Araştırma Makalesi
BibTex RIS Kaynak Göster

Fındığın dönmeli akışlı akışkan yataklı kızılötesi ışınımlı kurutma davranışının deneysel incelenmesi ve matematiksel modellenmesi

Yıl 2024, Cilt: 2 Sayı: 1, 19 - 28, 28.03.2024

Öz

Bu çalışmada, kabuklu fındıkların dönmeli akışlı akışkan yataklı kızılötesi ışınımlı kurutma davranışı deneysel olarak araştırılmış ve matematiksel modellemesi gerçekleştirilmiştir. Deneysel çalışmalar, 100 g kabuklu fındık için 250 W, 500 W, 750 W ve 1000 W kızılötesi ışınım güç değerlerinde yapılmış ve zamana bağlı olarak kütle kayıpları ölçülmüştür. Boyutsuz kütle oranı, nem içeriği ve kurutma hızı gibi kurutma karakteristikleri zamana ve kütle kaybına bağlı olarak hesaplanmıştır. Kabuklu fındıkların, dönmeli akışlı akışkan yataklı kızılötesi kurutucudaki kurutma eğri denklemini belirlemek için literatürde sunulan 24 adet ince tabaka kurutma denklemi dikkate alınmıştır. En iyi modeli belirlemek için 7 farklı model uygunluk parametresi kullanılmıştır. Sonuç olarak, en iyi kurutma modelleri 250 W ve 500 W için sırasıyla Alibaş; Balbay ve Şahin; 750 W ve 1000 W için ise Geliştirilmiş Midilli-Kucuk olarak tespit edilmiştir. Ayrıca, kurutma zamanı dikkate alınarak, kabuklu fındığın kurutulması için dönmeli akışlı akışkan yataklı kızılötesi ışınımlı kurutma yönteminde ideal kızılötesi ışınım güç değerlerinin 1000 W olduğu tespit edilmiştir.

