Araştırma Makalesi
BibTex RIS Kaynak Göster

The Role of Artificial Intelligence Supported Unmanned Aerial Vehicles in Disaster Management

Yıl 2025, Cilt: 14 Sayı: 3, 2012 - 2032, 30.09.2025
https://doi.org/10.15869/itobiad.1706168

Öz

Disasters are events caused by the uncontrolled occurrence of natural phenomena or man-made hazards, leading to large-scale loss of life, property and environment. Disasters such as earthquakes, floods, forest fires, technological accidents and nuclear leaks create situations that require immediate intervention and have long-term social and economic impacts. Factors such as increasing urbanisation, climate change, population density and environmental degradation increase both the frequency and severity of these disasters. Therefore, it is no longer sufficient to carry out disaster management based only on traditional methods; integration of new generation technological solutions becomes inevitable. This study aims to examine the contributions of artificial intelligence (AI)-supported unmanned aerial vehicles (UAVs) in disaster management processes and to evaluate the possibilities of using these technologies according to different types of disasters from a multidimensional perspective. In the study, qualitative method based on literature review was used and national and international sources were analysed comparatively. The roles of AI-supported UAVs in disaster preparedness, response and recovery phases are discussed through operational advantages, limitations and application examples. The findings reveal that these technologies offer fast and effective solutions in tasks such as search and rescue, damage assessment, material delivery, access to hazardous areas, real-time data collection and communication, especially in critical time periods such as the first 72 hours of the disaster. Real-time imaging, damage assessment, search and rescue support, access to hazardous areas, material transport, establishment of communication networks and mapping of risky areas have been determined to make significant contributions. Moreover, AI is integrated with big data analytics, machine learning, deep learning and remote sensing systems into critical decision support processes such as disaster forecasting, development of early warning systems and prioritisation of resources. The combined use of these technologies represents not only a technical convenience but also a strategic paradigm shift in disaster management. The study draws attention to the need for a multi-stakeholder transformation in the areas of policy, education, legislation and technical capacity by developing concrete recommendations for decision makers.

Kaynakça

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., ... & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: how artificial intelligence can boost disaster management. Sustainability, 13(22), 12560.
  • Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE access, 11, 73782-73802.
  • Aicardi, I., Chiabrando, F., Lingua, A. M., Noardo, F., & Piras, M. (2014). Unmanned aerial systems for data acquisitions in disaster management applications. JUNCO. Journal of universities and international development cooperation university of Turin. Turin: Universita di Torino, 164-171.
  • Akhyar, A., Zulkifley, M. A., Lee, J., Song, T., Han, J., Cho, C., ... & Hong, B. W. (2024). Deep artificial intelligence applications for natural disaster management systems: A methodological review. Ecological Indicators, 163, 112067.
  • AlAli, Z. T., & Alabady, S. A. (2022). The role of unmanned aerial vehicle and related technologies in disasters. Remote Sensing Applications: Society and Environment, 28, 100873.
  • Alawad, W., Halima, N. B., & Aziz, L. (2023). An unmanned aerial vehicle (UAV) system for disaster and crisis management in smart cities. Electronics, 12(4), 1051.
  • Albahri, A. S., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., ... & Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers and Electrical Engineering, 118, 109409.
  • Ameri, B., Meger, D., Power, K., & Gao, Y. (2009, March). UAS applications: Disaster & emergency management. American Society for Photogrammetry and Remote Sensing.
  • Arain, F., & Moeini, S. (2016). Leveraging on unmanned aerial vehicle (UAV) for effective emergency response and disaster management. In Proceedings of the Project Management Symposium at U of MD College Park Maryland.
  • Bahçıvan, S. (2024). Afet Yönetiminde Sosyal Medya, İnsansız Hava Araçları (Drone) ve Diğer Teknolojik Araçların Rolü. Strategic Public Management Journal, 10(17), 175-193.
  • Blišťanová, M., Blišťan, P., Tirpáková, M., & Kľučka, I. (2022). Unmanned aircraft systems in support of disaster management. Transportation research procedia, 65, 116-125.
  • Bloss, R. (2007). By air, land and sea, the unmanned vehicles are coming. Industrial Robot: An International Journal, 34(1), 12-16.
  • Calamoneri, T., Corò, F., & Mancini, S. (2024). Management of a post-disaster emergency scenario through unmanned aerial vehicles: Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization. Expert Systems with Applications, 251, 123766.
  • Chou, T. Y., Yeh, M. L., Chen, Y. C., & Chen, Y. H. (2010). Disaster monitoring and management by the unmanned aerial vehicle technology.: ISPRS TC VII Symposium
  • Danach, K., Harb, H., Rashid, A. S. K., Al-Tarawneh, M. A., & Aly, W. H. F. (2025). Location planning techniques for Internet provider service unmanned aerial vehicles during crisis. Results in Engineering, 25, 103833.
  • Daud, S. M. S. M., Yusof, M. Y. P. M., Heo, C. C., Khoo, L. S., Singh, M. K. C., Mahmood, M. S., & Nawawi, H. (2022). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30-42.
  • Dixit, A., Chauhan, R., & Shaw, R. (2024). Application of smart systems and emerging technologies for disaster risk reduction and management in Nepal. International Journal of Disaster Resilience in the Built Environment, https://doi.org/10.1108/IJDRBE-07-2023-0085 .
  • Doctor, A., Khirani, D., Raut, R. D., & Narwane, V. S. (2019, July). Literature Review on Employment of Unmanned Aerial Vehicles for Disaster Management. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic (pp. 23-26).
  • Duverneuil, B. (2016). Unmanned Aerial Vehicles in Response to Natural Disasters. Aerial Drone Archaeology & Preservation December 2016
  • Ejaz, W., Azam, M. A., Saadat, S., Iqbal, F., & Hanan, A. (2019). Unmanned aerial vehicles enabled IoT platform for disaster management. Energies, 12(14), 2706.
  • Eren, V., & Duman, H. (2025). Artıfıcıal Intellıgence Support In Dısaster Management. Kamu Yönetimi ve Teknoloji Dergisi, 7(1), 13-36.
  • Erkal, T., & Değerliyurt, M. (2009). Türkiye’de afet yönetimi. Doğu Coğrafya Dergisi, 14(22), 147-164.
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.
  • Ghadge, A. (2023). ICT-enabled approach for humanitarian disaster management: a systems perspective. The International Journal of Logistics Management, 34(6), 1543-1565.
  • Ghaffarian, S., Taghikhah, F. R., & Maier, H. R. (2023). Explainable artificial intelligence in disaster risk management: Achievements and prospective futures. International Journal of Disaster Risk Reduction, 98, 104123.
  • Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017). Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk, 8(1), 1-4.
  • Glantz, E. J., Ritter, F. E., Gilbreath, D., Stager, S. J., Anton, A., & Emani, R. (2020, May). UAV Use in Disaster Management. In ISCRAM (pp. 914-921).
