Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 14 Sayı: 5, 2381 - 2410, 31.12.2025
https://doi.org/10.15869/itobiad.1731080

Öz

Kaynakça

  • Alpaydın, E. (2019) Makine öğrenmesi, QNB Finansbank Yayınları.
  • Benckendorff, P., & Zehrer, A. (2013). A network analysis of tourism research. Annals Of Tourism Research, 43, 121-149. https://doi.org/10.1016/j.annals.2013.04.005
  • Bengül, S. S. (2024). Pazarlamada yapay zekâ kavramının bibliyometrik analizi. Dumlupınar Üniversitesi, İİBF Dergisi, (14), 188-200. https://doi.org/10.58627/dpuiibf.1584252
  • Bircan, T., & Salah, A. A. A. (2022). A bibliometric analysis of the use of artificial intelligence technologies for social sciences. Mathematics, 10(23), 4398. https://doi.org/10.3390/math10234398
  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1-3), 139-159. https://doi.org/10.1016/0004-3702(91)90053-M
  • Brynjolfsson, E., McAfee, A. (2017). The Business of Artificial Intelligence. Harvard Business Review.
  • Buntak, K., Kovačić, M., & Mutavdžija, M. (2021). Application of Artificial Intelligence in the business. International Journal For Quality Research, 15(2), 403.
  • Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 1-12. https://doi.org/10.1057/s41599-023-02079-x
  • Delipetrev, B., Tsinaraki, C., & Kostic, U. (2020). Historical evolution of artificial intelligence. DOI: 10.2760/801580
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal Of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Du‐Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430, https://doi.org/10.1111/bjd.18880
  • Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321-357. https://doi.org/10.1016/0004-3702(94)00041-X
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal Of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Eck, N. J. V., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well‐known similarity measures. Journal Of The American Society For Information Science And Technology, 60(8), 1635-1651. https://doi.org/10.1002/asi.21075
  • Ekinci, G., & Özsaatcı, F. G. B. (2023). Yapay zekâ ve pazarlama alanındaki yayınların bibliyometrik analizi. Sosyoekonomi, 31(56), 369-388. https://doi.org/10.17233/sosyoekonomi.2023.02.17
  • Elden, B. (2025). İşyerinde yapay zekâya yönelik tutumların psikolojik sahiplenme üzerindeki etkisi. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(4), 123-143. https://doi.org/10.15869/itobiad.1732495
  • French, R. M. (2000). The Turing Test: the first 50 years. Trends In Cognitive Sciences, 4(3), 115-122.
  • Garrigos-Simon, F. J., Narangajavana-Kaosiri, Y., & Lengua-Lengua, I. (2018). Tourism and sustainability: A bibliometric and visualization analysis. Sustainability, 10(6), 1976. https://doi.org/10.3390/su10061976
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Gölgeli, K. (2025). Yapay zekâ ile reklam tasarımı: Reklamcılara yönelik bir araştırma. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(1), 319-336. https://doi.org/10.15869/itobiad.1527182
  • Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
  • Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal Of Service Research, 21(2), 155-172. DOI: 10.1177/1094670517752459
  • Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42, 21-57. https://doi.org/10.1007/s10462-012-9328-0
  • Karslı, T. A. (2024). Yapay zeka ve bilinç: anlamsal ve duygusal/heyecansal boyutları üzerinden bir değerlendirme. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 13(4), 192-213. https://doi.org/10.15869/itobiad.1517371
  • Kasperiuniene, J. (2021). The use of artificial intelligence in social research: Multidisciplinary challenges. In Computer Supported Qualitative Research: New Trends in Qualitative Research (WCQR2021) 5 (pp. 312-324). Springer International Publishing.
  • Kırbağ Zengin, F., & Alan, B. (2025). The effect of artificial intelligence-based e-learning environment on students’ attitudes towards science course. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(3), 1253-1274. https://doi.org/10.15869/itobiad.1574248
  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
  • Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions On Information Theory, 47(2), 498-519. DOI: 10.1109/18.910572
  • Lindgren, S., & Holmström, J. (2020). A social science perspective on artificial intelligence: Building blocks for a research agenda. Journal of digital social research, 2(3), 1-15. DOI: https://doi.org/10.33621/jdsr.v2i3.65
  • Liu, P., Lai, Y., & Liu, D. (2024). Artificial intelligence research in organizations: a bibliometric approach. Cogent Business & Management, 11(1), 2408439. DOI: 10.1080/23311975.2024.2408439
  • Maral, T. (2024). Sosyal bilimlerin kesişim noktası: Yapay zekâ ve etik. Ankara Uluslararası Sosyal Bilimler Dergisi (Yapay Zeka ve Sosyal Bilimler Öğretimi), 17-33.
  • Maseda, A., Iturralde, T., Cooper, S., & Aparicio, G. (2022). Mapping women's involvement in family firms: A review based on bibliographic coupling analysis. International Journal of Management Reviews, 24(2), 279-305. https://doi.org/10.1111/ijmr.12278
  • Mijwel, M. M. (2015). History of artificial ıntelligence yapay zekânın tarihi. Computer Science (April 2015), 3-4. DOI: 10.13140/RG.2.2.16418.15046
  • Murphy, K. P. (2012). Machine learning: A Probabilistic Perspective. MIT Press.
  • Natale, S. (2019). If software is narrative: Joseph Weizenbaum, artificial intelligence and the biographies of ELIZA. New Media & Society, 21(3), 712-728. https://doi.org/10.1177/14614448188049
  • Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610-2613. https://doi.org/10.1016/j.matpr.2021.06.419
  • Pınar Saygın, A., Çiçekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds And Machines, 10(4), 463-518. DOI: 10.1023/A:1011288000451
  • Prasetya, S. P. (2024). Artificial intelligence in social sciences education presents new challenges and opportunities. In 4th International Conference on Social Sciences and Law (ICSSL 2024) (pp. 111-121). Atlantis Press.
  • Prieto-Gutierrez, J. J., Segado-Boj, F., & França, F. D. S. (2023). Artificial intelligence in social science: A study based on bibliometrics analysis. arXiv preprint arXiv:2312.10077.
  • Russell, S. J., & Norvig, P., (1995). Artificial intelligence: A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25(27), 79-80.
  • Sağbaş, M., & Kılınç, S. (2024). İşletme yönetiminde yapay zeka: Bibliyometrik analiz. Sinop Üniversitesi Sosyal Bilimler Dergisi, 8 (Eğitim Bilimleri ve Sosyal Bilimler Özel Sayısı), 504-531. https://doi.org/10.30561/sinopusd.1561011
  • Sayğan Tunçay, S. & Sayğan Yağız, N. (2020). Türkiye’deki “Bilgi uçurma (Whistleblowing)” makalelerinin bibliyometrik profili. Business & Management Studies: An International Journal, 8(4), 266-295. https://doi.org/10.15295/bmij.v8i4.1716
  • Seker, S. E. (2015). Doğal dil işleme (Natural language processing). YBS Ansiklopedi, 2(4), 14-31.
  • Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2), 191-234. https://doi.org/10.1016/0004-3702(94)90026-4
  • Stilgoe, J. (2023). We need a weizenbaum test for AI. Science, 381(6658), eadk0176. DOI: 10.1126/science.adk0176
  • Sunman, G. (2025). Yönetimde yapay zekâ: Bibliyometrik analiz. Politik Ekonomik Kuram, 9(2), 723-739. https://doi.org/10.30586/pek.1637141
  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1-2), 99-141. https://doi.org/10.1016/S0004-3702(01)00069-8
  • Turing, A. M. (1950), Computıng machinery and intelligence, Mind, Volume LIX, Issue 236, October 1950, Pages 433–460, https://doi.org/10.1093/mind/LIX.236.433
  • Turkle, S. (2005). The second self: Computers and the human spirit. Mit Press.
  • Ulukök, E. (2022). Algılanan fazla niteliklilik araştırmalarının entelektüel yapısının haritalanması: Bir ortak anahtar kelime ve ortak atıf analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (74), 54-74. DOI: 10.51290/dpusbe.1082016
  • Wazi, N. W. M., Karim, F., & Noor, N. A. A. M. (2024). Productivity modern management science practices in the age of AI: AI-Driven productivity. In Modern Management Science Practices in the Age of AI (pp. 123-150). DOI: 10.4018/979-8-3693-6720-9.ch005
  • Yalçınkaya,A. (2019) "Artificial intelligence and social sciences," XI. Uluslararası Uludağ Uluslararası İlişkiler Kongresi , vol.1, Bursa, Turkey, pp.10-26.
  • Yılmaz, A ve Kaya, U. (2022). Derin öğrenme, Kodlab Yayın Dağıtım Yazılım.
  • Yuan, Y., & Zhu, W. (2022). Artificial intelligence-enabled social science: A bibliometric analysis. In 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022) (pp. 1602-1608). Atlantis Press. DOI: 10.2991/978-94-6463-040-4_242

