.org/wiki/Liquid_fluoride_thorium_reactor. Accessed: 2025.
  • [33] Wikipedia, “Thorium,” 2025. [Online]. Available: https://en.wikipedia.org/wiki/Thorium. Accessed: 2025.
  • [34] Wired, “Uranium is so last century—Enter thorium, the new green nuke,” 2009. [Online]. Available: https://www.wired.com. Accessed: 2025.
  • [35] Wired, “China takes lead in race for clean nuclear power,” 2011. [Online]. Available: https://www.wired.com. Accessed: 2025.
  • [36] World Nuclear Association, “Molten salt reactors,” 2024. [Online]. Available: https://world-nuclear.org. Accessed: 2025.
  • [37] World Nuclear Association, “Thorium fuel cycle,” 2024. [Online]. Available: https://world-nuclear.org. Accessed: 2025.
  • [38] J. Zhang, “Corrosion in molten salt reactors,” Corrosion Science, vol. 144, pp. 74–88, 2018.
  • [39] A. A. et al., “A feasibility study of a thorium-fueled molten salt micro modular subcritical reactor using an electron accelerator,” unpublished.
  • [40] A. Asif et al., “The development of thermal-hydraulic and nonlinear dynamic system for molten salt reactors,” Engineering, Technology & Applied Science Research, vol. 11, no. 2, pp. 7023–7027, 2021.

Geleceğin Enerji Taşıyıcısı: Nükleer Enerjide Erimiş Tuz Reaktörlerinde Yeni Bir Dönem

Yıl 2025, Cilt: 4 Sayı: 2, 58 - 65, 30.12.2025
https://doi.org/10.5281/zenodo.18038980

Öz

Erimiş Tuz Reaktörleri (MSR'ler), doğasında var olan güvenlik, yüksek termal verimlilik ve toryum bazlı yakıt çevrimleriyle uyumlulukları nedeniyle en umut vadeden Dördüncü Nesil reaktör teknolojilerinden biri olarak ortaya çıkmıştır. Geleneksel hafif su reaktörlerinin (LWR'ler) aksine, MSR'ler aynı anda hem yakıt hem de soğutucu görevi gören florür veya klorür tuzlarının sıvı bir karışımını kullanarak çalışır; bu da doğrudan ısı transferi, iyileştirilmiş nötron ekonomisi ve kararlı sıcaklık kontrolü sağlar. Bu çalışma, FLiBe ve LiF–ThF₄ gibi aday erimiş tuz sistemlerinin performansını, güvenlik davranışını ve malzeme uyumluluğunu değerlendirmek için termodinamik modelleme, Hesaplamalı Akışkanlar Dinamiği (CFD) ve Monte Carlo nötronik analizini birleştiren entegre bir metodoloji kullanmaktadır. Nicel değerlendirmeler, 1 kg Th-232'nin, dönüşüm verimliliğine ve reaktör spektrum özelliklerine bağlı olarak teorik olarak yaklaşık 19,8 MWh termal enerji üretebileceğini göstermektedir. Araştırma, toryum kaynaklarını, kurumsal hazırlığı ve ulusal karbonsuzlaştırma hedeflerini değerlendirerek, Türkiye ve Azerbaycan'da MSR (Merkezi Rezervuar) uygulamalarının bölgesel fizibilitesini daha ayrıntılı olarak inceliyor. Bulgular, her iki ülkede de uzun vadeli enerji direncini, iklim taahhütlerini ve yerel yakıt bağımsızlığını destekleme konusunda MSR'lerin stratejik potansiyelini vurguluyor.