Kaynakça

  • Acar, B., Dağdeviren, A., & Özkaymak, M. (2020). Design of hazelnut drying system supported by solar energy, ınvestigation of drying performance and determination of proper drying model. International Journal of Renewable Energy Research, 10(2), 570-577.
  • Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109-116. https://doi,org/10,1016/j,foodchem,2016,09,103
  • Aghbashlo, M., Kianmehr, M. H., Khani, S., & Ghasemi, M. (2009). Mathematical modelling of thin-layer drying of carrot. International Agrophysics, 23(4), 313-317.
  • Akpınar E. K. (2005). Deneysel çalışmalardaki hata analizine bir örnek: kurutma deneylerindeki hata analizi. Mühendis ve Makina, 46(540), 41-48.
  • Aktaş, M. (2007). Isı pompası destekli fındık kurutma fırınının tasarımı, imalatı ve deneysel incelenmesi. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Ensitüsü, Ankara, Türkiye.
  • Aktaş, M., İlbaş, M., Yalçın, A., & Şahin, M. (2013). Kızılötesi ışınımlı bir kurutucuda kuruma davranışlarının deneysel incelenmesi. Journal of Gazi University Faculty of Engineering and Architecture, 28(4), 767-775.
  • Albayrak, B. B., Tuncel, N. B., & Kocabıyık, H. (2021). Bazı instant gıdaların üretiminde kızılötesi kurutmanın etkisi. Journal of Advanced Research in Natural and Applied Sciences, 7(1), 100-113. https://doi,org/ 10,28979/jarnas,890536
  • Alibas, I. (2012). Selection of the best suitable thin-layer drying mathematical model for vacuum dried red chili pepper. Journal of Biological and Environmental Sciences, 6(17), 161-170.
  • Balbay, A., & Şahin, Ö. (2012). Microwave drying kinetics of a thin-layer liquorice root. Drying Technology, 30(8), 859-864. https://doi.org/10.1080/07373937.2012.670682
  • Basrawi, F., Redzlan, F., Ibrahim, T. K., & Yudin, A. S. M. (2020). Experimental study on the effect of bed aspect ratio to the drying rate of chilli for swirling fluidized bed dryer. IOP Conference Series: Materials Science and Engineering, 863, 012044.
  • Batman, S. G. (2016). Pastırma üretiminde infrared kurutma yönteminin kullanımı. Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye.
  • Chavan, B. R., Yakupitiyage, A., & Kumar, S. (2008). Mathematical modeling of drying characteristics of Indian mackerel (Rastrilliger kangurta) in solar-biomass hybrid cabinet dryer. Drying Technology, 26(12), 1552-1562. https://doi.org/10.1080/07373930802466872
  • Chuwattanakul, V., & Eiamsa-Ard, S. (2019). Hydrodynamics investigation of pepper drying in a swirling fluidized bed dryer with multiple-group twisted tape swirl generators. Case Studies in Thermal Engineering, 13, 100389.
  • Çiftçi, S. (2021). Sıcak hava ve kızılötesi kurutma işleminin arı poleninin bazı fiziksel özellikleri ve uçucu bileşen profili üzerine etkisi. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, Türkiye.
  • Dağcı, G. (2014). Ozmotik ön kurutma yapılmış kivi meyvesinin kızılötesi dalga destekli akışkan yatak kurutucu ile kurutulması. Yüksek Lisans Tezi, Celal Bayar Üniversitesi, Fen Bilimleri Enstitüsü, Manisa, Türkiye.
  • Darvishi, H., Najafi, G., Hosainpour, A., Khodaei, J., & Aazdbakht, M. (2013). Far- infrared drying characteristics of mushroom slices. Chemical Product and Process Modeling, 8(2), 107-117. https://doi,org/10,1515/cppm-2013-0035
  • Demir, Ö. (2019). Kızılötesi kurutucuda nane bitkisinin optimum kurutma sıcaklığının belirlenmesi. BEU Journal of Science, 8(3), 1094–1100.
  • Demirtas, C., Ayhan, T., & Kaygusuz, K. (1998). Drying behaviour of hazelnuts. Journal of the Science of Food and Agriculture, 76, 559-564. https://doi,org/10,1002/(SICI)1097-0010(199804)76:4<559::AID-JSFA988>3,0,CO;2-J
  • Ding, C., Khir, R., Pan, Z., Wood, D. F., Venkitasamy, C., Tu, K., El-Mashad, H., & Berrios, J. (2018). Influence of infrared drying on storage characteristics of brown rice. Food Chemistry, 264, 149-156. https://doi,org/10,1016/j,foodchem,2018,05,042
  • Dogru, M., Midilli, A., & Howarth, C. R. (2002). Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis. Fuel Processing Technology, 75(1), 55-82. https://doi.org/10.1016/S0378-3820(01)00234-X
  • Doymaz, I. (2012). Sun drying of seedless and seeded grapes. Journal of Food Science and Technology, 49(2), 214-220.
  • Doymaz, I. (2013). Determination of infrared drying characteristics and modelling of drying behaviour of carrot pomace. Journal of Agricultural Sciences, 19(1), 44-53. https://doi,org/10,1501/tarimbil_0000001227
  • Doymaz, I., Kipcak, A. S., & Piskin, S. (2015). Characteristics of thin-layer infrared drying of green bean. Czech Journal of Food Sciences, 33(1), 83-90. https://doi,org/10,17221/423/2014-CJFS
  • Doymaz, I., & Kipcak, A. S. (2019). Drying characteristics investigation of black mulberry dried via infrared method. Journal of Thermal Engineering, 5(2), 13-21.