Yıl 2025, Cilt: 14 Sayı: 5, 2381 - 2410, 31.12.2025
https://doi.org/10.15869/itobiad.1731080

Öz

Kaynakça

  • Alpaydın, E. (2019) Makine öğrenmesi, QNB Finansbank Yayınları.
  • Benckendorff, P., & Zehrer, A. (2013). A network analysis of tourism research. Annals Of Tourism Research, 43, 121-149. https://doi.org/10.1016/j.annals.2013.04.005
  • Bengül, S. S. (2024). Pazarlamada yapay zekâ kavramının bibliyometrik analizi. Dumlupınar Üniversitesi, İİBF Dergisi, (14), 188-200. https://doi.org/10.58627/dpuiibf.1584252
  • Bircan, T., & Salah, A. A. A. (2022). A bibliometric analysis of the use of artificial intelligence technologies for social sciences. Mathematics, 10(23), 4398. https://doi.org/10.3390/math10234398
  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1-3), 139-159. https://doi.org/10.1016/0004-3702(91)90053-M
  • Brynjolfsson, E., McAfee, A. (2017). The Business of Artificial Intelligence. Harvard Business Review.
  • Buntak, K., Kovačić, M., & Mutavdžija, M. (2021). Application of Artificial Intelligence in the business. International Journal For Quality Research, 15(2), 403.
  • Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 1-12. https://doi.org/10.1057/s41599-023-02079-x
  • Delipetrev, B., Tsinaraki, C., & Kostic, U. (2020). Historical evolution of artificial intelligence. DOI: 10.2760/801580
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal Of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Du‐Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430, https://doi.org/10.1111/bjd.18880
  • Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321-357. https://doi.org/10.1016/0004-3702(94)00041-X
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal Of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Eck, N. J. V., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well‐known similarity measures. Journal Of The American Society For Information Science And Technology, 60(8), 1635-1651. https://doi.org/10.1002/asi.21075
  • Ekinci, G., & Özsaatcı, F. G. B. (2023). Yapay zekâ ve pazarlama alanındaki yayınların bibliyometrik analizi. Sosyoekonomi, 31(56), 369-388. https://doi.org/10.17233/sosyoekonomi.2023.02.17
  • Elden, B. (2025). İşyerinde yapay zekâya yönelik tutumların psikolojik sahiplenme üzerindeki etkisi. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(4), 123-143. https://doi.org/10.15869/itobiad.1732495
  • French, R. M. (2000). The Turing Test: the first 50 years. Trends In Cognitive Sciences, 4(3), 115-122.
  • Garrigos-Simon, F. J., Narangajavana-Kaosiri, Y., & Lengua-Lengua, I. (2018). Tourism and sustainability: A bibliometric and visualization analysis. Sustainability, 10(6), 1976. https://doi.org/10.3390/su10061976
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Gölgeli, K. (2025). Yapay zekâ ile reklam tasarımı: Reklamcılara yönelik bir araştırma. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(1), 319-336. https://doi.org/10.15869/itobiad.1527182
  • Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
  • Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal Of Service Research, 21(2), 155-172. DOI: 10.1177/1094670517752459
  • Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42, 21-57. https://doi.org/10.1007/s10462-012-9328-0
  • Karslı, T. A. (2024). Yapay zeka ve bilinç: anlamsal ve duygusal/heyecansal boyutları üzerinden bir değerlendirme. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 13(4), 192-213. https://doi.org/10.15869/itobiad.1517371
  • Kasperiuniene, J. (2021). The use of artificial intelligence in social research: Multidisciplinary challenges. In Computer Supported Qualitative Research: New Trends in Qualitative Research (WCQR2021) 5 (pp. 312-324). Springer International Publishing.
  • Kırbağ Zengin, F., & Alan, B. (2025). The effect of artificial intelligence-based e-learning environment on students’ attitudes towards science course. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(3), 1253-1274. https://doi.org/10.15869/itobiad.1574248
  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
  • Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions On Information Theory, 47(2), 498-519. DOI: 10.1109/18.910572
  • Lindgren, S., & Holmström, J. (2020). A social science perspective on artificial intelligence: Building blocks for a research agenda. Journal of digital social research, 2(3), 1-15. DOI: https://doi.org/10.33621/jdsr.v2i3.65
  • Liu, P., Lai, Y., & Liu, D. (2024). Artificial intelligence research in organizations: a bibliometric approach. Cogent Business & Management, 11(1), 2408439. DOI: 10.1080/23311975.2024.2408439
  • Maral, T. (2024). Sosyal bilimlerin kesişim noktası: Yapay zekâ ve etik. Ankara Uluslararası Sosyal Bilimler Dergisi (Yapay Zeka ve Sosyal Bilimler Öğretimi), 17-33.
  • Maseda, A., Iturralde, T., Cooper, S., & Aparicio, G. (2022). Mapping women's involvement in family firms: A review based on bibliographic coupling analysis. International Journal of Management Reviews, 24(2), 279-305. https://doi.org/10.1111/ijmr.12278
  • Mijwel, M. M. (2015). History of artificial ıntelligence yapay zekânın tarihi. Computer Science (April 2015), 3-4. DOI: 10.13140/RG.2.2.16418.15046
  • Murphy, K. P. (2012). Machine learning: A Probabilistic Perspective. MIT Press.
  • Natale, S. (2019). If software is narrative: Joseph Weizenbaum, artificial intelligence and the biographies of ELIZA. New Media & Society, 21(3), 712-728. https://doi.org/10.1177/14614448188049
  • Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610-2613. https://doi.org/10.1016/j.matpr.2021.06.419
  • Pınar Saygın, A., Çiçekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds And Machines, 10(4), 463-518. DOI: 10.1023/A:1011288000451
  • Prasetya, S. P. (2024). Artificial intelligence in social sciences education presents new challenges and opportunities. In 4th International Conference on Social Sciences and Law (ICSSL 2024) (pp. 111-121). Atlantis Press.
  • Prieto-Gutierrez, J. J., Segado-Boj, F., & França, F. D. S. (2023). Artificial intelligence in social science: A study based on bibliometrics analysis. arXiv preprint arXiv:2312.10077.
  • Russell, S. J., & Norvig, P., (1995). Artificial intelligence: A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25(27), 79-80.
  • Sağbaş, M., & Kılınç, S. (2024). İşletme yönetiminde yapay zeka: Bibliyometrik analiz. Sinop Üniversitesi Sosyal Bilimler Dergisi, 8 (Eğitim Bilimleri ve Sosyal Bilimler Özel Sayısı), 504-531. https://doi.org/10.30561/sinopusd.1561011
  • Sayğan Tunçay, S. & Sayğan Yağız, N. (2020). Türkiye’deki “Bilgi uçurma (Whistleblowing)” makalelerinin bibliyometrik profili. Business & Management Studies: An International Journal, 8(4), 266-295. https://doi.org/10.15295/bmij.v8i4.1716
  • Seker, S. E. (2015). Doğal dil işleme (Natural language processing). YBS Ansiklopedi, 2(4), 14-31.
  • Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2), 191-234. https://doi.org/10.1016/0004-3702(94)90026-4
  • Stilgoe, J. (2023). We need a weizenbaum test for AI. Science, 381(6658), eadk0176. DOI: 10.1126/science.adk0176
  • Sunman, G. (2025). Yönetimde yapay zekâ: Bibliyometrik analiz. Politik Ekonomik Kuram, 9(2), 723-739. https://doi.org/10.30586/pek.1637141
  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1-2), 99-141. https://doi.org/10.1016/S0004-3702(01)00069-8
  • Turing, A. M. (1950), Computıng machinery and intelligence, Mind, Volume LIX, Issue 236, October 1950, Pages 433–460, https://doi.org/10.1093/mind/LIX.236.433
  • Turkle, S. (2005). The second self: Computers and the human spirit. Mit Press.
  • Ulukök, E. (2022). Algılanan fazla niteliklilik araştırmalarının entelektüel yapısının haritalanması: Bir ortak anahtar kelime ve ortak atıf analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (74), 54-74. DOI: 10.51290/dpusbe.1082016
  • Wazi, N. W. M., Karim, F., & Noor, N. A. A. M. (2024). Productivity modern management science practices in the age of AI: AI-Driven productivity. In Modern Management Science Practices in the Age of AI (pp. 123-150). DOI: 10.4018/979-8-3693-6720-9.ch005
  • Yalçınkaya,A. (2019) "Artificial intelligence and social sciences," XI. Uluslararası Uludağ Uluslararası İlişkiler Kongresi , vol.1, Bursa, Turkey, pp.10-26.
  • Yılmaz, A ve Kaya, U. (2022). Derin öğrenme, Kodlab Yayın Dağıtım Yazılım.
  • Yuan, Y., & Zhu, W. (2022). Artificial intelligence-enabled social science: A bibliometric analysis. In 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022) (pp. 1602-1608). Atlantis Press. DOI: 10.2991/978-94-6463-040-4_242

Yıl 2025, Cilt: 14 Sayı: 5, 2381 - 2410, 31.12.2025
https://doi.org/10.15869/itobiad.1731080