Kaynakça

  • [1] Azerbaijan National Academy of Sciences, Azerbaijan’s Nuclear Research Landscape, ANAS Yearbook, Baku, Azerbaijan, 2020.
  • [2] Axios, “Dutch look to build safer nuclear power using thorium,” 2017. [Online]. Available: https://www.axios.com. Accessed: 2025.
  • [3] Baku State University, “Nuclear physics and energy research initiatives,” BSU Science Journal, vol. 27, no. 2, pp. 1–10, 2019.
  • [4] Canadian Nuclear Laboratories, Advanced Materials for Generation IV Reactors, CNL Technical Report, Chalk River, Canada, 2020.
  • [5] A. Chitu, “Materials challenges in molten salt reactors,” Journal of Nuclear Materials, vol. 543, Art. no. 152574, 2021.
  • [6] C. W. Forsberg, “Sustainability by combining nuclear, fossil, and renewable energy sources,” Progress in Nuclear Energy, vol. 57, pp. 146–174, 2012.
  • [7] F. Ganda, Nuclear Fuel Cycle Evaluation and Screening: Final Report, U.S. Department of Energy, Washington, DC, USA, 2017.
  • [8] R. Hargraves and R. Moir, “Liquid fluoride thorium reactors,” American Scientist, vol. 98, no. 4, pp. 304–313, 2010.
  • [9] International Atomic Energy Agency, Thorium Fuel Cycle—Potential Benefits and Challenges, IAEA-TECDOC-1450, Vienna, Austria, 2005.
  • [10] International Atomic Energy Agency, Advances in Molten Salt Reactor Technologies, Technical Report Series No. 476, Vienna, Austria, 2018.
  • [11] International Atomic Energy Agency, Status of Molten Salt Reactor Technology, Technical Report Series No. 489, Vienna, Austria, 2023.
  • [12]International Atomic Energy Agency, “Molten salt reactors,” 2024. [Online]. Available: https://www.iaea.org/topics/molten-salt-reactors. Accessed: 2025.
  • [13] International Atomic Energy Agency, “Status of molten salt reactor technology,” 2024. [Online]. Available: https://www.iaea.org/publications/14998. Accessed: 2025.
  • [14] International Atomic Energy Agency, “What are molten salt reactors (MSRs)?,” 2024. [Online]. Available: https://www.iaea.org. Accessed: 2025.
  • [15] International Energy Agency, World Energy Outlook, Paris, France, 2020.
  • [16] M. S. Kazimi, Thorium Fuel Cycle for Generation IV Reactors, MIT Nuclear Engineering Report, Cambridge, MA, USA, 2003.
  • [17] D. LeBlanc, “Molten salt reactors: A new beginning for an old idea,” Nuclear Engineering and Design, vol. 240, no. 6, pp. 1644–1656, 2010.
  • [18] MIT Energy Initiative, The Future of Nuclear Energy in a Carbon-Constrained World, Massachusetts Institute of Technology, Cambridge, MA, USA, 2021.
  • [19] The New Yorker, “A new way to do nuclear,” 2012. [Online]. Available: https://www.newyorker.com. Accessed: 2025.
  • [20] OECD Nuclear Energy Agency, Introduction to Generation IV Reactor Concepts, Paris, France, 2015.
  • [21] OECD Nuclear Energy Agency, Molten Salt Reactor Fuel Cycles: Towards a Common Language, Paris, France, 2025.
  • [22] Oak Ridge National Laboratory, MSRE Design and Operations Report, ORNL-TM-728, Oak Ridge, TN, USA, 1972.
  • [23] Rosatom, “Prospects of thorium-based fuel cycle,” Rosatom Research Bulletin, vol. 12, no. 3, pp. 88–94, 2022.
  • [24] ScienceDirect, “Safety assessment of molten salt reactors in comparison with light water reactors,” 2013. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [25] ScienceDirect, “Aggregation and data analysis of corrosion studies in molten fluoride and chloride salts,” 2018. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [26] ScienceDirect, “The corrosion effects of neutron activation of 2LiF–BeF₂ (FLiBe),” 2022. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [27] ScienceDirect, “Assessing the benefit of thorium fuel in a once-through molten salt reactor,” 2024. [Online]. Available: https://www.sciencedirect.com. Accessed: 2025.
  • [28] Springer Materials, Corrosion of Structural Alloys in High-Temperature Molten Fluoride Salt Systems, Berlin, Germany: Springer, 2018.
  • [29] Turkish Atomic Energy Authority, Thorium Resource Mapping in Turkey, Ankara, Turkey, 2020.
  • [30] TUBITAK, Turkey’s National Energy Research Strategy, Energy Policy Brief, Ankara, Turkey, 2021.
  • [31] Y. Wang and J. Chen, “Simulation studies on FLiBe coolant dynamics,” Annals of Nuclear Energy, vol. 155, Art. no. 108153, 2021.
  • [32]Wikipedia,“Liquidfluoridethoriumreactor,”2025.[Online].Available :https://en.wikipedia.org/wiki/Liquid_fluoride_thorium_reactor. Accessed: 2025.
  • [33] Wikipedia, “Thorium,” 2025. [Online]. Available: https://en.wikipedia.org/wiki/Thorium. Accessed: 2025.
  • [34] Wired, “Uranium is so last century—Enter thorium, the new green nuke,” 2009. [Online]. Available: https://www.wired.com. Accessed: 2025.
  • [35] Wired, “China takes lead in race for clean nuclear power,” 2011. [Online]. Available: https://www.wired.com. Accessed: 2025.
  • [36] World Nuclear Association, “Molten salt reactors,” 2024. [Online]. Available: https://world-nuclear.org. Accessed: 2025.
  • [37] World Nuclear Association, “Thorium fuel cycle,” 2024. [Online]. Available: https://world-nuclear.org. Accessed: 2025.
  • [38] J. Zhang, “Corrosion in molten salt reactors,” Corrosion Science, vol. 144, pp. 74–88, 2018.
  • [39] A. A. et al., “A feasibility study of a thorium-fueled molten salt micro modular subcritical reactor using an electron accelerator,” unpublished.
  • [40] A. Asif et al., “The development of thermal-hydraulic and nonlinear dynamic system for molten salt reactors,” Engineering, Technology & Applied Science Research, vol. 11, no. 2, pp. 7023–7027, 2021.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Derleme
Yazarlar

Almusa Atamaliyev 0009-0009-8887-6149

Aybaba Hançerlioğulları 0000-0002-9830-4220

Rezvan Rezaeizadeh 0000-0001-6219-6174

Yosef G. Ali Madee 0000-0003-4652-2990

Altunay İskenderli 0009-0000-1904-6250

Gönderilme Tarihi 10 Ekim 2025
Kabul Tarihi 4 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Atamaliyev, A., Hançerlioğulları, A., Rezaeizadeh, R., … Madee, Y. G. A. (2025). The Energy Carrier of the Future: A New Era of Molten Salt Reactors in Nuclear Energy. Inspiring Technologies and Innovations, 4(2), 58-65. https://doi.org/10.5281/zenodo.18038980

Dergimiz 2024 Yılı Ocak ayı itibariyle artık İngilizce ve Türkçe yayınları kabul etmeye başlamıştır. Türkçe yayınlar İngilizce Özet içerecek şekilde kabul edilecektir. Yazım Kuralları menüsünden Tam Metin yazım şablonunu indirebilirsiniz.