  • Griffin, G. F. (2014). The use of unmanned aerial vehicles for disaster management. Geomatica, 68(4), 265-281.
  • Grogan, S., Pellerin, R., & Gamache, M. (2018). The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG, 1-13.
  • Gupta, T., & Roy, S. (2024, April). Applications of artificial intelligence in disaster management. In Proceedings of the 2024 10th International Conference on Computing and Artificial Intelligence (pp. 313-318).
  • Habibi Rad, M., Mojtahedi, M., & Ostwald, M. J. (2021). Industry 4.0, disaster risk management and infrastructure resilience: A systematic review and bibliometric analysis. Buildings, 11(9), 411.
  • Hasanuzzaman, M., Hossain, S., & Shil, S. K. (2023). Enhancing disaster management through AI-driven predictive analytics: improving preparedness and response. International Journal of Advanced Engineering Technologies and Innovations, 1(01), 533-562.
  • Hildmann, H., & Kovacs, E. (2019). Review: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 3 (3): 59.
  • Jazairy, A., Persson, E., Brho, M., von Haartman, R., & Hilletofth, P. (2024). Drones in last-mile delivery: a systematic literature review from a logistics management perspective. The International Journal of Logistics Management, https://doi.org/10.1108/IJLM-04-2023-0149.
  • Jung, D., Tran Tuan, V., Quoc Tran, D., Park, M., & Park, S. (2020). Conceptual framework of an intelligent decision support system for smart city disaster management. Applied Sciences, 10(2), 666.
  • Kamat, A., Shanker, S., & Barve, A. (2023). Assessing the factors affecting implementation of unmanned aerial vehicles in Indian humanitarian logistics: a g-DANP approach. Journal of Modelling in Management, 18(2), 416-456.
  • Kankanamge, N., Yigitcanlar, T., & Goonetilleke, A. (2021). Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, 65, 101729.
  • Kim, K., & Davidson, J. (2015). Unmanned aircraft systems used for disaster management. Transportation Research Record, 2532(1), 83-90.
  • Li, T., & Hu, H. (2021). Development of the use of unmanned aerial vehicles (UAVs) in emergency rescue in China. Risk Management and Healthcare Policy, 4293-4299.
  • Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine learning in disaster management: recent developments in methods and applications. Machine Learning and Knowledge Extraction, 4(2).
  • Lyu, M., Zhao, Y., Huang, C., & Huang, H. (2023). Unmanned aerial vehicles for search and rescue: A survey. Remote Sensing, 15(13), 3266.
  • Masroor, R., Naeem, M., & Ejaz, W. (2021). Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Computer Communications, 177, 185-194.
  • Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability, 13(14), 7547.
  • Nair, V. G., D'Souza, J. M., & Rafikh, R. M. (2024). A scoping review on unmanned aerial vehicles in disaster management: Challenges and opportunities. Journal of Robotics and Control (JRC), 5(6), 1799-1826.
  • Nawaz, H., Ali, H. M., & Massan, S. (2019). Applications of unmanned aerial vehicles: a review. 3C Tecnología_Glosas de innovación aplicadas a la pyme, 85-105.
  • Nikhil, N., Shreyas, S. M., Vyshnavi, G., & Yadav, S. (2020, August). Unmanned aerial vehicles (UAV) in disaster management applications. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 140-148). IEEE.
  • Oktari, R. S., Munadi, K., Idroes, R., & Sofyan, H. (2020). Knowledge management practices in disaster management: Systematic review. International Journal of Disaster Risk Reduction, 51, 101881.
  • Ozbiltekin-Pala, M., Yavas, V., & Ozkan-Ozen, Y. D. (2025). Drivers and barriers of unmanned aerial vehicles in emergency logistics operations. Technology in Society, 82, 102894.
  • Özmen, B., & Özden, T. (2013). Türkiye’nin afet yönetim sistemine ilişkin eleştirel bir değerlendirme. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, (49).
  • Partigöç, N. S. (2022). Afet risk yönetiminde yapay zekâ kullanımının rolü. Bilişim Teknolojileri Dergisi, 15(4), 401-411.
  • Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked UAVs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56-63.
  • Rahmatizadeh, S., & Kohzadi, Z. (2024). The role of artificial intelligence in disaster management in Iran: A narrative review. Journal of Medical Library and Information Science, 5.
  • Renugadevi, R., & Medida, L. H. (2024). Artificial Intelligence and IoT-Based Disaster Management System. In Predicting Natural Disasters With AI and Machine Learning (pp. 135-146). IGI Global Scientific Publishing.
  • Restas, A. (2015). Drone applications for supporting disaster management. World Journal of Engineering and Technology, 3(3), 316-321.
  • Restas, A. (2017). Disaster management supported by unmanned aerial systems (UAS) focusing especially on natural disasters. Zeszyty Naukowe SGSP/Szkoła Główna Służby Pożarniczej.
  • Rolland, E., Patterson, R. A., Ward, K., & Dodin, B. (2010). Decision support for disaster management. Operations Management Research, 3, 68-79.
  • Salmoral, G., Rivas Casado, M., Muthusamy, M., Butler, D., Menon, P. P., & Leinster, P. (2020). Guidelines for the use of unmanned aerial systems in flood emergency response. Water, 12(2), 521.
  • Sever, H., Aksungur, B. N., Güven, E., & Eren, T. (2024). Çok kriterli karar verme yöntemleriyle afetlerde insansız hava araçlarının değerlendirmesi. Acil Yardım ve Afet Bilimi Dergisi, 4(1), 15-22.
  • Sharma, R., Chopra, S. R., & Gupta, A. (2024). Power optimization of unmanned aerial vehicle-assisted future wireless communication using hybrid beamforming technique in disaster management. In IOP Conference Series: Earth and Environmental Science (Vol. 1285, No. 1, p. 012025). IOP Publishing.
  • Shavarani, S. M., & Vizvari, B. (2018). Post-disaster transportation of seriously injured people to hospitals. Journal of Humanitarian Logistics and Supply Chain Management, 8(2), 227-251.
  • Sivasuriyan, V. (2021). Drone usage and disaster management. Bodhi Int. J. Res. Humanit. Arts Sci, 5, 93-97.
  • Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
  • Şengöz, M. (2024). Harnessing Artificial Intelligence and Big Data for Proactive Disaster Management: Strategies, Challenges, and Future Directions. Haliç Üniversitesi Fen Bilimleri Dergisi, 7(2), 57-91.
  • Tan, L., Guo, J., Mohanarajah, S., & Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Natural Hazards, 107, 2389-2417.
  • Usanmaz, O., Karaderili, M., Sahin, O., & Savaş, T. (2020). The enhancement of the prescribed track for unmanned air vehicles. Aircraft Engineering and Aerospace Technology, 92(10), 1469-1473.
  • Velev, D., & Zlateva, P. (2023). Challenges of artificial intelligence application for disaster risk management. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 387-394.
  • Worden, M. R., Murray, C. C., Karwan, M. H., Ortiz-Peña, H. J., & Nagi, R. (2020). Sensor tasking for unmanned aerial vehicles in disaster management missions with limited communications bandwidth. Computers & Industrial Engineering, 149, 106754.
  • Yakushiji, K., Fujita, H., Murata, M., Hiroi, N., Hamabe, Y., & Yakushiji, F. (2020). Short-range transportation using unmanned aerial vehicles (UAVs) during disasters in Japan. Drones. 4 (4), 68.
  • Yıldızbası, A., & Gür, L. (2020). A decision support model for unmanned aerial vehicles assisted disaster response using AHP-TOPSIS method. Avrupa Bilim ve Teknoloji Dergisi, (20), 56-66.
  • Zeng, F., Pang, C., & Tang, H. (2023). Sensors on the internet of things systems for urban disaster management: a systematic literature review. Sensors, 23(17), 7475.