Öz

Kaynakça

  • Alpaydın, E. (2019) Makine öğrenmesi, QNB Finansbank Yayınları.
  • Benckendorff, P., & Zehrer, A. (2013). A network analysis of tourism research. Annals Of Tourism Research, 43, 121-149. https://doi.org/10.1016/j.annals.2013.04.005
  • Bengül, S. S. (2024). Pazarlamada yapay zekâ kavramının bibliyometrik analizi. Dumlupınar Üniversitesi, İİBF Dergisi, (14), 188-200. https://doi.org/10.58627/dpuiibf.1584252
  • Bircan, T., & Salah, A. A. A. (2022). A bibliometric analysis of the use of artificial intelligence technologies for social sciences. Mathematics, 10(23), 4398. https://doi.org/10.3390/math10234398
  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1-3), 139-159. https://doi.org/10.1016/0004-3702(91)90053-M
  • Brynjolfsson, E., McAfee, A. (2017). The Business of Artificial Intelligence. Harvard Business Review.
  • Buntak, K., Kovačić, M., & Mutavdžija, M. (2021). Application of Artificial Intelligence in the business. International Journal For Quality Research, 15(2), 403.
  • Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 1-12. https://doi.org/10.1057/s41599-023-02079-x
  • Delipetrev, B., Tsinaraki, C., & Kostic, U. (2020). Historical evolution of artificial intelligence. DOI: 10.2760/801580
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal Of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Du‐Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430, https://doi.org/10.1111/bjd.18880
  • Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321-357. https://doi.org/10.1016/0004-3702(94)00041-X
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal Of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Eck, N. J. V., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well‐known similarity measures. Journal Of The American Society For Information Science And Technology, 60(8), 1635-1651. https://doi.org/10.1002/asi.21075
  • Ekinci, G., & Özsaatcı, F. G. B. (2023). Yapay zekâ ve pazarlama alanındaki yayınların bibliyometrik analizi. Sosyoekonomi, 31(56), 369-388. https://doi.org/10.17233/sosyoekonomi.2023.02.17
  • Elden, B. (2025). İşyerinde yapay zekâya yönelik tutumların psikolojik sahiplenme üzerindeki etkisi. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(4), 123-143. https://doi.org/10.15869/itobiad.1732495
  • French, R. M. (2000). The Turing Test: the first 50 years. Trends In Cognitive Sciences, 4(3), 115-122.
  • Garrigos-Simon, F. J., Narangajavana-Kaosiri, Y., & Lengua-Lengua, I. (2018). Tourism and sustainability: A bibliometric and visualization analysis. Sustainability, 10(6), 1976. https://doi.org/10.3390/su10061976
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Gölgeli, K. (2025). Yapay zekâ ile reklam tasarımı: Reklamcılara yönelik bir araştırma. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(1), 319-336. https://doi.org/10.15869/itobiad.1527182
  • Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
  • Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal Of Service Research, 21(2), 155-172. DOI: 10.1177/1094670517752459
  • Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42, 21-57. https://doi.org/10.1007/s10462-012-9328-0
  • Karslı, T. A. (2024). Yapay zeka ve bilinç: anlamsal ve duygusal/heyecansal boyutları üzerinden bir değerlendirme. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 13(4), 192-213. https://doi.org/10.15869/itobiad.1517371
  • Kasperiuniene, J. (2021). The use of artificial intelligence in social research: Multidisciplinary challenges. In Computer Supported Qualitative Research: New Trends in Qualitative Research (WCQR2021) 5 (pp. 312-324). Springer International Publishing.
  • Kırbağ Zengin, F., & Alan, B. (2025). The effect of artificial intelligence-based e-learning environment on students’ attitudes towards science course. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(3), 1253-1274. https://doi.org/10.15869/itobiad.1574248
  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
  • Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions On Information Theory, 47(2), 498-519. DOI: 10.1109/18.910572
  • Lindgren, S., & Holmström, J. (2020). A social science perspective on artificial intelligence: Building blocks for a research agenda. Journal of digital social research, 2(3), 1-15. DOI: https://doi.org/10.33621/jdsr.v2i3.65
  • Liu, P., Lai, Y., & Liu, D. (2024). Artificial intelligence research in organizations: a bibliometric approach. Cogent Business & Management, 11(1), 2408439. DOI: 10.1080/23311975.2024.2408439
  • Maral, T. (2024). Sosyal bilimlerin kesişim noktası: Yapay zekâ ve etik. Ankara Uluslararası Sosyal Bilimler Dergisi (Yapay Zeka ve Sosyal Bilimler Öğretimi), 17-33.
  • Maseda, A., Iturralde, T., Cooper, S., & Aparicio, G. (2022). Mapping women's involvement in family firms: A review based on bibliographic coupling analysis. International Journal of Management Reviews, 24(2), 279-305. https://doi.org/10.1111/ijmr.12278
  • Mijwel, M. M. (2015). History of artificial ıntelligence yapay zekânın tarihi. Computer Science (April 2015), 3-4. DOI: 10.13140/RG.2.2.16418.15046
  • Murphy, K. P. (2012). Machine learning: A Probabilistic Perspective. MIT Press.
  • Natale, S. (2019). If software is narrative: Joseph Weizenbaum, artificial intelligence and the biographies of ELIZA. New Media & Society, 21(3), 712-728. https://doi.org/10.1177/14614448188049
  • Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610-2613. https://doi.org/10.1016/j.matpr.2021.06.419
  • Pınar Saygın, A., Çiçekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds And Machines, 10(4), 463-518. DOI: 10.1023/A:1011288000451
  • Prasetya, S. P. (2024). Artificial intelligence in social sciences education presents new challenges and opportunities. In 4th International Conference on Social Sciences and Law (ICSSL 2024) (pp. 111-121). Atlantis Press.
  • Prieto-Gutierrez, J. J., Segado-Boj, F., & França, F. D. S. (2023). Artificial intelligence in social science: A study based on bibliometrics analysis. arXiv preprint arXiv:2312.10077.
  • Russell, S. J., & Norvig, P., (1995). Artificial intelligence: A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25(27), 79-80.
  • Sağbaş, M., & Kılınç, S. (2024). İşletme yönetiminde yapay zeka: Bibliyometrik analiz. Sinop Üniversitesi Sosyal Bilimler Dergisi, 8 (Eğitim Bilimleri ve Sosyal Bilimler Özel Sayısı), 504-531. https://doi.org/10.30561/sinopusd.1561011
  • Sayğan Tunçay, S. & Sayğan Yağız, N. (2020). Türkiye’deki “Bilgi uçurma (Whistleblowing)” makalelerinin bibliyometrik profili. Business & Management Studies: An International Journal, 8(4), 266-295. https://doi.org/10.15295/bmij.v8i4.1716
  • Seker, S. E. (2015). Doğal dil işleme (Natural language processing). YBS Ansiklopedi, 2(4), 14-31.
  • Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2), 191-234. https://doi.org/10.1016/0004-3702(94)90026-4
  • Stilgoe, J. (2023). We need a weizenbaum test for AI. Science, 381(6658), eadk0176. DOI: 10.1126/science.adk0176
  • Sunman, G. (2025). Yönetimde yapay zekâ: Bibliyometrik analiz. Politik Ekonomik Kuram, 9(2), 723-739. https://doi.org/10.30586/pek.1637141
  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1-2), 99-141. https://doi.org/10.1016/S0004-3702(01)00069-8
  • Turing, A. M. (1950), Computıng machinery and intelligence, Mind, Volume LIX, Issue 236, October 1950, Pages 433–460, https://doi.org/10.1093/mind/LIX.236.433
  • Turkle, S. (2005). The second self: Computers and the human spirit. Mit Press.
  • Ulukök, E. (2022). Algılanan fazla niteliklilik araştırmalarının entelektüel yapısının haritalanması: Bir ortak anahtar kelime ve ortak atıf analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (74), 54-74. DOI: 10.51290/dpusbe.1082016
  • Wazi, N. W. M., Karim, F., & Noor, N. A. A. M. (2024). Productivity modern management science practices in the age of AI: AI-Driven productivity. In Modern Management Science Practices in the Age of AI (pp. 123-150). DOI: 10.4018/979-8-3693-6720-9.ch005
  • Yalçınkaya,A. (2019) "Artificial intelligence and social sciences," XI. Uluslararası Uludağ Uluslararası İlişkiler Kongresi , vol.1, Bursa, Turkey, pp.10-26.
  • Yılmaz, A ve Kaya, U. (2022). Derin öğrenme, Kodlab Yayın Dağıtım Yazılım.
  • Yuan, Y., & Zhu, W. (2022). Artificial intelligence-enabled social science: A bibliometric analysis. In 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022) (pp. 1602-1608). Atlantis Press. DOI: 10.2991/978-94-6463-040-4_242