  • Gaewsondee, T., & Duangkhamchan, W. (2019). A novel process for preparing instant riceberry using fluidized bed drying assisted with swirling compressed-air: kinetic aspects. Food and Bioprocess Technology, 12, 1422-1434.
  • Ganesapillai, M., Regupathi, I., & Murugesan, T. (2008). An empirical model for the estimation of moisture ratio during microwave drying of plaster of paris. Drying Technology, 26(7), 963-978. https://doi.org/10.1080/07373930802142978
  • Ghazanfari, A., Emami S., Tabil, L. G., & Panigrahi, S. (2006). Thin-layer drying of flax fiber, II: Modeling drying process using semi-theoretical and empirical models. Drying Technology, 24(12), 1637-1642. https://doi.org/10.1080/07373930601031463
  • Guo, Y., Wu, B., Guo, X., Ding, F., Pan, Z., & Ma, H. (2020). Effects of power ultrasound enhancement on infrared drying of carrot slices: Moisture migration and quality characterizations. LWT-Food Science and Technology, 126, 1-8. https://doi,org/10,1016/j,lwt,2020,109312
  • Jaiboon, P., Prachayawarakorn, S., Devahastin, S., & Soponronnarit, S. (2009). Effects of fluidized bed drying temperature and tempering time on quality of waxy rice. Journal of Food Engineering, 95(3), 517-524.
  • Jain, D., & Pathare, P. B. (2004). Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosystems Engineering, 89(3), 289-296. https://doi,org/10,1016/j,biosystemseng,2004,07,011
  • Kaleta, A., Górnicki, K., Winiczenko, R., & Chojnacka, A. (2013). Evaluation of drying models of apple (var, Ligol) dried in a fluidized bed dryer. Energy Conversion and Management, 67, 179-185.
  • Kandemir, L. (2019). LED teknolojisi ile fındık kurutma. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, Türkiye.
  • Keleş, C. Ö., & Saçılık, K. (2019). Basınçlı hava kullanılan infrared ısıtıcılı kurutucuda kabuklu fındık kurutulması. Anadolu Journal of Agricultural Sciences, 34, 65-72. https://doi,org/10,7161/omuanajas,434531
  • Kılıç, Y. (2022). Zor ayrışabilen katı atıkların biyoreaktörlerde parçalanması. Yüksek lisans Tezi, Pamukkale üniversitesi, Fen Bilimleri Enstitüsü, Denizli, Türkiye.
  • Kocabıyık, H., & Demirtürk, B. S. (2008). Nane yapraklarının infrared radyasyonla kurutulması. Journal of Tekirdag Faculty of Agriculture, 5(3), 239-246.
  • Kucuk, H., Midilli, A., Kilic, A., & Dincer, I. (2014). A review on thin-layer drying-curve equations. Drying Technology, 32(7), 757-773. https://doi.org/10.1080/07373937.2013.873047
  • Kumar, N., Sarkar, B. C., & Sharma, H. K. (2012). Mathematical modelling of thin layer hot air drying of carrot pomace. Journal of Food Science and Technology, 49(1), 33-41. https://doi.org/10.1007/s13197-011-0266-7
  • Kurtuluş, O. (2007). Akışkan yatakta kurutma prosesinin incelenmesi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Küçük, H., Akbulut, U., & Midilli, A. (2022). Single-layer drying modeling of pumpkin (Cucurbita Maxima). Turkish Journal of Electromechanics and Energy, 7(3), 110-119, 2022.
  • McMinn, W. A. M., McLoughlin, C. M., & Magee, T. R. A. (2005). Thin-layer modeling of microwave, microwave-convective, and microwave-vacuum drying of pharmaceutical powders. Drying Technology, 23(3), 513-532. https://doi.org/10.100081/DRT-200054126 Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for sıngle-layer dryıng. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864 Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111-1122. https://doi.org/10.1016/S0196-8904(02)00099-7
  • Midilli, A., & Kucuk, H. (2023). Development of a new curve equation representing thin layer drying process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 9717–9730. https://doi.org/10.1080/15567036.2023.2240740
  • Midilli, A., Olgun, H., & Ayhan, T. (1999). Experimental studies on mushroom and pollen drying. International Journal of Energy Research, 23(13), 1143-1152. https://doi.org/10.1002/(SICI)1099-114X(19991025)23:13<1143::AID-ER544>3.0.CO;2-3
  • Mohamed, L. A., Kane, C. S. E., Kouhila, M., Jamali, A., Mahrouz, M., & Kechaou, N. (2008). Thin layer modelling of Gelidium sesquipedale solar drying process. Energy Conversion and Management, 49(5), pp, 940-946. https://doi.org/10.1016/j.enconman.2007.10.023
  • Nathakaranakule, A., Jaiboon, P., & Soponronnarit, S. (2010). Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 100(4), 662-668. https:// doi,org/10,1016/j,jfoodeng,2010,05,016
  • Niamnuy, C., & Devahastin, S. (2005). Drying kinetics and quality of coconut dried in a fluidized bed dryer. Journal of Food Engineering, 66(2), 267-271.
  • Okur, Ö., Kucuk, H., & Midilli, A. (2023). Triple-effect new generation drying technique. Innovative Food Science & Emerging Technologies, 89, 103489. https://doi,org/10,1016/j,ifset,2023,103489
  • Olgun, H., & Rzayev, P. (2000). Fındığın üç farklı sistemde güneş enerjisi ile kurutulması. Turkish Journal of Engineering and Environmental Sciences, 24(1), 1-14.
  • Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2019). Experimental studies and mathematical simulation of intermittent infrared and convective drying of sweet potato (Ipomoea batatas L,). Food and Bioproducts Processing, 114, 163-174. https://doi,org/10,1016/j,fbp,2018,12,006
  • Özbey, M., & Söylemez, M. S. (2005). Effect of swirling flow on fluidized bed drying of wheat grains. Energy Conversion and Management, 46(9-10):1495-1512.
  • Özdemir, M. B., Aktaş, M., Şevik, S., & Khanlari, A. (2017). Modeling of a convective- infrared kiwifruit drying process. International Journal of Hydrogen Energy, 42(28), 18005-18013. https://doi,org/10,1016/j,ijhydene,2017,01,012
  • Özdemir, M., & Devres, Y. O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42(4), 225-233. https://doi,org/10,1016/S0260-8774(99)00126-0
  • Öztürk Erdem, B. (2018). Hicaz narı (punica granatum l,) tanelerinin kızılötesi, mikrodalga ve konvektif kurutma yöntemleriyle kurutulması. Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, Türkiye.
  • Pardeshi, I. L., Arora, S., & Borker, P. A. (2009). Thin-layer drying of green peas and selection of a suitable thin-layer drying model. Drying Technology, 27(2), 288-295. https://doi.org/10.1080/07373930802606451
  • Pekke, M. A., Pan, Z. L., Atungulu, G. G., Smith, G., & Thompson, J. F. (2013). Drying characteristics and quality of bananas under infrared radiation heating. International Journal of Agricultural and Biological Engineering, 6(3), 58-70.
  • Promvonge, P., Boonloi, A., Pimsarn, M., & Thianpong, C. (2011). Drying characteristics of peppercorns in a rectangular fluidized-bed with triangular wavy walls. International Communications in Heat and Mass Transfer, 38(9), 1239-1246.
  • Rosli, M. I., Abdul Nasir, A. M., Takriff, M. S., & Ravichandar, V. (2020). Drying sago pith waste in a fluidized bed dryer. Food and Bioproducts Processing, 123, 335-344.
  • Ruiz, C. A., Francisco, C., Fernando, L.-R., & Aida, R. (2013). Thin layer drying behavior of industrial tomato bye-products in a convective dryer at low temperatures. Research Journal of Biotechnology, 8(2), 50-60.
  • Selbaş, R. (1998). Akışkan yataklı sistemlerin analizi ve sunta kurtulmasında uygulanabilirliğinin araştırılması, Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, Türkiye
  • Senadeera, W., Bhandari, B. R., Young, G., & Wijesinghe, B. (2003). Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, 58(3), 277-283.
  • Sitorus, A., Novrinaldi, N., Putra, S. A., Cebro, I. S., & Bulan, R. (2021). Modelling drying kinetics of paddy in swirling fluidized bed dryer. Case Studies in Thermal Engineering, 28, 101572, https://doi,org/10,1016/j,csite,2021,101572.
  • Şimşek, M., Kucuk, H., & A. Midilli, A. (2021). Experimental investigation and mathematical modeling of microwave thin layer drying behavior of apricot, kiwi and mint leaves. Recep Tayyip Erdogan University Journal of Science and Engineering, 2(2), 13-35.
  • Topçuoğlu, G. (2008). Uluslararası piyasada fındığın Türkiye ekonomisine katkısı ve sorunları. Yüksek lisans Tezi, Namık Kemal üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ, Türkiye.
  • Topuz, A. (2002). Akışkan yatakta fındık kurutma prosesinde ısı ve kütle geçişinin incelenmesi. Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye.
  • Torki-Harchegani, M., Ghanbarian, D., Maghsoodi, V., & Moheb, A. (2017). Infrared thin layer drying of saffron ( Crocus sativus L,) stigmas: Mass transfer parameters and quality assessment. Chinese Journal of Chemical Engineering, 25(4), 426-432. https:// doi,org/10,1016/j,cjche,2016,09,005
  • Turan, A., & İslam, A. (2016). Çakıldak fındık çeşidinde kurutma ortamları ve muhafaza süresine bağlı olarak meydana gelen değişimler. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 6(2), 272-285.
  • Türkan, B. (2020). Endüstriyel malzemelerde eşzamanlı ısı ve kütle transferinin deneysel ve nümerik incelenmesi. Doktora Tezi, Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, Türkiye.
  • Vega-Galvez, A., Ayala-Aponte, A., Notte, E., de la Fuente, L., & Lemus-Mondaca, R. (2008). Mathematical modeling of mass transfer during convective dehydration of brown algae macrocystis pyrifera. Drying Technology, 26(12), 1610-1616. https://doi.org/10.1080/07373930802467532
  • Zare, D., Naderi, H., & Ranjbaran, M. (2014). Energy and quality attributes of combined hot-air/infrared drying of paddy. Drying Technology, 33(5), 570-582. https://doi, org/10,1080/07373937,2014,962143
  • Zielinska, M., & Markowski, M. (2007). Drying behavior of carrots dried in a spout- fluidized bed dryer. Drying Technology, 25(1), 261-270.
  • Zulkarnain, M. A., Shahriman, M. K., & Yudin, A. S. M. (2020). Experimental study of drying characteristics of cocoa bean in a swirling fluidized bed dryer. IOP Conference Series: Materials Science and Engineering, 863, 012048.