Afet Yönetiminde Yapay Zekâ Destekli İnsansız Hava Araçlarının Rolü

Yıl 2025, Cilt: 14 Sayı: 3, 2012 - 2032, 30.09.2025
https://doi.org/10.15869/itobiad.1706168

Öz

Afetler, doğa olaylarının veya insan kaynaklı tehlikelerin kontrolsüz biçimde ortaya çıkmasıyla oluşan, geniş çaplı can, mal ve çevre kayıplarına yol açan olaylardır. Depremler, seller, orman yangınları, teknolojik kazalar ve nükleer sızıntılar gibi afetler, hem ani müdahale gerektiren durumlar yaratmakta hem de uzun vadeli sosyal ve ekonomik etkiler doğurmaktadır. Artan kentleşme, iklim değişikliği, nüfus yoğunluğu ve çevresel bozulma gibi etkenler, bu afetlerin hem sıklığını hem de şiddetini artırmaktadır. Bu nedenle, afet yönetiminin yalnızca geleneksel yöntemlere dayalı olarak yürütülmesi artık yeterli olmamakta; yeni nesil teknolojik çözümlerin entegrasyonu kaçınılmaz hâle gelmektedir. Bu çalışma, afet yönetimi süreçlerinde yapay zekâ (YZ) destekli insansız hava araçlarının (İHA) sunduğu katkıları incelemeyi ve bu teknolojilerin farklı afet türlerine göre kullanım olanaklarını çok boyutlu bir perspektifle değerlendirmeyi amaçlamaktadır. Çalışmada literatür taramasına dayalı nitel yöntem kullanılmış, ulusal ve uluslararası kaynaklar karşılaştırmalı olarak analiz edilmiştir. YZ destekli İHA’ların afetin hazırlık, müdahale ve iyileştirme aşamalarında üstlendiği roller; operasyonel avantajlar, sınırlılıklar ve uygulama örnekleri üzerinden ele alınmıştır. Elde edilen bulgular, bu teknolojilerin özellikle afetin ilk 72 saati gibi kritik zaman diliminde arama-kurtarma, hasar tespiti, malzeme ulaştırma, tehlikeli bölgelere erişim sağlama, gerçek zamanlı veri toplama ve iletişim kurma gibi görevlerde hızlı ve etkili çözümler sunduğunu ortaya koymaktadır. Gerçek zamanlı görüntüleme, hasar tespiti, arama-kurtarma desteği, tehlikeli alanlara erişim, malzeme ulaştırma, iletişim ağlarının kurulması ve riskli bölgelerin haritalanması gibi görevlerde önemli katkılar sunduğu belirlenmiştir. Ayrıca YZ; büyük veri analitiği, makine öğrenmesi, derin öğrenme ve uzaktan algılama sistemleriyle afet tahmini, erken uyarı sistemlerinin geliştirilmesi ve kaynakların önceliklendirilmesi gibi kritik karar destek süreçlerine entegre olmaktadır. Bu teknolojilerin birlikte kullanımı, afet yönetiminde yalnızca teknik bir kolaylık değil, aynı zamanda stratejik bir paradigma değişimini temsil etmektedir. Çalışma, karar vericilere yönelik somut öneriler geliştirerek politika, eğitim, mevzuat ve teknik kapasite alanlarında çok paydaşlı bir dönüşüm ihtiyacına dikkat çekmektedir.