Traces of Artificial Intelligence in the Social Sciences: A Bibliometric Analysis

Yıl 2025, Cilt: 14 Sayı: 5, 2381 - 2410, 31.12.2025
https://doi.org/10.15869/itobiad.1731080

Öz

Artificial intelligence, which for many years was considered a subfield of computer science, has recently gained significant importance in the social sciences—particularly within the disciplines of business and management. In these fields, artificial intelligence has become a key driver of transformation in areas such as decision-making, strategic planning, process optimization, and innovation management. Its contributions have shifted traditional management approaches toward data-driven structures and have played a mediating role in enhancing organizational performance. Consequently, previous studies in this field serve as an essential reference point and guide for researchers. Building on this motivation, the present study aims to systematically examine the academic reflections of artificial intelligence within the social sciences using bibliometric analysis and to evaluate its position in the international literature, current research trends, and future scientific potential. The analysis is based on 16,410 articles published in the Scopus database between 1970 and 2023. The findings reveal that research on artificial intelligence has increased markedly since 2017 and that the United States leads the field in terms of publication volume and citation impact. Co-authorship analyses indicate that scholars such as Dwivedi, Kraus, and Dung hold central positions in the literature, while institutions such as the Institute of Research and Development and Fuy Tan University emerge as key nodes in collaboration networks. At the country/region level, the United States, China, and the United Kingdom stand out, occupying central positions in global scientific interaction through strong collaboration linkages. Overall, the bibliometric analysis demonstrates that scientific production, collaboration, and impact networks in the domain of artificial intelligence form complex yet meaningful patterns across individual, institutional and country/region levels.