Experimental investigation and mathematıcal modeling of swirling flow fluidized bed infrared drying behavior of hazelnut

Yıl 2024, Cilt: 2 Sayı: 1, 19 - 28, 28.03.2024

Öz

In this study, swirling flow fluidized bed infrared drying behavior of shelled hazelnuts was experimentally investigated, and mathematical modeling was performed. Drying experiments were carried out at 250 W, 500 W, 750 W and 1000 W infrared power values for 100 g shelled hazelnut, and mass losses were measured depending on drying time. Drying characteristics such as dimensionless mass ratio, moisture content and drying rate were calculated based on time and mass loss. Mathematical modeling was performed to determine the thin layer drying behavior of shelled hazelnuts in swirling flow fluidized bed infrared dryer by using 24 thin layer drying equations in the literature. 7 different evaluation criteria were used to determine the best model. As a result, the best drying models were found to be Alibaş, and Balbay and Şahin for 250 W and 500 W, respectively, and Improved Midilli-Kucuk for 750 W and 1000 W. In addition, considering the drying time, it was found that the most appropriate infrared power value was 1000 W for drying of shelled hazelnut in swirling flow fluidized bed infrared drying method.

Teşekkür

Yazarlar bu çalışmaya teknik destek sağladığı için Recep Tayyip Erdoğan Üniversitesi’ne teşekkür eder.