Etik Beyan

Bu çalışmanın hazırlanma sürecinde bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan olunur. Çalışma için Etik Kurul onayına gerek bulunmamaktadır.

Destekleyen Kurum

Destekleyen kurum yoktur.

Kaynakça

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., ... & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: how artificial intelligence can boost disaster management. Sustainability, 13(22), 12560.
  • Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE access, 11, 73782-73802.
  • Aicardi, I., Chiabrando, F., Lingua, A. M., Noardo, F., & Piras, M. (2014). Unmanned aerial systems for data acquisitions in disaster management applications. JUNCO. Journal of universities and international development cooperation university of Turin. Turin: Universita di Torino, 164-171.
  • Akhyar, A., Zulkifley, M. A., Lee, J., Song, T., Han, J., Cho, C., ... & Hong, B. W. (2024). Deep artificial intelligence applications for natural disaster management systems: A methodological review. Ecological Indicators, 163, 112067.
  • AlAli, Z. T., & Alabady, S. A. (2022). The role of unmanned aerial vehicle and related technologies in disasters. Remote Sensing Applications: Society and Environment, 28, 100873.
  • Alawad, W., Halima, N. B., & Aziz, L. (2023). An unmanned aerial vehicle (UAV) system for disaster and crisis management in smart cities. Electronics, 12(4), 1051.
  • Albahri, A. S., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., ... & Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers and Electrical Engineering, 118, 109409.
  • Ameri, B., Meger, D., Power, K., & Gao, Y. (2009, March). UAS applications: Disaster & emergency management. American Society for Photogrammetry and Remote Sensing.
  • Arain, F., & Moeini, S. (2016). Leveraging on unmanned aerial vehicle (UAV) for effective emergency response and disaster management. In Proceedings of the Project Management Symposium at U of MD College Park Maryland.
  • Bahçıvan, S. (2024). Afet Yönetiminde Sosyal Medya, İnsansız Hava Araçları (Drone) ve Diğer Teknolojik Araçların Rolü. Strategic Public Management Journal, 10(17), 175-193.
  • Blišťanová, M., Blišťan, P., Tirpáková, M., & Kľučka, I. (2022). Unmanned aircraft systems in support of disaster management. Transportation research procedia, 65, 116-125.
  • Bloss, R. (2007). By air, land and sea, the unmanned vehicles are coming. Industrial Robot: An International Journal, 34(1), 12-16.
  • Calamoneri, T., Corò, F., & Mancini, S. (2024). Management of a post-disaster emergency scenario through unmanned aerial vehicles: Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization. Expert Systems with Applications, 251, 123766.
  • Chou, T. Y., Yeh, M. L., Chen, Y. C., & Chen, Y. H. (2010). Disaster monitoring and management by the unmanned aerial vehicle technology.: ISPRS TC VII Symposium
  • Danach, K., Harb, H., Rashid, A. S. K., Al-Tarawneh, M. A., & Aly, W. H. F. (2025). Location planning techniques for Internet provider service unmanned aerial vehicles during crisis. Results in Engineering, 25, 103833.
  • Daud, S. M. S. M., Yusof, M. Y. P. M., Heo, C. C., Khoo, L. S., Singh, M. K. C., Mahmood, M. S., & Nawawi, H. (2022). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30-42.
  • Dixit, A., Chauhan, R., & Shaw, R. (2024). Application of smart systems and emerging technologies for disaster risk reduction and management in Nepal. International Journal of Disaster Resilience in the Built Environment, https://doi.org/10.1108/IJDRBE-07-2023-0085 .
  • Doctor, A., Khirani, D., Raut, R. D., & Narwane, V. S. (2019, July). Literature Review on Employment of Unmanned Aerial Vehicles for Disaster Management. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic (pp. 23-26).
  • Duverneuil, B. (2016). Unmanned Aerial Vehicles in Response to Natural Disasters. Aerial Drone Archaeology & Preservation December 2016
  • Ejaz, W., Azam, M. A., Saadat, S., Iqbal, F., & Hanan, A. (2019). Unmanned aerial vehicles enabled IoT platform for disaster management. Energies, 12(14), 2706.
  • Eren, V., & Duman, H. (2025). Artıfıcıal Intellıgence Support In Dısaster Management. Kamu Yönetimi ve Teknoloji Dergisi, 7(1), 13-36.
  • Erkal, T., & Değerliyurt, M. (2009). Türkiye’de afet yönetimi. Doğu Coğrafya Dergisi, 14(22), 147-164.
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.
  • Ghadge, A. (2023). ICT-enabled approach for humanitarian disaster management: a systems perspective. The International Journal of Logistics Management, 34(6), 1543-1565.
  • Ghaffarian, S., Taghikhah, F. R., & Maier, H. R. (2023). Explainable artificial intelligence in disaster risk management: Achievements and prospective futures. International Journal of Disaster Risk Reduction, 98, 104123.
  • Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017). Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk, 8(1), 1-4.
  • Glantz, E. J., Ritter, F. E., Gilbreath, D., Stager, S. J., Anton, A., & Emani, R. (2020, May). UAV Use in Disaster Management. In ISCRAM (pp. 914-921).
  • Griffin, G. F. (2014). The use of unmanned aerial vehicles for disaster management. Geomatica, 68(4), 265-281.
  • Grogan, S., Pellerin, R., & Gamache, M. (2018). The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG, 1-13.
  • Gupta, T., & Roy, S. (2024, April). Applications of artificial intelligence in disaster management. In Proceedings of the 2024 10th International Conference on Computing and Artificial Intelligence (pp. 313-318).
  • Habibi Rad, M., Mojtahedi, M., & Ostwald, M. J. (2021). Industry 4.0, disaster risk management and infrastructure resilience: A systematic review and bibliometric analysis. Buildings, 11(9), 411.
  • Hasanuzzaman, M., Hossain, S., & Shil, S. K. (2023). Enhancing disaster management through AI-driven predictive analytics: improving preparedness and response. International Journal of Advanced Engineering Technologies and Innovations, 1(01), 533-562.
  • Hildmann, H., & Kovacs, E. (2019). Review: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 3 (3): 59.
  • Jazairy, A., Persson, E., Brho, M., von Haartman, R., & Hilletofth, P. (2024). Drones in last-mile delivery: a systematic literature review from a logistics management perspective. The International Journal of Logistics Management, https://doi.org/10.1108/IJLM-04-2023-0149.
  • Jung, D., Tran Tuan, V., Quoc Tran, D., Park, M., & Park, S. (2020). Conceptual framework of an intelligent decision support system for smart city disaster management. Applied Sciences, 10(2), 666.
  • Kamat, A., Shanker, S., & Barve, A. (2023). Assessing the factors affecting implementation of unmanned aerial vehicles in Indian humanitarian logistics: a g-DANP approach. Journal of Modelling in Management, 18(2), 416-456.
  • Kankanamge, N., Yigitcanlar, T., & Goonetilleke, A. (2021). Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, 65, 101729.
  • Kim, K., & Davidson, J. (2015). Unmanned aircraft systems used for disaster management. Transportation Research Record, 2532(1), 83-90.
  • Li, T., & Hu, H. (2021). Development of the use of unmanned aerial vehicles (UAVs) in emergency rescue in China. Risk Management and Healthcare Policy, 4293-4299.
  • Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine learning in disaster management: recent developments in methods and applications. Machine Learning and Knowledge Extraction, 4(2).
  • Lyu, M., Zhao, Y., Huang, C., & Huang, H. (2023). Unmanned aerial vehicles for search and rescue: A survey. Remote Sensing, 15(13), 3266.
  • Masroor, R., Naeem, M., & Ejaz, W. (2021). Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Computer Communications, 177, 185-194.
  • Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability, 13(14), 7547.
  • Nair, V. G., D'Souza, J. M., & Rafikh, R. M. (2024). A scoping review on unmanned aerial vehicles in disaster management: Challenges and opportunities. Journal of Robotics and Control (JRC), 5(6), 1799-1826.
  • Nawaz, H., Ali, H. M., & Massan, S. (2019). Applications of unmanned aerial vehicles: a review. 3C Tecnología_Glosas de innovación aplicadas a la pyme, 85-105.
  • Nikhil, N., Shreyas, S. M., Vyshnavi, G., & Yadav, S. (2020, August). Unmanned aerial vehicles (UAV) in disaster management applications. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 140-148). IEEE.
  • Oktari, R. S., Munadi, K., Idroes, R., & Sofyan, H. (2020). Knowledge management practices in disaster management: Systematic review. International Journal of Disaster Risk Reduction, 51, 101881.
  • Ozbiltekin-Pala, M., Yavas, V., & Ozkan-Ozen, Y. D. (2025). Drivers and barriers of unmanned aerial vehicles in emergency logistics operations. Technology in Society, 82, 102894.
  • Özmen, B., & Özden, T. (2013). Türkiye’nin afet yönetim sistemine ilişkin eleştirel bir değerlendirme. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, (49).
  • Partigöç, N. S. (2022). Afet risk yönetiminde yapay zekâ kullanımının rolü. Bilişim Teknolojileri Dergisi, 15(4), 401-411.
  • Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked UAVs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56-63.
  • Rahmatizadeh, S., & Kohzadi, Z. (2024). The role of artificial intelligence in disaster management in Iran: A narrative review. Journal of Medical Library and Information Science, 5.
  • Renugadevi, R., & Medida, L. H. (2024). Artificial Intelligence and IoT-Based Disaster Management System. In Predicting Natural Disasters With AI and Machine Learning (pp. 135-146). IGI Global Scientific Publishing.
  • Restas, A. (2015). Drone applications for supporting disaster management. World Journal of Engineering and Technology, 3(3), 316-321.
  • Restas, A. (2017). Disaster management supported by unmanned aerial systems (UAS) focusing especially on natural disasters. Zeszyty Naukowe SGSP/Szkoła Główna Służby Pożarniczej.
  • Rolland, E., Patterson, R. A., Ward, K., & Dodin, B. (2010). Decision support for disaster management. Operations Management Research, 3, 68-79.
  • Salmoral, G., Rivas Casado, M., Muthusamy, M., Butler, D., Menon, P. P., & Leinster, P. (2020). Guidelines for the use of unmanned aerial systems in flood emergency response. Water, 12(2), 521.
  • Sever, H., Aksungur, B. N., Güven, E., & Eren, T. (2024). Çok kriterli karar verme yöntemleriyle afetlerde insansız hava araçlarının değerlendirmesi. Acil Yardım ve Afet Bilimi Dergisi, 4(1), 15-22.
  • Sharma, R., Chopra, S. R., & Gupta, A. (2024). Power optimization of unmanned aerial vehicle-assisted future wireless communication using hybrid beamforming technique in disaster management. In IOP Conference Series: Earth and Environmental Science (Vol. 1285, No. 1, p. 012025). IOP Publishing.
  • Shavarani, S. M., & Vizvari, B. (2018). Post-disaster transportation of seriously injured people to hospitals. Journal of Humanitarian Logistics and Supply Chain Management, 8(2), 227-251.
  • Sivasuriyan, V. (2021). Drone usage and disaster management. Bodhi Int. J. Res. Humanit. Arts Sci, 5, 93-97.
  • Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
  • Şengöz, M. (2024). Harnessing Artificial Intelligence and Big Data for Proactive Disaster Management: Strategies, Challenges, and Future Directions. Haliç Üniversitesi Fen Bilimleri Dergisi, 7(2), 57-91.
  • Tan, L., Guo, J., Mohanarajah, S., & Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Natural Hazards, 107, 2389-2417.
  • Usanmaz, O., Karaderili, M., Sahin, O., & Savaş, T. (2020). The enhancement of the prescribed track for unmanned air vehicles. Aircraft Engineering and Aerospace Technology, 92(10), 1469-1473.
  • Velev, D., & Zlateva, P. (2023). Challenges of artificial intelligence application for disaster risk management. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 387-394.
  • Worden, M. R., Murray, C. C., Karwan, M. H., Ortiz-Peña, H. J., & Nagi, R. (2020). Sensor tasking for unmanned aerial vehicles in disaster management missions with limited communications bandwidth. Computers & Industrial Engineering, 149, 106754.
  • Yakushiji, K., Fujita, H., Murata, M., Hiroi, N., Hamabe, Y., & Yakushiji, F. (2020). Short-range transportation using unmanned aerial vehicles (UAVs) during disasters in Japan. Drones. 4 (4), 68.
  • Yıldızbası, A., & Gür, L. (2020). A decision support model for unmanned aerial vehicles assisted disaster response using AHP-TOPSIS method. Avrupa Bilim ve Teknoloji Dergisi, (20), 56-66.
  • Zeng, F., Pang, C., & Tang, H. (2023). Sensors on the internet of things systems for urban disaster management: a systematic literature review. Sensors, 23(17), 7475.