Kaynakça

  • Alpaydın, E. (2019) Makine öğrenmesi, QNB Finansbank Yayınları.
  • Benckendorff, P., & Zehrer, A. (2013). A network analysis of tourism research. Annals Of Tourism Research, 43, 121-149. https://doi.org/10.1016/j.annals.2013.04.005
  • Bengül, S. S. (2024). Pazarlamada yapay zekâ kavramının bibliyometrik analizi. Dumlupınar Üniversitesi, İİBF Dergisi, (14), 188-200. https://doi.org/10.58627/dpuiibf.1584252
  • Bircan, T., & Salah, A. A. A. (2022). A bibliometric analysis of the use of artificial intelligence technologies for social sciences. Mathematics, 10(23), 4398. https://doi.org/10.3390/math10234398
  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1-3), 139-159. https://doi.org/10.1016/0004-3702(91)90053-M
  • Brynjolfsson, E., McAfee, A. (2017). The Business of Artificial Intelligence. Harvard Business Review.
  • Buntak, K., Kovačić, M., & Mutavdžija, M. (2021). Application of Artificial Intelligence in the business. International Journal For Quality Research, 15(2), 403.
  • Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 1-12. https://doi.org/10.1057/s41599-023-02079-x
  • Delipetrev, B., Tsinaraki, C., & Kostic, U. (2020). Historical evolution of artificial intelligence. DOI: 10.2760/801580
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal Of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Du‐Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430, https://doi.org/10.1111/bjd.18880
  • Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321-357. https://doi.org/10.1016/0004-3702(94)00041-X
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal Of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Eck, N. J. V., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well‐known similarity measures. Journal Of The American Society For Information Science And Technology, 60(8), 1635-1651. https://doi.org/10.1002/asi.21075
  • Ekinci, G., & Özsaatcı, F. G. B. (2023). Yapay zekâ ve pazarlama alanındaki yayınların bibliyometrik analizi. Sosyoekonomi, 31(56), 369-388. https://doi.org/10.17233/sosyoekonomi.2023.02.17
  • Elden, B. (2025). İşyerinde yapay zekâya yönelik tutumların psikolojik sahiplenme üzerindeki etkisi. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(4), 123-143. https://doi.org/10.15869/itobiad.1732495
  • French, R. M. (2000). The Turing Test: the first 50 years. Trends In Cognitive Sciences, 4(3), 115-122.
  • Garrigos-Simon, F. J., Narangajavana-Kaosiri, Y., & Lengua-Lengua, I. (2018). Tourism and sustainability: A bibliometric and visualization analysis. Sustainability, 10(6), 1976. https://doi.org/10.3390/su10061976
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Gölgeli, K. (2025). Yapay zekâ ile reklam tasarımı: Reklamcılara yönelik bir araştırma. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(1), 319-336. https://doi.org/10.15869/itobiad.1527182
  • Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
  • Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal Of Service Research, 21(2), 155-172. DOI: 10.1177/1094670517752459
  • Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42, 21-57. https://doi.org/10.1007/s10462-012-9328-0
  • Karslı, T. A. (2024). Yapay zeka ve bilinç: anlamsal ve duygusal/heyecansal boyutları üzerinden bir değerlendirme. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 13(4), 192-213. https://doi.org/10.15869/itobiad.1517371
  • Kasperiuniene, J. (2021). The use of artificial intelligence in social research: Multidisciplinary challenges. In Computer Supported Qualitative Research: New Trends in Qualitative Research (WCQR2021) 5 (pp. 312-324). Springer International Publishing.
  • Kırbağ Zengin, F., & Alan, B. (2025). The effect of artificial intelligence-based e-learning environment on students’ attitudes towards science course. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(3), 1253-1274. https://doi.org/10.15869/itobiad.1574248
  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
  • Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions On Information Theory, 47(2), 498-519. DOI: 10.1109/18.910572
  • Lindgren, S., & Holmström, J. (2020). A social science perspective on artificial intelligence: Building blocks for a research agenda. Journal of digital social research, 2(3), 1-15. DOI: https://doi.org/10.33621/jdsr.v2i3.65
  • Liu, P., Lai, Y., & Liu, D. (2024). Artificial intelligence research in organizations: a bibliometric approach. Cogent Business & Management, 11(1), 2408439. DOI: 10.1080/23311975.2024.2408439
  • Maral, T. (2024). Sosyal bilimlerin kesişim noktası: Yapay zekâ ve etik. Ankara Uluslararası Sosyal Bilimler Dergisi (Yapay Zeka ve Sosyal Bilimler Öğretimi), 17-33.
  • Maseda, A., Iturralde, T., Cooper, S., & Aparicio, G. (2022). Mapping women's involvement in family firms: A review based on bibliographic coupling analysis. International Journal of Management Reviews, 24(2), 279-305. https://doi.org/10.1111/ijmr.12278
  • Mijwel, M. M. (2015). History of artificial ıntelligence yapay zekânın tarihi. Computer Science (April 2015), 3-4. DOI: 10.13140/RG.2.2.16418.15046
  • Murphy, K. P. (2012). Machine learning: A Probabilistic Perspective. MIT Press.
  • Natale, S. (2019). If software is narrative: Joseph Weizenbaum, artificial intelligence and the biographies of ELIZA. New Media & Society, 21(3), 712-728. https://doi.org/10.1177/14614448188049
  • Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610-2613. https://doi.org/10.1016/j.matpr.2021.06.419
  • Pınar Saygın, A., Çiçekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds And Machines, 10(4), 463-518. DOI: 10.1023/A:1011288000451
  • Prasetya, S. P. (2024). Artificial intelligence in social sciences education presents new challenges and opportunities. In 4th International Conference on Social Sciences and Law (ICSSL 2024) (pp. 111-121). Atlantis Press.
  • Prieto-Gutierrez, J. J., Segado-Boj, F., & França, F. D. S. (2023). Artificial intelligence in social science: A study based on bibliometrics analysis. arXiv preprint arXiv:2312.10077.
  • Russell, S. J., & Norvig, P., (1995). Artificial intelligence: A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25(27), 79-80.
  • Sağbaş, M., & Kılınç, S. (2024). İşletme yönetiminde yapay zeka: Bibliyometrik analiz. Sinop Üniversitesi Sosyal Bilimler Dergisi, 8 (Eğitim Bilimleri ve Sosyal Bilimler Özel Sayısı), 504-531. https://doi.org/10.30561/sinopusd.1561011
  • Sayğan Tunçay, S. & Sayğan Yağız, N. (2020). Türkiye’deki “Bilgi uçurma (Whistleblowing)” makalelerinin bibliyometrik profili. Business & Management Studies: An International Journal, 8(4), 266-295. https://doi.org/10.15295/bmij.v8i4.1716
  • Seker, S. E. (2015). Doğal dil işleme (Natural language processing). YBS Ansiklopedi, 2(4), 14-31.
  • Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2), 191-234. https://doi.org/10.1016/0004-3702(94)90026-4
  • Stilgoe, J. (2023). We need a weizenbaum test for AI. Science, 381(6658), eadk0176. DOI: 10.1126/science.adk0176
  • Sunman, G. (2025). Yönetimde yapay zekâ: Bibliyometrik analiz. Politik Ekonomik Kuram, 9(2), 723-739. https://doi.org/10.30586/pek.1637141
  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1-2), 99-141. https://doi.org/10.1016/S0004-3702(01)00069-8
  • Turing, A. M. (1950), Computıng machinery and intelligence, Mind, Volume LIX, Issue 236, October 1950, Pages 433–460, https://doi.org/10.1093/mind/LIX.236.433
  • Turkle, S. (2005). The second self: Computers and the human spirit. Mit Press.
  • Ulukök, E. (2022). Algılanan fazla niteliklilik araştırmalarının entelektüel yapısının haritalanması: Bir ortak anahtar kelime ve ortak atıf analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (74), 54-74. DOI: 10.51290/dpusbe.1082016
  • Wazi, N. W. M., Karim, F., & Noor, N. A. A. M. (2024). Productivity modern management science practices in the age of AI: AI-Driven productivity. In Modern Management Science Practices in the Age of AI (pp. 123-150). DOI: 10.4018/979-8-3693-6720-9.ch005
  • Yalçınkaya,A. (2019) "Artificial intelligence and social sciences," XI. Uluslararası Uludağ Uluslararası İlişkiler Kongresi , vol.1, Bursa, Turkey, pp.10-26.
  • Yılmaz, A ve Kaya, U. (2022). Derin öğrenme, Kodlab Yayın Dağıtım Yazılım.
  • Yuan, Y., & Zhu, W. (2022). Artificial intelligence-enabled social science: A bibliometric analysis. In 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022) (pp. 1602-1608). Atlantis Press. DOI: 10.2991/978-94-6463-040-4_242

