Derleme
BibTex RIS Kaynak Göster

A Research on Transformation Geometry: Answered and Unanswered Questions

Yıl 2024, Cilt: 25 Sayı: 3, 1240 - 1264, 31.12.2024
https://doi.org/10.17679/inuefd.1453349

Öz

This study synthesizes the current state of knowledge in geometric transformation research and suggests directions for future study. Specifically, we address the following five questions:
(1) What is geometric transformation?
(2) Why is geometric transformation important in school mathematics?
(3) What do we know about understanding geometric transformation?
(4) How can technology be used in geometric transformation activities?
(5) How are geometric transformation activities included in mathematics textbooks?
Each of these questions presents a fertile research area within the realm of geometric transformations. Following an overview of the existing knowledge in this domain, we proceed to examine, for each question, related unanswered issues that warrant additional consideration from the research community.

Kaynakça

  • Akarsu, M. (2018). Pre-service teachers’ understanding of geometric reflections in terms of motion and mapping view. Unpublished Doctoral Dissertation, Purdue University, Indiana, USA.
  • Akarsu, M. (2022). Understanding of geometric reflection: John’s learning path for geometric reflection. Journal of Theoretical Educational Science, 15(1), 64-89. DOI: 10.30831/akukeg.952022
  • Akarsu, M., & İler, K., (2022). Matematik Öğretmenlerinin Yansıma Dönüşümünün Tanım Kümesini Hareket ve Eşleştirme Perspektiflerine Göre Anlamalarının İncelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 23(Özel Sayı), 561-611. DOI: 10.29299/kefad.982478
  • Akarsu, M., & Öçal, M.F. (2022). How Pre-Service Teachers Perceive Geometric Reflection in a Dynamic Environment: Motion View and Mapping View. International Journal of Curriculum and Instruction, 14(2), 1531-1560. http://ijci.wcci-international.org/index.php/IJCI/article/view/973 adresinden 15.08.2023 tarihinde alınmıştır.
  • Aktaş, G.S., & Gürefe, N. (2021). Examining Transformation Geometry Concept Definitions of Pre-Service Mathematics Teachers. Bulletin of Education and Research, 43(2), 135-158.
  • Demir, Ö., & Kurtuluş, A. (2019). Dönüşüm geometrisi öğretiminde 5E öğrenme modelinin 7. Sınıf öğrencilerinin Van Hiele dönüşüm geometrisi düşünme düzeylerine etkisi. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 20, 1279-1299. https://doi.org/10.17494/ogusbd.555483
  • Dodge, C.W. (2012). Euclidean geometry and transformations. Courier Corporation.
  • Edwards, L. (2003). The nature of mathematics as viewed from cognitive science. Paper presented at 3rd Congress of the European Society for Research in Mathematics, Bellaria, Italy.
  • Flanagan, K.A. (2001). High school students’ understandings of geometric transformations in the context of a technological environment. Unpublished Doctoral Dissertion, The Pennsylvania State University, 2001.
  • Glass, B.J. (2001). Students' reification of geometric transformations in the presence of multiple dynamically linked representations. The University of Iowa.
  • Gülkılık, H., Uğurlu, H.H., & Yürük, N. (2015). Examining students’ mathematical understanding of geometric transformations using the pirie-kieren model. Kuram ve Uygulamada Egitim Bilimleri, 15 (6), 1531–1548. https://doi.org/10.12738/estp.2015.6.0056
  • Gürbüz, K., & Durmuş, S. (2009). İlköğretim matematik öğretmenlerinin dönüşüm geometrisi, geometrik cisimler, örüntü ve süslemeler alt öğrenme alanlarındaki yeterlilikleri. Abant İzzet Baysal Üniversitesi Dergisi, 9(1), 1-22.
  • Hacısalihoğlu-Karadeniz, M., Baran, T., Bozkuş, F., & Gündüz, N. (2015). İlköğretim matematik öğretmeni adaylarının yansıma simetrisi ile ilgili yaşadıkları zorluklar. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 6(1), 117-138.
  • Harper, S.R. (2002). Enhancing elementary pre-service teachers’ knowledge of geometric transformations. Unpublished Doctoral Dissertion, University of Virginia, 2002.
  • Hollebrands, K. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behavior, 22, 55–72.
  • Hollebrands, K.F. (2004). Connecting research to teaching: High school students' intuitive understandings of geometric transformations. The Mathematics Teacher, 97(3), 207-214.
  • Jones, K. (2002). Issues in the teaching and learning of geometry. In L. Haggarty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp. 121–139). London, England: Routledge Falmer.
  • Jones, D.L. (2004). Probability in middle grades mathematics textbooks: An examination of historical trends, 1957-2004 (Doctoral Dissertation, University of Missouri-Columbia). Dissertation Abstracts International, AAT 3164516.
  • Karakuş, Ö. (2008). Bilgisayar destekli dönüşüm geometrisi öğretiminin öğrenci erişisine etkisi. Yayınlanmamış yüksek lisans tezi. Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author. (ERIC Document Reproduction Service No. ED 344 778)
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Pleet, L.J. (1990). The effects of Computer Graphics and Mira On Acquisition of Transformation Geometry Concepts and Development of Mental Rotation Skills in Grade Eight. Los Angeles: Oregon State University.
  • Yanık, H.B. (2006). Prospective elementary teachers’ growth in knowledge and understanding of rigid geometric transformations. Unpublished Doctoral Dissertion, Arizona State University, 2006.
  • Yanik, H.B., & Flores, A. (2009). Understanding rigid geometric transformations: Jeff's learning path for translation. The Journal of Mathematical Behavior, 28(1), 41-57.
  • Zembat, İ.Ö. (2007). Yansıma dönüşümü, doğrudan öğretim ve yapılandırmacılığın temel bileşenleri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 27(1), 195-213.
  • Zembat, İ.Ö. (2013). Tanımları ve tarihsel gelişimleriyle matematiksel kavramlar (1. baskı). Ankara: Pegem Akademi Yayıncılık.