Yıl 2025, Cilt: 14 Sayı: 3, 2012 - 2032, 30.09.2025
https://doi.org/10.15869/itobiad.1706168

Öz

Kaynakça

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., ... & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: how artificial intelligence can boost disaster management. Sustainability, 13(22), 12560.
  • Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE access, 11, 73782-73802.
  • Aicardi, I., Chiabrando, F., Lingua, A. M., Noardo, F., & Piras, M. (2014). Unmanned aerial systems for data acquisitions in disaster management applications. JUNCO. Journal of universities and international development cooperation university of Turin. Turin: Universita di Torino, 164-171.
  • Akhyar, A., Zulkifley, M. A., Lee, J., Song, T., Han, J., Cho, C., ... & Hong, B. W. (2024). Deep artificial intelligence applications for natural disaster management systems: A methodological review. Ecological Indicators, 163, 112067.
  • AlAli, Z. T., & Alabady, S. A. (2022). The role of unmanned aerial vehicle and related technologies in disasters. Remote Sensing Applications: Society and Environment, 28, 100873.
  • Alawad, W., Halima, N. B., & Aziz, L. (2023). An unmanned aerial vehicle (UAV) system for disaster and crisis management in smart cities. Electronics, 12(4), 1051.
  • Albahri, A. S., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., ... & Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers and Electrical Engineering, 118, 109409.
  • Ameri, B., Meger, D., Power, K., & Gao, Y. (2009, March). UAS applications: Disaster & emergency management. American Society for Photogrammetry and Remote Sensing.
  • Arain, F., & Moeini, S. (2016). Leveraging on unmanned aerial vehicle (UAV) for effective emergency response and disaster management. In Proceedings of the Project Management Symposium at U of MD College Park Maryland.
  • Bahçıvan, S. (2024). Afet Yönetiminde Sosyal Medya, İnsansız Hava Araçları (Drone) ve Diğer Teknolojik Araçların Rolü. Strategic Public Management Journal, 10(17), 175-193.
  • Blišťanová, M., Blišťan, P., Tirpáková, M., & Kľučka, I. (2022). Unmanned aircraft systems in support of disaster management. Transportation research procedia, 65, 116-125.
  • Bloss, R. (2007). By air, land and sea, the unmanned vehicles are coming. Industrial Robot: An International Journal, 34(1), 12-16.
  • Calamoneri, T., Corò, F., & Mancini, S. (2024). Management of a post-disaster emergency scenario through unmanned aerial vehicles: Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization. Expert Systems with Applications, 251, 123766.
  • Chou, T. Y., Yeh, M. L., Chen, Y. C., & Chen, Y. H. (2010). Disaster monitoring and management by the unmanned aerial vehicle technology.: ISPRS TC VII Symposium
  • Danach, K., Harb, H., Rashid, A. S. K., Al-Tarawneh, M. A., & Aly, W. H. F. (2025). Location planning techniques for Internet provider service unmanned aerial vehicles during crisis. Results in Engineering, 25, 103833.
  • Daud, S. M. S. M., Yusof, M. Y. P. M., Heo, C. C., Khoo, L. S., Singh, M. K. C., Mahmood, M. S., & Nawawi, H. (2022). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30-42.
  • Dixit, A., Chauhan, R., & Shaw, R. (2024). Application of smart systems and emerging technologies for disaster risk reduction and management in Nepal. International Journal of Disaster Resilience in the Built Environment, https://doi.org/10.1108/IJDRBE-07-2023-0085 .
  • Doctor, A., Khirani, D., Raut, R. D., & Narwane, V. S. (2019, July). Literature Review on Employment of Unmanned Aerial Vehicles for Disaster Management. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic (pp. 23-26).
  • Duverneuil, B. (2016). Unmanned Aerial Vehicles in Response to Natural Disasters. Aerial Drone Archaeology & Preservation December 2016
  • Ejaz, W., Azam, M. A., Saadat, S., Iqbal, F., & Hanan, A. (2019). Unmanned aerial vehicles enabled IoT platform for disaster management. Energies, 12(14), 2706.
  • Eren, V., & Duman, H. (2025). Artıfıcıal Intellıgence Support In Dısaster Management. Kamu Yönetimi ve Teknoloji Dergisi, 7(1), 13-36.
  • Erkal, T., & Değerliyurt, M. (2009). Türkiye’de afet yönetimi. Doğu Coğrafya Dergisi, 14(22), 147-164.
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.
  • Ghadge, A. (2023). ICT-enabled approach for humanitarian disaster management: a systems perspective. The International Journal of Logistics Management, 34(6), 1543-1565.
  • Ghaffarian, S., Taghikhah, F. R., & Maier, H. R. (2023). Explainable artificial intelligence in disaster risk management: Achievements and prospective futures. International Journal of Disaster Risk Reduction, 98, 104123.
  • Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017). Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk, 8(1), 1-4.
  • Glantz, E. J., Ritter, F. E., Gilbreath, D., Stager, S. J., Anton, A., & Emani, R. (2020, May). UAV Use in Disaster Management. In ISCRAM (pp. 914-921).
  • Griffin, G. F. (2014). The use of unmanned aerial vehicles for disaster management. Geomatica, 68(4), 265-281.
  • Grogan, S., Pellerin, R., & Gamache, M. (2018). The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG, 1-13.
  • Gupta, T., & Roy, S. (2024, April). Applications of artificial intelligence in disaster management. In Proceedings of the 2024 10th International Conference on Computing and Artificial Intelligence (pp. 313-318).
  • Habibi Rad, M., Mojtahedi, M., & Ostwald, M. J. (2021). Industry 4.0, disaster risk management and infrastructure resilience: A systematic review and bibliometric analysis. Buildings, 11(9), 411.
  • Hasanuzzaman, M., Hossain, S., & Shil, S. K. (2023). Enhancing disaster management through AI-driven predictive analytics: improving preparedness and response. International Journal of Advanced Engineering Technologies and Innovations, 1(01), 533-562.
  • Hildmann, H., & Kovacs, E. (2019). Review: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 3 (3): 59.
  • Jazairy, A., Persson, E., Brho, M., von Haartman, R., & Hilletofth, P. (2024). Drones in last-mile delivery: a systematic literature review from a logistics management perspective. The International Journal of Logistics Management, https://doi.org/10.1108/IJLM-04-2023-0149.
  • Jung, D., Tran Tuan, V., Quoc Tran, D., Park, M., & Park, S. (2020). Conceptual framework of an intelligent decision support system for smart city disaster management. Applied Sciences, 10(2), 666.
  • Kamat, A., Shanker, S., & Barve, A. (2023). Assessing the factors affecting implementation of unmanned aerial vehicles in Indian humanitarian logistics: a g-DANP approach. Journal of Modelling in Management, 18(2), 416-456.
  • Kankanamge, N., Yigitcanlar, T., & Goonetilleke, A. (2021). Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, 65, 101729.
  • Kim, K., & Davidson, J. (2015). Unmanned aircraft systems used for disaster management. Transportation Research Record, 2532(1), 83-90.
  • Li, T., & Hu, H. (2021). Development of the use of unmanned aerial vehicles (UAVs) in emergency rescue in China. Risk Management and Healthcare Policy, 4293-4299.
  • Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine learning in disaster management: recent developments in methods and applications. Machine Learning and Knowledge Extraction, 4(2).
  • Lyu, M., Zhao, Y., Huang, C., & Huang, H. (2023). Unmanned aerial vehicles for search and rescue: A survey. Remote Sensing, 15(13), 3266.
  • Masroor, R., Naeem, M., & Ejaz, W. (2021). Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Computer Communications, 177, 185-194.
  • Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability, 13(14), 7547.
  • Nair, V. G., D'Souza, J. M., & Rafikh, R. M. (2024). A scoping review on unmanned aerial vehicles in disaster management: Challenges and opportunities. Journal of Robotics and Control (JRC), 5(6), 1799-1826.
  • Nawaz, H., Ali, H. M., & Massan, S. (2019). Applications of unmanned aerial vehicles: a review. 3C Tecnología_Glosas de innovación aplicadas a la pyme, 85-105.
  • Nikhil, N., Shreyas, S. M., Vyshnavi, G., & Yadav, S. (2020, August). Unmanned aerial vehicles (UAV) in disaster management applications. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 140-148). IEEE.
  • Oktari, R. S., Munadi, K., Idroes, R., & Sofyan, H. (2020). Knowledge management practices in disaster management: Systematic review. International Journal of Disaster Risk Reduction, 51, 101881.
  • Ozbiltekin-Pala, M., Yavas, V., & Ozkan-Ozen, Y. D. (2025). Drivers and barriers of unmanned aerial vehicles in emergency logistics operations. Technology in Society, 82, 102894.
  • Özmen, B., & Özden, T. (2013). Türkiye’nin afet yönetim sistemine ilişkin eleştirel bir değerlendirme. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, (49).
  • Partigöç, N. S. (2022). Afet risk yönetiminde yapay zekâ kullanımının rolü. Bilişim Teknolojileri Dergisi, 15(4), 401-411.
  • Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked UAVs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56-63.
  • Rahmatizadeh, S., & Kohzadi, Z. (2024). The role of artificial intelligence in disaster management in Iran: A narrative review. Journal of Medical Library and Information Science, 5.
  • Renugadevi, R., & Medida, L. H. (2024). Artificial Intelligence and IoT-Based Disaster Management System. In Predicting Natural Disasters With AI and Machine Learning (pp. 135-146). IGI Global Scientific Publishing.
  • Restas, A. (2015). Drone applications for supporting disaster management. World Journal of Engineering and Technology, 3(3), 316-321.
  • Restas, A. (2017). Disaster management supported by unmanned aerial systems (UAS) focusing especially on natural disasters. Zeszyty Naukowe SGSP/Szkoła Główna Służby Pożarniczej.
  • Rolland, E., Patterson, R. A., Ward, K., & Dodin, B. (2010). Decision support for disaster management. Operations Management Research, 3, 68-79.
  • Salmoral, G., Rivas Casado, M., Muthusamy, M., Butler, D., Menon, P. P., & Leinster, P. (2020). Guidelines for the use of unmanned aerial systems in flood emergency response. Water, 12(2), 521.
  • Sever, H., Aksungur, B. N., Güven, E., & Eren, T. (2024). Çok kriterli karar verme yöntemleriyle afetlerde insansız hava araçlarının değerlendirmesi. Acil Yardım ve Afet Bilimi Dergisi, 4(1), 15-22.
  • Sharma, R., Chopra, S. R., & Gupta, A. (2024). Power optimization of unmanned aerial vehicle-assisted future wireless communication using hybrid beamforming technique in disaster management. In IOP Conference Series: Earth and Environmental Science (Vol. 1285, No. 1, p. 012025). IOP Publishing.
  • Shavarani, S. M., & Vizvari, B. (2018). Post-disaster transportation of seriously injured people to hospitals. Journal of Humanitarian Logistics and Supply Chain Management, 8(2), 227-251.
  • Sivasuriyan, V. (2021). Drone usage and disaster management. Bodhi Int. J. Res. Humanit. Arts Sci, 5, 93-97.
  • Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
  • Şengöz, M. (2024). Harnessing Artificial Intelligence and Big Data for Proactive Disaster Management: Strategies, Challenges, and Future Directions. Haliç Üniversitesi Fen Bilimleri Dergisi, 7(2), 57-91.
  • Tan, L., Guo, J., Mohanarajah, S., & Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Natural Hazards, 107, 2389-2417.
  • Usanmaz, O., Karaderili, M., Sahin, O., & Savaş, T. (2020). The enhancement of the prescribed track for unmanned air vehicles. Aircraft Engineering and Aerospace Technology, 92(10), 1469-1473.
  • Velev, D., & Zlateva, P. (2023). Challenges of artificial intelligence application for disaster risk management. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 387-394.
  • Worden, M. R., Murray, C. C., Karwan, M. H., Ortiz-Peña, H. J., & Nagi, R. (2020). Sensor tasking for unmanned aerial vehicles in disaster management missions with limited communications bandwidth. Computers & Industrial Engineering, 149, 106754.
  • Yakushiji, K., Fujita, H., Murata, M., Hiroi, N., Hamabe, Y., & Yakushiji, F. (2020). Short-range transportation using unmanned aerial vehicles (UAVs) during disasters in Japan. Drones. 4 (4), 68.
  • Yıldızbası, A., & Gür, L. (2020). A decision support model for unmanned aerial vehicles assisted disaster response using AHP-TOPSIS method. Avrupa Bilim ve Teknoloji Dergisi, (20), 56-66.
  • Zeng, F., Pang, C., & Tang, H. (2023). Sensors on the internet of things systems for urban disaster management: a systematic literature review. Sensors, 23(17), 7475.