Sosyal Bilimlerde Yapay Zekâ İzleri: Bibliyometrik Bir Analiz

Yıl 2025, Cilt: 14 Sayı: 5, 2381 - 2410, 31.12.2025
https://doi.org/10.15869/itobiad.1731080

Öz

Uzun yıllar boyunca bilgisayar bilimi alanının bir parçası olan yapay zekâ, son zamanlarda işletme ve yönetim disiplini başta olmak üzere sosyal bilimler alanındaki uygulamalarla oldukça önem kazanmaktadır. Yapay zekâ, işletme ve yönetim bilimleri açısından karar verme, stratejik planlama, süreç optimizasyonu ve yenilik yönetimi gibi alanlarda önemli bir dönüşüm alanı olarak konumlanmaktadır. Yapay zekânın bu katkısı geleneksel yönetim anlayışını veriye dayalı bir yapıya dönüştürmekte ve örgütsel performansın artırılmasına aracılık etmektedir. Dolayısıyla konuyla ilgilenen araştırmacılar için bu alanda daha önce yapılmış çalışmalar bir başvuru kaynağı ve rehber olmaktadır. Bu düşünceden hareketle, bu çalışma, yapay zekânın sosyal bilimler alanındaki akademik yansımalarını bibliyometrik analiz yöntemiyle inceleyerek, uluslararası literatürdeki konumunu, mevcut araştırma eğilimlerini ve geleceğe yönelik bilimsel potansiyelini sistematik biçimde değerlendirmeyi hedeflemektedir. Scopus veri tabanında 1970-2023 yılları arasında yayımlanan 16.410 makale temel alınmıştır. Analiz sonuçları, 2017 yılından itibaren yapay zekâ araştırmalarının belirgin bir artış gösterdiğini ve ABD’nin yayın sayısı ve atıf düzeyi açısından lider konumda olduğunu ortaya koymaktadır. Ortak yazarlık analizleri, Dwivedi, Kraus ve Dung gibi yazarların literatürde merkezi bir rolü bulunduğunu, Institute of Research and Decelopment ve Fuy Tan University gibi kurumların ise iş birliği ağlarında önemli odak noktaları olduğunu göstermektedir. ABD, Çin ve Birleşik Krallık ülke/bölgeler düzeyinde öne çıkmakta ve güçlü iş birliği bağları ile bilimsel etkileşimde merkez konumunda yer almaktadır. Yapay zekâ alanında gerçekleştirilen bibliyometrik analiz, bireyler, kurumlar ve ülke/bölgeler düzeyinde bilimsel üretim, iş birliği ve etki ağlarının karmaşık olmakla birlikte anlamlı örüntüler oluşturduğunu göstermektedir.