Kaynakça

  • Acar, B., Dağdeviren, A., & Özkaymak, M. (2020). Design of hazelnut drying system supported by solar energy, ınvestigation of drying performance and determination of proper drying model. International Journal of Renewable Energy Research, 10(2), 570-577.
  • Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109-116. https://doi,org/10,1016/j,foodchem,2016,09,103
  • Aghbashlo, M., Kianmehr, M. H., Khani, S., & Ghasemi, M. (2009). Mathematical modelling of thin-layer drying of carrot. International Agrophysics, 23(4), 313-317.
  • Akpınar E. K. (2005). Deneysel çalışmalardaki hata analizine bir örnek: kurutma deneylerindeki hata analizi. Mühendis ve Makina, 46(540), 41-48.
  • Aktaş, M. (2007). Isı pompası destekli fındık kurutma fırınının tasarımı, imalatı ve deneysel incelenmesi. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Ensitüsü, Ankara, Türkiye.
  • Aktaş, M., İlbaş, M., Yalçın, A., & Şahin, M. (2013). Kızılötesi ışınımlı bir kurutucuda kuruma davranışlarının deneysel incelenmesi. Journal of Gazi University Faculty of Engineering and Architecture, 28(4), 767-775.
  • Albayrak, B. B., Tuncel, N. B., & Kocabıyık, H. (2021). Bazı instant gıdaların üretiminde kızılötesi kurutmanın etkisi. Journal of Advanced Research in Natural and Applied Sciences, 7(1), 100-113. https://doi,org/ 10,28979/jarnas,890536
  • Alibas, I. (2012). Selection of the best suitable thin-layer drying mathematical model for vacuum dried red chili pepper. Journal of Biological and Environmental Sciences, 6(17), 161-170.
  • Balbay, A., & Şahin, Ö. (2012). Microwave drying kinetics of a thin-layer liquorice root. Drying Technology, 30(8), 859-864. https://doi.org/10.1080/07373937.2012.670682
  • Basrawi, F., Redzlan, F., Ibrahim, T. K., & Yudin, A. S. M. (2020). Experimental study on the effect of bed aspect ratio to the drying rate of chilli for swirling fluidized bed dryer. IOP Conference Series: Materials Science and Engineering, 863, 012044.
  • Batman, S. G. (2016). Pastırma üretiminde infrared kurutma yönteminin kullanımı. Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye.
  • Chavan, B. R., Yakupitiyage, A., & Kumar, S. (2008). Mathematical modeling of drying characteristics of Indian mackerel (Rastrilliger kangurta) in solar-biomass hybrid cabinet dryer. Drying Technology, 26(12), 1552-1562. https://doi.org/10.1080/07373930802466872
  • Chuwattanakul, V., & Eiamsa-Ard, S. (2019). Hydrodynamics investigation of pepper drying in a swirling fluidized bed dryer with multiple-group twisted tape swirl generators. Case Studies in Thermal Engineering, 13, 100389.
  • Çiftçi, S. (2021). Sıcak hava ve kızılötesi kurutma işleminin arı poleninin bazı fiziksel özellikleri ve uçucu bileşen profili üzerine etkisi. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, Türkiye.
  • Dağcı, G. (2014). Ozmotik ön kurutma yapılmış kivi meyvesinin kızılötesi dalga destekli akışkan yatak kurutucu ile kurutulması. Yüksek Lisans Tezi, Celal Bayar Üniversitesi, Fen Bilimleri Enstitüsü, Manisa, Türkiye.
  • Darvishi, H., Najafi, G., Hosainpour, A., Khodaei, J., & Aazdbakht, M. (2013). Far- infrared drying characteristics of mushroom slices. Chemical Product and Process Modeling, 8(2), 107-117. https://doi,org/10,1515/cppm-2013-0035
  • Demir, Ö. (2019). Kızılötesi kurutucuda nane bitkisinin optimum kurutma sıcaklığının belirlenmesi. BEU Journal of Science, 8(3), 1094–1100.
  • Demirtas, C., Ayhan, T., & Kaygusuz, K. (1998). Drying behaviour of hazelnuts. Journal of the Science of Food and Agriculture, 76, 559-564. https://doi,org/10,1002/(SICI)1097-0010(199804)76:4<559::AID-JSFA988>3,0,CO;2-J
  • Ding, C., Khir, R., Pan, Z., Wood, D. F., Venkitasamy, C., Tu, K., El-Mashad, H., & Berrios, J. (2018). Influence of infrared drying on storage characteristics of brown rice. Food Chemistry, 264, 149-156. https://doi,org/10,1016/j,foodchem,2018,05,042
  • Dogru, M., Midilli, A., & Howarth, C. R. (2002). Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis. Fuel Processing Technology, 75(1), 55-82. https://doi.org/10.1016/S0378-3820(01)00234-X
  • Doymaz, I. (2012). Sun drying of seedless and seeded grapes. Journal of Food Science and Technology, 49(2), 214-220.
  • Doymaz, I. (2013). Determination of infrared drying characteristics and modelling of drying behaviour of carrot pomace. Journal of Agricultural Sciences, 19(1), 44-53. https://doi,org/10,1501/tarimbil_0000001227
  • Doymaz, I., Kipcak, A. S., & Piskin, S. (2015). Characteristics of thin-layer infrared drying of green bean. Czech Journal of Food Sciences, 33(1), 83-90. https://doi,org/10,17221/423/2014-CJFS
  • Doymaz, I., & Kipcak, A. S. (2019). Drying characteristics investigation of black mulberry dried via infrared method. Journal of Thermal Engineering, 5(2), 13-21.
  • Gaewsondee, T., & Duangkhamchan, W. (2019). A novel process for preparing instant riceberry using fluidized bed drying assisted with swirling compressed-air: kinetic aspects. Food and Bioprocess Technology, 12, 1422-1434.