Yıl 2025, Cilt: 14 Sayı: 3, 2012 - 2032, 30.09.2025
https://doi.org/10.15869/itobiad.1706168

Öz

Kaynakça

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., ... & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: how artificial intelligence can boost disaster management. Sustainability, 13(22), 12560.
  • Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE access, 11, 73782-73802.
  • Aicardi, I., Chiabrando, F., Lingua, A. M., Noardo, F., & Piras, M. (2014). Unmanned aerial systems for data acquisitions in disaster management applications. JUNCO. Journal of universities and international development cooperation university of Turin. Turin: Universita di Torino, 164-171.
  • Akhyar, A., Zulkifley, M. A., Lee, J., Song, T., Han, J., Cho, C., ... & Hong, B. W. (2024). Deep artificial intelligence applications for natural disaster management systems: A methodological review. Ecological Indicators, 163, 112067.
  • AlAli, Z. T., & Alabady, S. A. (2022). The role of unmanned aerial vehicle and related technologies in disasters. Remote Sensing Applications: Society and Environment, 28, 100873.
  • Alawad, W., Halima, N. B., & Aziz, L. (2023). An unmanned aerial vehicle (UAV) system for disaster and crisis management in smart cities. Electronics, 12(4), 1051.
  • Albahri, A. S., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., ... & Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers and Electrical Engineering, 118, 109409.
  • Ameri, B., Meger, D., Power, K., & Gao, Y. (2009, March). UAS applications: Disaster & emergency management. American Society for Photogrammetry and Remote Sensing.
  • Arain, F., & Moeini, S. (2016). Leveraging on unmanned aerial vehicle (UAV) for effective emergency response and disaster management. In Proceedings of the Project Management Symposium at U of MD College Park Maryland.
  • Bahçıvan, S. (2024). Afet Yönetiminde Sosyal Medya, İnsansız Hava Araçları (Drone) ve Diğer Teknolojik Araçların Rolü. Strategic Public Management Journal, 10(17), 175-193.
  • Blišťanová, M., Blišťan, P., Tirpáková, M., & Kľučka, I. (2022). Unmanned aircraft systems in support of disaster management. Transportation research procedia, 65, 116-125.
  • Bloss, R. (2007). By air, land and sea, the unmanned vehicles are coming. Industrial Robot: An International Journal, 34(1), 12-16.
  • Calamoneri, T., Corò, F., & Mancini, S. (2024). Management of a post-disaster emergency scenario through unmanned aerial vehicles: Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization. Expert Systems with Applications, 251, 123766.
  • Chou, T. Y., Yeh, M. L., Chen, Y. C., & Chen, Y. H. (2010). Disaster monitoring and management by the unmanned aerial vehicle technology.: ISPRS TC VII Symposium
  • Danach, K., Harb, H., Rashid, A. S. K., Al-Tarawneh, M. A., & Aly, W. H. F. (2025). Location planning techniques for Internet provider service unmanned aerial vehicles during crisis. Results in Engineering, 25, 103833.
  • Daud, S. M. S. M., Yusof, M. Y. P. M., Heo, C. C., Khoo, L. S., Singh, M. K. C., Mahmood, M. S., & Nawawi, H. (2022). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30-42.
  • Dixit, A., Chauhan, R., & Shaw, R. (2024). Application of smart systems and emerging technologies for disaster risk reduction and management in Nepal. International Journal of Disaster Resilience in the Built Environment, https://doi.org/10.1108/IJDRBE-07-2023-0085 .
  • Doctor, A., Khirani, D., Raut, R. D., & Narwane, V. S. (2019, July). Literature Review on Employment of Unmanned Aerial Vehicles for Disaster Management. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic (pp. 23-26).
  • Duverneuil, B. (2016). Unmanned Aerial Vehicles in Response to Natural Disasters. Aerial Drone Archaeology & Preservation December 2016
  • Ejaz, W., Azam, M. A., Saadat, S., Iqbal, F., & Hanan, A. (2019). Unmanned aerial vehicles enabled IoT platform for disaster management. Energies, 12(14), 2706.
  • Eren, V., & Duman, H. (2025). Artıfıcıal Intellıgence Support In Dısaster Management. Kamu Yönetimi ve Teknoloji Dergisi, 7(1), 13-36.
  • Erkal, T., & Değerliyurt, M. (2009). Türkiye’de afet yönetimi. Doğu Coğrafya Dergisi, 14(22), 147-164.
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.
  • Ghadge, A. (2023). ICT-enabled approach for humanitarian disaster management: a systems perspective. The International Journal of Logistics Management, 34(6), 1543-1565.
  • Ghaffarian, S., Taghikhah, F. R., & Maier, H. R. (2023). Explainable artificial intelligence in disaster risk management: Achievements and prospective futures. International Journal of Disaster Risk Reduction, 98, 104123.
  • Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017). Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk, 8(1), 1-4.
  • Glantz, E. J., Ritter, F. E., Gilbreath, D., Stager, S. J., Anton, A., & Emani, R. (2020, May). UAV Use in Disaster Management. In ISCRAM (pp. 914-921).
  • Griffin, G. F. (2014). The use of unmanned aerial vehicles for disaster management. Geomatica, 68(4), 265-281.
  • Grogan, S., Pellerin, R., & Gamache, M. (2018). The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG, 1-13.
  • Gupta, T., & Roy, S. (2024, April). Applications of artificial intelligence in disaster management. In Proceedings of the 2024 10th International Conference on Computing and Artificial Intelligence (pp. 313-318).
  • Habibi Rad, M., Mojtahedi, M., & Ostwald, M. J. (2021). Industry 4.0, disaster risk management and infrastructure resilience: A systematic review and bibliometric analysis. Buildings, 11(9), 411.
  • Hasanuzzaman, M., Hossain, S., & Shil, S. K. (2023). Enhancing disaster management through AI-driven predictive analytics: improving preparedness and response. International Journal of Advanced Engineering Technologies and Innovations, 1(01), 533-562.
  • Hildmann, H., & Kovacs, E. (2019). Review: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 3 (3): 59.
  • Jazairy, A., Persson, E., Brho, M., von Haartman, R., & Hilletofth, P. (2024). Drones in last-mile delivery: a systematic literature review from a logistics management perspective. The International Journal of Logistics Management, https://doi.org/10.1108/IJLM-04-2023-0149.
  • Jung, D., Tran Tuan, V., Quoc Tran, D., Park, M., & Park, S. (2020). Conceptual framework of an intelligent decision support system for smart city disaster management. Applied Sciences, 10(2), 666.
  • Kamat, A., Shanker, S., & Barve, A. (2023). Assessing the factors affecting implementation of unmanned aerial vehicles in Indian humanitarian logistics: a g-DANP approach. Journal of Modelling in Management, 18(2), 416-456.
  • Kankanamge, N., Yigitcanlar, T., & Goonetilleke, A. (2021). Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, 65, 101729.
  • Kim, K., & Davidson, J. (2015). Unmanned aircraft systems used for disaster management. Transportation Research Record, 2532(1), 83-90.
  • Li, T., & Hu, H. (2021). Development of the use of unmanned aerial vehicles (UAVs) in emergency rescue in China. Risk Management and Healthcare Policy, 4293-4299.
  • Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine learning in disaster management: recent developments in methods and applications. Machine Learning and Knowledge Extraction, 4(2).
  • Lyu, M., Zhao, Y., Huang, C., & Huang, H. (2023). Unmanned aerial vehicles for search and rescue: A survey. Remote Sensing, 15(13), 3266.
  • Masroor, R., Naeem, M., & Ejaz, W. (2021). Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Computer Communications, 177, 185-194.
  • Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability, 13(14), 7547.
  • Nair, V. G., D'Souza, J. M., & Rafikh, R. M. (2024). A scoping review on unmanned aerial vehicles in disaster management: Challenges and opportunities. Journal of Robotics and Control (JRC), 5(6), 1799-1826.
  • Nawaz, H., Ali, H. M., & Massan, S. (2019). Applications of unmanned aerial vehicles: a review. 3C Tecnología_Glosas de innovación aplicadas a la pyme, 85-105.
  • Nikhil, N., Shreyas, S. M., Vyshnavi, G., & Yadav, S. (2020, August). Unmanned aerial vehicles (UAV) in disaster management applications. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 140-148). IEEE.
  • Oktari, R. S., Munadi, K., Idroes, R., & Sofyan, H. (2020). Knowledge management practices in disaster management: Systematic review. International Journal of Disaster Risk Reduction, 51, 101881.
  • Ozbiltekin-Pala, M., Yavas, V., & Ozkan-Ozen, Y. D. (2025). Drivers and barriers of unmanned aerial vehicles in emergency logistics operations. Technology in Society, 82, 102894.
  • Özmen, B., & Özden, T. (2013). Türkiye’nin afet yönetim sistemine ilişkin eleştirel bir değerlendirme. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, (49).
  • Partigöç, N. S. (2022). Afet risk yönetiminde yapay zekâ kullanımının rolü. Bilişim Teknolojileri Dergisi, 15(4), 401-411.
  • Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked UAVs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56-63.
  • Rahmatizadeh, S., & Kohzadi, Z. (2024). The role of artificial intelligence in disaster management in Iran: A narrative review. Journal of Medical Library and Information Science, 5.
  • Renugadevi, R., & Medida, L. H. (2024). Artificial Intelligence and IoT-Based Disaster Management System. In Predicting Natural Disasters With AI and Machine Learning (pp. 135-146). IGI Global Scientific Publishing.
  • Restas, A. (2015). Drone applications for supporting disaster management. World Journal of Engineering and Technology, 3(3), 316-321.
  • Restas, A. (2017). Disaster management supported by unmanned aerial systems (UAS) focusing especially on natural disasters. Zeszyty Naukowe SGSP/Szkoła Główna Służby Pożarniczej.
  • Rolland, E., Patterson, R. A., Ward, K., & Dodin, B. (2010). Decision support for disaster management. Operations Management Research, 3, 68-79.
  • Salmoral, G., Rivas Casado, M., Muthusamy, M., Butler, D., Menon, P. P., & Leinster, P. (2020). Guidelines for the use of unmanned aerial systems in flood emergency response. Water, 12(2), 521.
  • Sever, H., Aksungur, B. N., Güven, E., & Eren, T. (2024). Çok kriterli karar verme yöntemleriyle afetlerde insansız hava araçlarının değerlendirmesi. Acil Yardım ve Afet Bilimi Dergisi, 4(1), 15-22.
  • Sharma, R., Chopra, S. R., & Gupta, A. (2024). Power optimization of unmanned aerial vehicle-assisted future wireless communication using hybrid beamforming technique in disaster management. In IOP Conference Series: Earth and Environmental Science (Vol. 1285, No. 1, p. 012025). IOP Publishing.
  • Shavarani, S. M., & Vizvari, B. (2018). Post-disaster transportation of seriously injured people to hospitals. Journal of Humanitarian Logistics and Supply Chain Management, 8(2), 227-251.
  • Sivasuriyan, V. (2021). Drone usage and disaster management. Bodhi Int. J. Res. Humanit. Arts Sci, 5, 93-97.
  • Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
  • Şengöz, M. (2024). Harnessing Artificial Intelligence and Big Data for Proactive Disaster Management: Strategies, Challenges, and Future Directions. Haliç Üniversitesi Fen Bilimleri Dergisi, 7(2), 57-91.
  • Tan, L., Guo, J., Mohanarajah, S., & Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Natural Hazards, 107, 2389-2417.
  • Usanmaz, O., Karaderili, M., Sahin, O., & Savaş, T. (2020). The enhancement of the prescribed track for unmanned air vehicles. Aircraft Engineering and Aerospace Technology, 92(10), 1469-1473.
  • Velev, D., & Zlateva, P. (2023). Challenges of artificial intelligence application for disaster risk management. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 387-394.
  • Worden, M. R., Murray, C. C., Karwan, M. H., Ortiz-Peña, H. J., & Nagi, R. (2020). Sensor tasking for unmanned aerial vehicles in disaster management missions with limited communications bandwidth. Computers & Industrial Engineering, 149, 106754.
  • Yakushiji, K., Fujita, H., Murata, M., Hiroi, N., Hamabe, Y., & Yakushiji, F. (2020). Short-range transportation using unmanned aerial vehicles (UAVs) during disasters in Japan. Drones. 4 (4), 68.
  • Yıldızbası, A., & Gür, L. (2020). A decision support model for unmanned aerial vehicles assisted disaster response using AHP-TOPSIS method. Avrupa Bilim ve Teknoloji Dergisi, (20), 56-66.
  • Zeng, F., Pang, C., & Tang, H. (2023). Sensors on the internet of things systems for urban disaster management: a systematic literature review. Sensors, 23(17), 7475.