Kaynakça

  • Alpaydın, E. (2019) Makine öğrenmesi, QNB Finansbank Yayınları.
  • Benckendorff, P., & Zehrer, A. (2013). A network analysis of tourism research. Annals Of Tourism Research, 43, 121-149. https://doi.org/10.1016/j.annals.2013.04.005
  • Bengül, S. S. (2024). Pazarlamada yapay zekâ kavramının bibliyometrik analizi. Dumlupınar Üniversitesi, İİBF Dergisi, (14), 188-200. https://doi.org/10.58627/dpuiibf.1584252
  • Bircan, T., & Salah, A. A. A. (2022). A bibliometric analysis of the use of artificial intelligence technologies for social sciences. Mathematics, 10(23), 4398. https://doi.org/10.3390/math10234398
  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1-3), 139-159. https://doi.org/10.1016/0004-3702(91)90053-M
  • Brynjolfsson, E., McAfee, A. (2017). The Business of Artificial Intelligence. Harvard Business Review.
  • Buntak, K., Kovačić, M., & Mutavdžija, M. (2021). Application of Artificial Intelligence in the business. International Journal For Quality Research, 15(2), 403.
  • Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 1-12. https://doi.org/10.1057/s41599-023-02079-x
  • Delipetrev, B., Tsinaraki, C., & Kostic, U. (2020). Historical evolution of artificial intelligence. DOI: 10.2760/801580
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal Of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • Du‐Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430, https://doi.org/10.1111/bjd.18880
  • Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321-357. https://doi.org/10.1016/0004-3702(94)00041-X
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal Of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • Eck, N. J. V., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well‐known similarity measures. Journal Of The American Society For Information Science And Technology, 60(8), 1635-1651. https://doi.org/10.1002/asi.21075
  • Ekinci, G., & Özsaatcı, F. G. B. (2023). Yapay zekâ ve pazarlama alanındaki yayınların bibliyometrik analizi. Sosyoekonomi, 31(56), 369-388. https://doi.org/10.17233/sosyoekonomi.2023.02.17
  • Elden, B. (2025). İşyerinde yapay zekâya yönelik tutumların psikolojik sahiplenme üzerindeki etkisi. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(4), 123-143. https://doi.org/10.15869/itobiad.1732495
  • French, R. M. (2000). The Turing Test: the first 50 years. Trends In Cognitive Sciences, 4(3), 115-122.
  • Garrigos-Simon, F. J., Narangajavana-Kaosiri, Y., & Lengua-Lengua, I. (2018). Tourism and sustainability: A bibliometric and visualization analysis. Sustainability, 10(6), 1976. https://doi.org/10.3390/su10061976
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  • Gölgeli, K. (2025). Yapay zekâ ile reklam tasarımı: Reklamcılara yönelik bir araştırma. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(1), 319-336. https://doi.org/10.15869/itobiad.1527182
  • Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5-14. https://doi.org/10.1177/0008125619864925
  • Huang, M. H., & Rust, R. T. (2018). Artificial intelligence in service. Journal Of Service Research, 21(2), 155-172. DOI: 10.1177/1094670517752459
  • Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42, 21-57. https://doi.org/10.1007/s10462-012-9328-0
  • Karslı, T. A. (2024). Yapay zeka ve bilinç: anlamsal ve duygusal/heyecansal boyutları üzerinden bir değerlendirme. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 13(4), 192-213. https://doi.org/10.15869/itobiad.1517371
  • Kasperiuniene, J. (2021). The use of artificial intelligence in social research: Multidisciplinary challenges. In Computer Supported Qualitative Research: New Trends in Qualitative Research (WCQR2021) 5 (pp. 312-324). Springer International Publishing.
  • Kırbağ Zengin, F., & Alan, B. (2025). The effect of artificial intelligence-based e-learning environment on students’ attitudes towards science course. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(3), 1253-1274. https://doi.org/10.15869/itobiad.1574248
  • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
  • Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions On Information Theory, 47(2), 498-519. DOI: 10.1109/18.910572
  • Lindgren, S., & Holmström, J. (2020). A social science perspective on artificial intelligence: Building blocks for a research agenda. Journal of digital social research, 2(3), 1-15. DOI: https://doi.org/10.33621/jdsr.v2i3.65
  • Liu, P., Lai, Y., & Liu, D. (2024). Artificial intelligence research in organizations: a bibliometric approach. Cogent Business & Management, 11(1), 2408439. DOI: 10.1080/23311975.2024.2408439