Dönüşüm Geometrisi Üzerine Bir Araştırma: Cevaplanmış ve Cevaplanmamış Sorular

Yıl 2024, Cilt: 25 Sayı: 3, 1240 - 1264, 31.12.2024
https://doi.org/10.17679/inuefd.1453349

Öz

Bu çalışma, geometrik dönüşüm araştırmalarındaki mevcut bilgi durumunu sentezlemekte ve gelecekteki çalışmalar için yönler önermektedir. Çalışmada spesifik olarak, aşağıdaki beş soru ele alınmaktadır:
(1) Geometrik dönüşüm nedir?
(2) Geometrik dönüşüm okul matematiğinde neden önemlidir?
(3) Geometrik dönüşümü anlamak hakkında ne biliyoruz?
(4) Geometrik dönüşüm etkinliklerinde teknoloji nasıl kullanılabilir?
(5) Geometrik dönüşüm etkinlikleri matematik ders kitaplarına nasıl dahil edilir?
Bu soruların her biri geometrik dönüşümler alanında verimli bir araştırma alanı sunmaktadır. Bu alandaki mevcut bilgilere genel bir bakışın ardından, her bir soru için, araştırma topluluğunun ek değerlendirmesini gerektiren ilgili cevaplanmamış konuları incelemeye devam ediyoruz.