Yıl 2025, Cilt: 14 Sayı: 3, 2012 - 2032, 30.09.2025
https://doi.org/10.15869/itobiad.1706168

Öz

Kaynakça

  • Abid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., ... & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: how artificial intelligence can boost disaster management. Sustainability, 13(22), 12560.
  • Aboualola, M., Abualsaud, K., Khattab, T., Zorba, N., & Hassanein, H. S. (2023). Edge technologies for disaster management: A survey of social media and artificial intelligence integration. IEEE access, 11, 73782-73802.
  • Aicardi, I., Chiabrando, F., Lingua, A. M., Noardo, F., & Piras, M. (2014). Unmanned aerial systems for data acquisitions in disaster management applications. JUNCO. Journal of universities and international development cooperation university of Turin. Turin: Universita di Torino, 164-171.
  • Akhyar, A., Zulkifley, M. A., Lee, J., Song, T., Han, J., Cho, C., ... & Hong, B. W. (2024). Deep artificial intelligence applications for natural disaster management systems: A methodological review. Ecological Indicators, 163, 112067.
  • AlAli, Z. T., & Alabady, S. A. (2022). The role of unmanned aerial vehicle and related technologies in disasters. Remote Sensing Applications: Society and Environment, 28, 100873.
  • Alawad, W., Halima, N. B., & Aziz, L. (2023). An unmanned aerial vehicle (UAV) system for disaster and crisis management in smart cities. Electronics, 12(4), 1051.
  • Albahri, A. S., Khaleel, Y. L., Habeeb, M. A., Ismael, R. D., Hameed, Q. A., Deveci, M., ... & Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Computers and Electrical Engineering, 118, 109409.
  • Ameri, B., Meger, D., Power, K., & Gao, Y. (2009, March). UAS applications: Disaster & emergency management. American Society for Photogrammetry and Remote Sensing.
  • Arain, F., & Moeini, S. (2016). Leveraging on unmanned aerial vehicle (UAV) for effective emergency response and disaster management. In Proceedings of the Project Management Symposium at U of MD College Park Maryland.
  • Bahçıvan, S. (2024). Afet Yönetiminde Sosyal Medya, İnsansız Hava Araçları (Drone) ve Diğer Teknolojik Araçların Rolü. Strategic Public Management Journal, 10(17), 175-193.
  • Blišťanová, M., Blišťan, P., Tirpáková, M., & Kľučka, I. (2022). Unmanned aircraft systems in support of disaster management. Transportation research procedia, 65, 116-125.
  • Bloss, R. (2007). By air, land and sea, the unmanned vehicles are coming. Industrial Robot: An International Journal, 34(1), 12-16.
  • Calamoneri, T., Corò, F., & Mancini, S. (2024). Management of a post-disaster emergency scenario through unmanned aerial vehicles: Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization. Expert Systems with Applications, 251, 123766.
  • Chou, T. Y., Yeh, M. L., Chen, Y. C., & Chen, Y. H. (2010). Disaster monitoring and management by the unmanned aerial vehicle technology.: ISPRS TC VII Symposium
  • Danach, K., Harb, H., Rashid, A. S. K., Al-Tarawneh, M. A., & Aly, W. H. F. (2025). Location planning techniques for Internet provider service unmanned aerial vehicles during crisis. Results in Engineering, 25, 103833.
  • Daud, S. M. S. M., Yusof, M. Y. P. M., Heo, C. C., Khoo, L. S., Singh, M. K. C., Mahmood, M. S., & Nawawi, H. (2022). Applications of drone in disaster management: A scoping review. Science & Justice, 62(1), 30-42.
  • Dixit, A., Chauhan, R., & Shaw, R. (2024). Application of smart systems and emerging technologies for disaster risk reduction and management in Nepal. International Journal of Disaster Resilience in the Built Environment, https://doi.org/10.1108/IJDRBE-07-2023-0085 .
  • Doctor, A., Khirani, D., Raut, R. D., & Narwane, V. S. (2019, July). Literature Review on Employment of Unmanned Aerial Vehicles for Disaster Management. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic (pp. 23-26).
  • Duverneuil, B. (2016). Unmanned Aerial Vehicles in Response to Natural Disasters. Aerial Drone Archaeology & Preservation December 2016
  • Ejaz, W., Azam, M. A., Saadat, S., Iqbal, F., & Hanan, A. (2019). Unmanned aerial vehicles enabled IoT platform for disaster management. Energies, 12(14), 2706.
  • Eren, V., & Duman, H. (2025). Artıfıcıal Intellıgence Support In Dısaster Management. Kamu Yönetimi ve Teknoloji Dergisi, 7(1), 13-36.
  • Erkal, T., & Değerliyurt, M. (2009). Türkiye’de afet yönetimi. Doğu Coğrafya Dergisi, 14(22), 147-164.
  • Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.
  • Ghadge, A. (2023). ICT-enabled approach for humanitarian disaster management: a systems perspective. The International Journal of Logistics Management, 34(6), 1543-1565.
  • Ghaffarian, S., Taghikhah, F. R., & Maier, H. R. (2023). Explainable artificial intelligence in disaster risk management: Achievements and prospective futures. International Journal of Disaster Risk Reduction, 98, 104123.
  • Giordan, D., Manconi, A., Remondino, F., & Nex, F. (2017). Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk, 8(1), 1-4.
  • Glantz, E. J., Ritter, F. E., Gilbreath, D., Stager, S. J., Anton, A., & Emani, R. (2020, May). UAV Use in Disaster Management. In ISCRAM (pp. 914-921).
  • Griffin, G. F. (2014). The use of unmanned aerial vehicles for disaster management. Geomatica, 68(4), 265-281.
  • Grogan, S., Pellerin, R., & Gamache, M. (2018). The use of unmanned aerial vehicles and drones in search and rescue operations–a survey. Proceedings of the PROLOG, 1-13.
  • Gupta, T., & Roy, S. (2024, April). Applications of artificial intelligence in disaster management. In Proceedings of the 2024 10th International Conference on Computing and Artificial Intelligence (pp. 313-318).
  • Habibi Rad, M., Mojtahedi, M., & Ostwald, M. J. (2021). Industry 4.0, disaster risk management and infrastructure resilience: A systematic review and bibliometric analysis. Buildings, 11(9), 411.
  • Hasanuzzaman, M., Hossain, S., & Shil, S. K. (2023). Enhancing disaster management through AI-driven predictive analytics: improving preparedness and response. International Journal of Advanced Engineering Technologies and Innovations, 1(01), 533-562.
  • Hildmann, H., & Kovacs, E. (2019). Review: Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 3 (3): 59.
  • Jazairy, A., Persson, E., Brho, M., von Haartman, R., & Hilletofth, P. (2024). Drones in last-mile delivery: a systematic literature review from a logistics management perspective. The International Journal of Logistics Management, https://doi.org/10.1108/IJLM-04-2023-0149.
  • Jung, D., Tran Tuan, V., Quoc Tran, D., Park, M., & Park, S. (2020). Conceptual framework of an intelligent decision support system for smart city disaster management. Applied Sciences, 10(2), 666.