  • Maral, T. (2024). Sosyal bilimlerin kesişim noktası: Yapay zekâ ve etik. Ankara Uluslararası Sosyal Bilimler Dergisi (Yapay Zeka ve Sosyal Bilimler Öğretimi), 17-33.
  • Maseda, A., Iturralde, T., Cooper, S., & Aparicio, G. (2022). Mapping women's involvement in family firms: A review based on bibliographic coupling analysis. International Journal of Management Reviews, 24(2), 279-305. https://doi.org/10.1111/ijmr.12278
  • Mijwel, M. M. (2015). History of artificial ıntelligence yapay zekânın tarihi. Computer Science (April 2015), 3-4. DOI: 10.13140/RG.2.2.16418.15046
  • Murphy, K. P. (2012). Machine learning: A Probabilistic Perspective. MIT Press.
  • Natale, S. (2019). If software is narrative: Joseph Weizenbaum, artificial intelligence and the biographies of ELIZA. New Media & Society, 21(3), 712-728. https://doi.org/10.1177/14614448188049
  • Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610-2613. https://doi.org/10.1016/j.matpr.2021.06.419
  • Pınar Saygın, A., Çiçekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds And Machines, 10(4), 463-518. DOI: 10.1023/A:1011288000451
  • Prasetya, S. P. (2024). Artificial intelligence in social sciences education presents new challenges and opportunities. In 4th International Conference on Social Sciences and Law (ICSSL 2024) (pp. 111-121). Atlantis Press.
  • Prieto-Gutierrez, J. J., Segado-Boj, F., & França, F. D. S. (2023). Artificial intelligence in social science: A study based on bibliometrics analysis. arXiv preprint arXiv:2312.10077.
  • Russell, S. J., & Norvig, P., (1995). Artificial intelligence: A modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25(27), 79-80.
  • Sağbaş, M., & Kılınç, S. (2024). İşletme yönetiminde yapay zeka: Bibliyometrik analiz. Sinop Üniversitesi Sosyal Bilimler Dergisi, 8 (Eğitim Bilimleri ve Sosyal Bilimler Özel Sayısı), 504-531. https://doi.org/10.30561/sinopusd.1561011
  • Sayğan Tunçay, S. & Sayğan Yağız, N. (2020). Türkiye’deki “Bilgi uçurma (Whistleblowing)” makalelerinin bibliyometrik profili. Business & Management Studies: An International Journal, 8(4), 266-295. https://doi.org/10.15295/bmij.v8i4.1716
  • Seker, S. E. (2015). Doğal dil işleme (Natural language processing). YBS Ansiklopedi, 2(4), 14-31.
  • Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2), 191-234. https://doi.org/10.1016/0004-3702(94)90026-4
  • Stilgoe, J. (2023). We need a weizenbaum test for AI. Science, 381(6658), eadk0176. DOI: 10.1126/science.adk0176
  • Sunman, G. (2025). Yönetimde yapay zekâ: Bibliyometrik analiz. Politik Ekonomik Kuram, 9(2), 723-739. https://doi.org/10.30586/pek.1637141
  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1-2), 99-141. https://doi.org/10.1016/S0004-3702(01)00069-8
  • Turing, A. M. (1950), Computıng machinery and intelligence, Mind, Volume LIX, Issue 236, October 1950, Pages 433–460, https://doi.org/10.1093/mind/LIX.236.433
  • Turkle, S. (2005). The second self: Computers and the human spirit. Mit Press.
  • Ulukök, E. (2022). Algılanan fazla niteliklilik araştırmalarının entelektüel yapısının haritalanması: Bir ortak anahtar kelime ve ortak atıf analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (74), 54-74. DOI: 10.51290/dpusbe.1082016
  • Wazi, N. W. M., Karim, F., & Noor, N. A. A. M. (2024). Productivity modern management science practices in the age of AI: AI-Driven productivity. In Modern Management Science Practices in the Age of AI (pp. 123-150). DOI: 10.4018/979-8-3693-6720-9.ch005
  • Yalçınkaya,A. (2019) "Artificial intelligence and social sciences," XI. Uluslararası Uludağ Uluslararası İlişkiler Kongresi , vol.1, Bursa, Turkey, pp.10-26.
  • Yılmaz, A ve Kaya, U. (2022). Derin öğrenme, Kodlab Yayın Dağıtım Yazılım.
  • Yuan, Y., & Zhu, W. (2022). Artificial intelligence-enabled social science: A bibliometric analysis. In 2022 3rd International Conference on Artificial Intelligence and Education (IC-ICAIE 2022) (pp. 1602-1608). Atlantis Press. DOI: 10.2991/978-94-6463-040-4_242
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilim ve Teknoloji Sosyolojisi ve Sosyal Bilimler
Bölüm Araştırma Makalesi
Yazarlar

Metin Karaca 0000-0003-3615-1276

Merve Paçacı 0000-0001-8423-5920

Gönderilme Tarihi 30 Haziran 2025
Kabul Tarihi 16 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 5

Kaynak Göster

APA Karaca, M., & Paçacı, M. (2025). Sosyal Bilimlerde Yapay Zekâ İzleri: Bibliyometrik Bir Analiz. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(5), 2381-2410. https://doi.org/10.15869/itobiad.1731080
İnsan ve Toplum Bilimleri Araştırmaları Dergisi  Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır. 

35894