  • Ganesapillai, M., Regupathi, I., & Murugesan, T. (2008). An empirical model for the estimation of moisture ratio during microwave drying of plaster of paris. Drying Technology, 26(7), 963-978. https://doi.org/10.1080/07373930802142978
  • Ghazanfari, A., Emami S., Tabil, L. G., & Panigrahi, S. (2006). Thin-layer drying of flax fiber, II: Modeling drying process using semi-theoretical and empirical models. Drying Technology, 24(12), 1637-1642. https://doi.org/10.1080/07373930601031463
  • Guo, Y., Wu, B., Guo, X., Ding, F., Pan, Z., & Ma, H. (2020). Effects of power ultrasound enhancement on infrared drying of carrot slices: Moisture migration and quality characterizations. LWT-Food Science and Technology, 126, 1-8. https://doi,org/10,1016/j,lwt,2020,109312
  • Jaiboon, P., Prachayawarakorn, S., Devahastin, S., & Soponronnarit, S. (2009). Effects of fluidized bed drying temperature and tempering time on quality of waxy rice. Journal of Food Engineering, 95(3), 517-524.
  • Jain, D., & Pathare, P. B. (2004). Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosystems Engineering, 89(3), 289-296. https://doi,org/10,1016/j,biosystemseng,2004,07,011
  • Kaleta, A., Górnicki, K., Winiczenko, R., & Chojnacka, A. (2013). Evaluation of drying models of apple (var, Ligol) dried in a fluidized bed dryer. Energy Conversion and Management, 67, 179-185.
  • Kandemir, L. (2019). LED teknolojisi ile fındık kurutma. Yüksek Lisans Tezi, Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, Türkiye.
  • Keleş, C. Ö., & Saçılık, K. (2019). Basınçlı hava kullanılan infrared ısıtıcılı kurutucuda kabuklu fındık kurutulması. Anadolu Journal of Agricultural Sciences, 34, 65-72. https://doi,org/10,7161/omuanajas,434531
  • Kılıç, Y. (2022). Zor ayrışabilen katı atıkların biyoreaktörlerde parçalanması. Yüksek lisans Tezi, Pamukkale üniversitesi, Fen Bilimleri Enstitüsü, Denizli, Türkiye.
  • Kocabıyık, H., & Demirtürk, B. S. (2008). Nane yapraklarının infrared radyasyonla kurutulması. Journal of Tekirdag Faculty of Agriculture, 5(3), 239-246.
  • Kucuk, H., Midilli, A., Kilic, A., & Dincer, I. (2014). A review on thin-layer drying-curve equations. Drying Technology, 32(7), 757-773. https://doi.org/10.1080/07373937.2013.873047
  • Kumar, N., Sarkar, B. C., & Sharma, H. K. (2012). Mathematical modelling of thin layer hot air drying of carrot pomace. Journal of Food Science and Technology, 49(1), 33-41. https://doi.org/10.1007/s13197-011-0266-7
  • Kurtuluş, O. (2007). Akışkan yatakta kurutma prosesinin incelenmesi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Küçük, H., Akbulut, U., & Midilli, A. (2022). Single-layer drying modeling of pumpkin (Cucurbita Maxima). Turkish Journal of Electromechanics and Energy, 7(3), 110-119, 2022.
  • McMinn, W. A. M., McLoughlin, C. M., & Magee, T. R. A. (2005). Thin-layer modeling of microwave, microwave-convective, and microwave-vacuum drying of pharmaceutical powders. Drying Technology, 23(3), 513-532. https://doi.org/10.100081/DRT-200054126 Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for sıngle-layer dryıng. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864 Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111-1122. https://doi.org/10.1016/S0196-8904(02)00099-7
  • Midilli, A., & Kucuk, H. (2023). Development of a new curve equation representing thin layer drying process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 9717–9730. https://doi.org/10.1080/15567036.2023.2240740
  • Midilli, A., Olgun, H., & Ayhan, T. (1999). Experimental studies on mushroom and pollen drying. International Journal of Energy Research, 23(13), 1143-1152. https://doi.org/10.1002/(SICI)1099-114X(19991025)23:13<1143::AID-ER544>3.0.CO;2-3
  • Mohamed, L. A., Kane, C. S. E., Kouhila, M., Jamali, A., Mahrouz, M., & Kechaou, N. (2008). Thin layer modelling of Gelidium sesquipedale solar drying process. Energy Conversion and Management, 49(5), pp, 940-946. https://doi.org/10.1016/j.enconman.2007.10.023
  • Nathakaranakule, A., Jaiboon, P., & Soponronnarit, S. (2010). Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 100(4), 662-668. https:// doi,org/10,1016/j,jfoodeng,2010,05,016
  • Niamnuy, C., & Devahastin, S. (2005). Drying kinetics and quality of coconut dried in a fluidized bed dryer. Journal of Food Engineering, 66(2), 267-271.
  • Okur, Ö., Kucuk, H., & Midilli, A. (2023). Triple-effect new generation drying technique. Innovative Food Science & Emerging Technologies, 89, 103489. https://doi,org/10,1016/j,ifset,2023,103489
  • Olgun, H., & Rzayev, P. (2000). Fındığın üç farklı sistemde güneş enerjisi ile kurutulması. Turkish Journal of Engineering and Environmental Sciences, 24(1), 1-14.
  • Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2019). Experimental studies and mathematical simulation of intermittent infrared and convective drying of sweet potato (Ipomoea batatas L,). Food and Bioproducts Processing, 114, 163-174. https://doi,org/10,1016/j,fbp,2018,12,006
  • Özbey, M., & Söylemez, M. S. (2005). Effect of swirling flow on fluidized bed drying of wheat grains. Energy Conversion and Management, 46(9-10):1495-1512.