  • Kamat, A., Shanker, S., & Barve, A. (2023). Assessing the factors affecting implementation of unmanned aerial vehicles in Indian humanitarian logistics: a g-DANP approach. Journal of Modelling in Management, 18(2), 416-456.
  • Kankanamge, N., Yigitcanlar, T., & Goonetilleke, A. (2021). Public perceptions on artificial intelligence driven disaster management: Evidence from Sydney, Melbourne and Brisbane. Telematics and Informatics, 65, 101729.
  • Kim, K., & Davidson, J. (2015). Unmanned aircraft systems used for disaster management. Transportation Research Record, 2532(1), 83-90.
  • Li, T., & Hu, H. (2021). Development of the use of unmanned aerial vehicles (UAVs) in emergency rescue in China. Risk Management and Healthcare Policy, 4293-4299.
  • Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. (2022). Machine learning in disaster management: recent developments in methods and applications. Machine Learning and Knowledge Extraction, 4(2).
  • Lyu, M., Zhao, Y., Huang, C., & Huang, H. (2023). Unmanned aerial vehicles for search and rescue: A survey. Remote Sensing, 15(13), 3266.
  • Masroor, R., Naeem, M., & Ejaz, W. (2021). Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Computer Communications, 177, 185-194.
  • Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection. Sustainability, 13(14), 7547.
  • Nair, V. G., D'Souza, J. M., & Rafikh, R. M. (2024). A scoping review on unmanned aerial vehicles in disaster management: Challenges and opportunities. Journal of Robotics and Control (JRC), 5(6), 1799-1826.
  • Nawaz, H., Ali, H. M., & Massan, S. (2019). Applications of unmanned aerial vehicles: a review. 3C Tecnología_Glosas de innovación aplicadas a la pyme, 85-105.
  • Nikhil, N., Shreyas, S. M., Vyshnavi, G., & Yadav, S. (2020, August). Unmanned aerial vehicles (UAV) in disaster management applications. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 140-148). IEEE.
  • Oktari, R. S., Munadi, K., Idroes, R., & Sofyan, H. (2020). Knowledge management practices in disaster management: Systematic review. International Journal of Disaster Risk Reduction, 51, 101881.
  • Ozbiltekin-Pala, M., Yavas, V., & Ozkan-Ozen, Y. D. (2025). Drivers and barriers of unmanned aerial vehicles in emergency logistics operations. Technology in Society, 82, 102894.
  • Özmen, B., & Özden, T. (2013). Türkiye’nin afet yönetim sistemine ilişkin eleştirel bir değerlendirme. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, (49).
  • Partigöç, N. S. (2022). Afet risk yönetiminde yapay zekâ kullanımının rolü. Bilişim Teknolojileri Dergisi, 15(4), 401-411.
  • Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked UAVs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56-63.
  • Rahmatizadeh, S., & Kohzadi, Z. (2024). The role of artificial intelligence in disaster management in Iran: A narrative review. Journal of Medical Library and Information Science, 5.
  • Renugadevi, R., & Medida, L. H. (2024). Artificial Intelligence and IoT-Based Disaster Management System. In Predicting Natural Disasters With AI and Machine Learning (pp. 135-146). IGI Global Scientific Publishing.
  • Restas, A. (2015). Drone applications for supporting disaster management. World Journal of Engineering and Technology, 3(3), 316-321.
  • Restas, A. (2017). Disaster management supported by unmanned aerial systems (UAS) focusing especially on natural disasters. Zeszyty Naukowe SGSP/Szkoła Główna Służby Pożarniczej.
  • Rolland, E., Patterson, R. A., Ward, K., & Dodin, B. (2010). Decision support for disaster management. Operations Management Research, 3, 68-79.
  • Salmoral, G., Rivas Casado, M., Muthusamy, M., Butler, D., Menon, P. P., & Leinster, P. (2020). Guidelines for the use of unmanned aerial systems in flood emergency response. Water, 12(2), 521.
  • Sever, H., Aksungur, B. N., Güven, E., & Eren, T. (2024). Çok kriterli karar verme yöntemleriyle afetlerde insansız hava araçlarının değerlendirmesi. Acil Yardım ve Afet Bilimi Dergisi, 4(1), 15-22.
  • Sharma, R., Chopra, S. R., & Gupta, A. (2024). Power optimization of unmanned aerial vehicle-assisted future wireless communication using hybrid beamforming technique in disaster management. In IOP Conference Series: Earth and Environmental Science (Vol. 1285, No. 1, p. 012025). IOP Publishing.
  • Shavarani, S. M., & Vizvari, B. (2018). Post-disaster transportation of seriously injured people to hospitals. Journal of Humanitarian Logistics and Supply Chain Management, 8(2), 227-251.
  • Sivasuriyan, V. (2021). Drone usage and disaster management. Bodhi Int. J. Res. Humanit. Arts Sci, 5, 93-97.
  • Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
  • Şengöz, M. (2024). Harnessing Artificial Intelligence and Big Data for Proactive Disaster Management: Strategies, Challenges, and Future Directions. Haliç Üniversitesi Fen Bilimleri Dergisi, 7(2), 57-91.
  • Tan, L., Guo, J., Mohanarajah, S., & Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Natural Hazards, 107, 2389-2417.
  • Usanmaz, O., Karaderili, M., Sahin, O., & Savaş, T. (2020). The enhancement of the prescribed track for unmanned air vehicles. Aircraft Engineering and Aerospace Technology, 92(10), 1469-1473.
  • Velev, D., & Zlateva, P. (2023). Challenges of artificial intelligence application for disaster risk management. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 387-394.
  • Worden, M. R., Murray, C. C., Karwan, M. H., Ortiz-Peña, H. J., & Nagi, R. (2020). Sensor tasking for unmanned aerial vehicles in disaster management missions with limited communications bandwidth. Computers & Industrial Engineering, 149, 106754.
  • Yakushiji, K., Fujita, H., Murata, M., Hiroi, N., Hamabe, Y., & Yakushiji, F. (2020). Short-range transportation using unmanned aerial vehicles (UAVs) during disasters in Japan. Drones. 4 (4), 68.
  • Yıldızbası, A., & Gür, L. (2020). A decision support model for unmanned aerial vehicles assisted disaster response using AHP-TOPSIS method. Avrupa Bilim ve Teknoloji Dergisi, (20), 56-66.
  • Zeng, F., Pang, C., & Tang, H. (2023). Sensors on the internet of things systems for urban disaster management: a systematic literature review. Sensors, 23(17), 7475.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Karşılaştırmalı Ekonomik Sistemler, Sürdürülebilir Kalkınma
Bölüm Makaleler
Yazarlar

Bülent Yıldız 0000-0002-5368-2805

Erken Görünüm Tarihi 29 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 25 Mayıs 2025
Kabul Tarihi 11 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Yıldız, B. (2025). Afet Yönetiminde Yapay Zekâ Destekli İnsansız Hava Araçlarının Rolü. İnsan ve Toplum Bilimleri Araştırmaları Dergisi, 14(3), 2012-2032. https://doi.org/10.15869/itobiad.1706168
İnsan ve Toplum Bilimleri Araştırmaları Dergisi  Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.