Kaynakça

  • Akarsu, M. (2018). Pre-service teachers’ understanding of geometric reflections in terms of motion and mapping view. Unpublished Doctoral Dissertation, Purdue University, Indiana, USA.
  • Akarsu, M. (2022). Understanding of geometric reflection: John’s learning path for geometric reflection. Journal of Theoretical Educational Science, 15(1), 64-89. DOI: 10.30831/akukeg.952022
  • Akarsu, M., & İler, K., (2022). Matematik Öğretmenlerinin Yansıma Dönüşümünün Tanım Kümesini Hareket ve Eşleştirme Perspektiflerine Göre Anlamalarının İncelenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 23(Özel Sayı), 561-611. DOI: 10.29299/kefad.982478
  • Akarsu, M., & Öçal, M.F. (2022). How Pre-Service Teachers Perceive Geometric Reflection in a Dynamic Environment: Motion View and Mapping View. International Journal of Curriculum and Instruction, 14(2), 1531-1560. http://ijci.wcci-international.org/index.php/IJCI/article/view/973 adresinden 15.08.2023 tarihinde alınmıştır.
  • Aktaş, G.S., & Gürefe, N. (2021). Examining Transformation Geometry Concept Definitions of Pre-Service Mathematics Teachers. Bulletin of Education and Research, 43(2), 135-158.
  • Demir, Ö., & Kurtuluş, A. (2019). Dönüşüm geometrisi öğretiminde 5E öğrenme modelinin 7. Sınıf öğrencilerinin Van Hiele dönüşüm geometrisi düşünme düzeylerine etkisi. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 20, 1279-1299. https://doi.org/10.17494/ogusbd.555483
  • Dodge, C.W. (2012). Euclidean geometry and transformations. Courier Corporation.
  • Edwards, L. (2003). The nature of mathematics as viewed from cognitive science. Paper presented at 3rd Congress of the European Society for Research in Mathematics, Bellaria, Italy.
  • Flanagan, K.A. (2001). High school students’ understandings of geometric transformations in the context of a technological environment. Unpublished Doctoral Dissertion, The Pennsylvania State University, 2001.
  • Glass, B.J. (2001). Students' reification of geometric transformations in the presence of multiple dynamically linked representations. The University of Iowa.
  • Gülkılık, H., Uğurlu, H.H., & Yürük, N. (2015). Examining students’ mathematical understanding of geometric transformations using the pirie-kieren model. Kuram ve Uygulamada Egitim Bilimleri, 15 (6), 1531–1548. https://doi.org/10.12738/estp.2015.6.0056
  • Gürbüz, K., & Durmuş, S. (2009). İlköğretim matematik öğretmenlerinin dönüşüm geometrisi, geometrik cisimler, örüntü ve süslemeler alt öğrenme alanlarındaki yeterlilikleri. Abant İzzet Baysal Üniversitesi Dergisi, 9(1), 1-22.
  • Hacısalihoğlu-Karadeniz, M., Baran, T., Bozkuş, F., & Gündüz, N. (2015). İlköğretim matematik öğretmeni adaylarının yansıma simetrisi ile ilgili yaşadıkları zorluklar. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 6(1), 117-138.
  • Harper, S.R. (2002). Enhancing elementary pre-service teachers’ knowledge of geometric transformations. Unpublished Doctoral Dissertion, University of Virginia, 2002.
  • Hollebrands, K. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behavior, 22, 55–72.
  • Hollebrands, K.F. (2004). Connecting research to teaching: High school students' intuitive understandings of geometric transformations. The Mathematics Teacher, 97(3), 207-214.
  • Jones, K. (2002). Issues in the teaching and learning of geometry. In L. Haggarty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp. 121–139). London, England: Routledge Falmer.
  • Jones, D.L. (2004). Probability in middle grades mathematics textbooks: An examination of historical trends, 1957-2004 (Doctoral Dissertation, University of Missouri-Columbia). Dissertation Abstracts International, AAT 3164516.
  • Karakuş, Ö. (2008). Bilgisayar destekli dönüşüm geometrisi öğretiminin öğrenci erişisine etkisi. Yayınlanmamış yüksek lisans tezi. Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author. (ERIC Document Reproduction Service No. ED 344 778)
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Pleet, L.J. (1990). The effects of Computer Graphics and Mira On Acquisition of Transformation Geometry Concepts and Development of Mental Rotation Skills in Grade Eight. Los Angeles: Oregon State University.
  • Yanık, H.B. (2006). Prospective elementary teachers’ growth in knowledge and understanding of rigid geometric transformations. Unpublished Doctoral Dissertion, Arizona State University, 2006.
  • Yanik, H.B., & Flores, A. (2009). Understanding rigid geometric transformations: Jeff's learning path for translation. The Journal of Mathematical Behavior, 28(1), 41-57.
  • Zembat, İ.Ö. (2007). Yansıma dönüşümü, doğrudan öğretim ve yapılandırmacılığın temel bileşenleri. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 27(1), 195-213.
  • Zembat, İ.Ö. (2013). Tanımları ve tarihsel gelişimleriyle matematiksel kavramlar (1. baskı). Ankara: Pegem Akademi Yayıncılık.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik Eğitimi
Bölüm Makaleler
Yazarlar

Murat Akarsu 0000-0002-5883-5911

Kübra İler 0000-0002-3052-0256

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Mayıs 2024
Kabul Tarihi 15 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 3

Kaynak Göster

APA Akarsu, M., & İler, K. (2024). A Research on Transformation Geometry: Answered and Unanswered Questions. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 25(3), 1240-1264. https://doi.org/10.17679/inuefd.1453349
AMA Akarsu M, İler K. A Research on Transformation Geometry: Answered and Unanswered Questions. INUEFD. Aralık 2024;25(3):1240-1264. doi:10.17679/inuefd.1453349
Chicago Akarsu, Murat, ve Kübra İler. “A Research on Transformation Geometry: Answered and Unanswered Questions”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 25, sy. 3 (Aralık 2024): 1240-64. https://doi.org/10.17679/inuefd.1453349.
EndNote Akarsu M, İler K (01 Aralık 2024) A Research on Transformation Geometry: Answered and Unanswered Questions. İnönü Üniversitesi Eğitim Fakültesi Dergisi 25 3 1240–1264.
IEEE M. Akarsu ve K. İler, “A Research on Transformation Geometry: Answered and Unanswered Questions”, INUEFD, c. 25, sy. 3, ss. 1240–1264, 2024, doi: 10.17679/inuefd.1453349.
ISNAD Akarsu, Murat - İler, Kübra. “A Research on Transformation Geometry: Answered and Unanswered Questions”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 25/3 (Aralık 2024), 1240-1264. https://doi.org/10.17679/inuefd.1453349.
JAMA Akarsu M, İler K. A Research on Transformation Geometry: Answered and Unanswered Questions. INUEFD. 2024;25:1240–1264.
MLA Akarsu, Murat ve Kübra İler. “A Research on Transformation Geometry: Answered and Unanswered Questions”. İnönü Üniversitesi Eğitim Fakültesi Dergisi, c. 25, sy. 3, 2024, ss. 1240-64, doi:10.17679/inuefd.1453349.
Vancouver Akarsu M, İler K. A Research on Transformation Geometry: Answered and Unanswered Questions. INUEFD. 2024;25(3):1240-64.

2002 INUEFD  Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.