  • Özdemir, M. B., Aktaş, M., Şevik, S., & Khanlari, A. (2017). Modeling of a convective- infrared kiwifruit drying process. International Journal of Hydrogen Energy, 42(28), 18005-18013. https://doi,org/10,1016/j,ijhydene,2017,01,012
  • Özdemir, M., & Devres, Y. O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42(4), 225-233. https://doi,org/10,1016/S0260-8774(99)00126-0
  • Öztürk Erdem, B. (2018). Hicaz narı (punica granatum l,) tanelerinin kızılötesi, mikrodalga ve konvektif kurutma yöntemleriyle kurutulması. Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana, Türkiye.
  • Pardeshi, I. L., Arora, S., & Borker, P. A. (2009). Thin-layer drying of green peas and selection of a suitable thin-layer drying model. Drying Technology, 27(2), 288-295. https://doi.org/10.1080/07373930802606451
  • Pekke, M. A., Pan, Z. L., Atungulu, G. G., Smith, G., & Thompson, J. F. (2013). Drying characteristics and quality of bananas under infrared radiation heating. International Journal of Agricultural and Biological Engineering, 6(3), 58-70.
  • Promvonge, P., Boonloi, A., Pimsarn, M., & Thianpong, C. (2011). Drying characteristics of peppercorns in a rectangular fluidized-bed with triangular wavy walls. International Communications in Heat and Mass Transfer, 38(9), 1239-1246.
  • Rosli, M. I., Abdul Nasir, A. M., Takriff, M. S., & Ravichandar, V. (2020). Drying sago pith waste in a fluidized bed dryer. Food and Bioproducts Processing, 123, 335-344.
  • Ruiz, C. A., Francisco, C., Fernando, L.-R., & Aida, R. (2013). Thin layer drying behavior of industrial tomato bye-products in a convective dryer at low temperatures. Research Journal of Biotechnology, 8(2), 50-60.
  • Selbaş, R. (1998). Akışkan yataklı sistemlerin analizi ve sunta kurtulmasında uygulanabilirliğinin araştırılması, Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta, Türkiye
  • Senadeera, W., Bhandari, B. R., Young, G., & Wijesinghe, B. (2003). Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, 58(3), 277-283.
  • Sitorus, A., Novrinaldi, N., Putra, S. A., Cebro, I. S., & Bulan, R. (2021). Modelling drying kinetics of paddy in swirling fluidized bed dryer. Case Studies in Thermal Engineering, 28, 101572, https://doi,org/10,1016/j,csite,2021,101572.
  • Şimşek, M., Kucuk, H., & A. Midilli, A. (2021). Experimental investigation and mathematical modeling of microwave thin layer drying behavior of apricot, kiwi and mint leaves. Recep Tayyip Erdogan University Journal of Science and Engineering, 2(2), 13-35.
  • Topçuoğlu, G. (2008). Uluslararası piyasada fındığın Türkiye ekonomisine katkısı ve sorunları. Yüksek lisans Tezi, Namık Kemal üniversitesi, Fen Bilimleri Enstitüsü, Tekirdağ, Türkiye.
  • Topuz, A. (2002). Akışkan yatakta fındık kurutma prosesinde ısı ve kütle geçişinin incelenmesi. Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, Türkiye.
  • Torki-Harchegani, M., Ghanbarian, D., Maghsoodi, V., & Moheb, A. (2017). Infrared thin layer drying of saffron ( Crocus sativus L,) stigmas: Mass transfer parameters and quality assessment. Chinese Journal of Chemical Engineering, 25(4), 426-432. https:// doi,org/10,1016/j,cjche,2016,09,005
  • Turan, A., & İslam, A. (2016). Çakıldak fındık çeşidinde kurutma ortamları ve muhafaza süresine bağlı olarak meydana gelen değişimler. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 6(2), 272-285.
  • Türkan, B. (2020). Endüstriyel malzemelerde eşzamanlı ısı ve kütle transferinin deneysel ve nümerik incelenmesi. Doktora Tezi, Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, Türkiye.
  • Vega-Galvez, A., Ayala-Aponte, A., Notte, E., de la Fuente, L., & Lemus-Mondaca, R. (2008). Mathematical modeling of mass transfer during convective dehydration of brown algae macrocystis pyrifera. Drying Technology, 26(12), 1610-1616. https://doi.org/10.1080/07373930802467532
  • Zare, D., Naderi, H., & Ranjbaran, M. (2014). Energy and quality attributes of combined hot-air/infrared drying of paddy. Drying Technology, 33(5), 570-582. https://doi, org/10,1080/07373937,2014,962143
  • Zielinska, M., & Markowski, M. (2007). Drying behavior of carrots dried in a spout- fluidized bed dryer. Drying Technology, 25(1), 261-270.
  • Zulkarnain, M. A., Shahriman, M. K., & Yudin, A. S. M. (2020). Experimental study of drying characteristics of cocoa bean in a swirling fluidized bed dryer. IOP Conference Series: Materials Science and Engineering, 863, 012048.
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Abdullah Çirak 0000-0002-4215-7458

Haydar Küçük 0000-0001-6493-4943

Adnan Midilli 0000-0001-9541-5409

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 7 Şubat 2024
Kabul Tarihi 8 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 1

Kaynak Göster

APA Çirak, A., Küçük, H., & Midilli, A. (2024). Fındığın dönmeli akışlı akışkan yataklı kızılötesi ışınımlı kurutma davranışının deneysel incelenmesi ve matematiksel modellenmesi. ITU Journal of Food Science and Technology, 2(1), 19-28.