Araştırma Makalesi
BibTex RIS Kaynak Göster

Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems

Yıl 2022, , 95 - 115, 29.12.2022
https://doi.org/10.26650/iujts.2022.1182687

Öz

Corpus-based machine translation (MT) has been the main approach to developing and implementing MT systems in both academia and the industry over the last three decades. In this field, the type and size of the corpus used for training MT engines have presented problems for both statistical MT (SMT) systems as well as neural MT (NMT) systems, being the two dominant corpusbased approaches. Moreover, language pairs such as Turkish-English have been understudied within this framework. This article aims to evaluate the translation quality in Turkish-to-English custom MT systems that have been trained on different corpus sizes and types. Two NMT engines and two SMT engines were trained on the KantanMT platform using two different training corpus types with either only domain-specific cardiology corpus or this corpus plus a mixed-domain corpus. The study conducted both automatic evaluations with metrics including BLEU, F-Measure and TER, as well as a comprehensive human evaluation with metrics including fluency, A/B test, and adequacy. Lastly, the study realized a separate, subjective terminology evaluation in order to investigate how differently MT systems handle terminology, as this is a crucial aspect for specific-domain text types such as cardiology. While the automatic evaluation results suggest the SMT engines to perform better than NMT engines, all human evaluators rated the mixed-domain NMT engine as the highest performing one. However, the terminology evaluation task demonstrated SMT to still be able to perform better and to commit less terminology errors, despite the industry and academia shifting toward NMT engines.

Destekleyen Kurum

European Union-NextGenerationEU grant

Teşekkür

The work herein is adapted from the PhD study of the author and formatted as a stand-alone article. This work is supported by the European Union-NextGenerationEU grant in the framework of Margarita Salas Postdoctoral Grant. I would like to thank Anna Aguilar Amat and Adria Martin Mor for their invaluable comments during my PhD work and Mr. Joss Moorkens for his feedback during my research visit to Dublin City University as a postdoctoral researcher.

Kaynakça

  • Ataman, D. (2018). Bianet: A Parallel News Corpus in Turkish, Kurdish and English. Proceedings of the LREC Workshop MLP-Moment, (pp. 14-17). google scholar
  • Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus Phrase-Based Machine Translation Quality: a Case Study. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, (pp. 257-267). doi:10.18653/v1/D16-1025 google scholar
  • Burlot, F., Scherrer, Y., Ravishankar, V., Bojar, O., Gronroos, S.-A., Koponen, M., . . . Yvon, F. (2018). The WMT’18 Morpheval test suites for English-Czech, English-German, English- Finnish and Turkish-English. Proceedings of the Third Conference on Machine Translation: Shared Task Papers, (pp. 546-560). google scholar
  • Castilho, S., Doherty, S., Gaspari, F., & Moorkens, J. (2018). Approaches to human and machine translation quality assessment. In J. Moorkens, S. Castilho, F. Gaspari, & S. (. Doherty (Eds.), Translation Quality Assessment (pp. 9-38). Springer. google scholar
  • Castilho, S., Moorkens, J., & Gaspari, F. e. (2018). Evaluating MT for massive open online courses: A multifaceted comparison between PBSMT and NMT systems. Machine Translation, 32, 255-278. doi:https:// doi.org/10.1007/s10590-018-9221-y google scholar
  • Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., & Way, A. (2017). Is Neural Machine Translation the New State of the Art? The Prague Bulletin of Mathematical Linguistics, 108(1), pp. 109-120. doi:https:// doi.org/10.1515/pralin-2017-0013 google scholar
  • Doğru, G., Martin-Mor, A., & Aguilar-Amat, A. (2018). Parallel Corpora Preparation for Machine Translation of Low-Resource Languages: Turkish-to-English Cardiology Corpora. Proceedings of the LREC 2018 Workshop “MultilingualBIO: Multilingual Biomedical Text Processing”, (pp. 12 - 15). Miyazaki. google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2006). Initial Explorations in English ^ Turkish Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine Translation, (pp. 7-14). google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2010). Exploiting Morphology and Local Word Reordering in English ^ Turkish Phrase-based Statistical Machine Translation. IEEE Transactions on Audio, Speech and Language Processing, 1313-1322. google scholar
  • Esplâ-Gomis, M., Forcada, M. L., Ramirez-Sanchez, G., & Hoang, H. (2019). ParaCrawl: Web-scale parallel corpora for the languages of the EU. Proceedings of MT Summit XVII, volume 2, (pp. 118 - 119). google scholar
  • Forcada, M. L. (2010). Machine translation today. In Y. Gambier, & L. Doorslaer (Eds.), Handbook of Translation Studies (pp. 215-223). Amsterdam and Philadelphia: John Benjamins. google scholar
  • Koehn, P. (2020). Neural Machine Translation. Cambridge University Press. google scholar
  • Lumeras, M., & Way, A. (2017). On the Complementarity between Human Translators and Machine Translation. HERMES - Journal of Language and Communication in Business(56), 21-42. doi:https://doi.org/10.7146/ hjlcb.v0i56.97200 google scholar
  • Melamed, I., Green, R., & Turian, J. (2003). Precision and recall of machine translation. Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, (pp. 61-63). Edmonton. google scholar
  • Oflazer, K., & El-Kahlout, I. D. (2007). Exploring different representational units in English-to-Turkish statistical machine translation. Proceedings of the Second Workshop on Statistical Machine Translation, (pp. 25-32). Prague. google scholar
  • Oflazer, K., & Saraclar, M. (2018). Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Papineni, K., Roukos, S., Ward, T., & J, Z. W. (2002). BLEU: a method for automatic evaluation of machine. google scholar
  • Proceedings of the 40th annual meeting on association for computational linguistics, (pp. 311-318). Philadelphia, Pennsylvania, USA. google scholar
  • Perez-Ortiz, J. A., Forcada, M. L., & Sanchez-Martinez, F. (2022). How neural machine translation works. In D. Kenny, Machine translation for everyone: Empowering users in the age of artificial intelligence (pp. 141-164). Dublin: Language Science Press. google scholar
  • Şahin, M. (2015). Çevirmen Adaylarının Gözünden İngilizce- Türkçe Bilgisayar Çevirisi ve Bilgisayar Destekli Çeviri: Google Deneyi. Çeviribilim ve Uygulamaları Dergisi, Journal of Translation Studies(21), 43-60. google scholar
  • Shterionov, D., Superbo, R., Nagle, P., Casanellas, L., O’Dowd, T., & Way, A. (2018). Human versus automatic quality evaluation of NMT and PBSMT. Machine Translation, 32, 217- 235. doi:https://doi.org/10.1007/ s10590-018-9220-z google scholar
  • Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. 2006. Proceedings of the 7th conference of the association for machine translation of the Americas. Visions for the future of machine translation, (pp. 223-231). Cambridge,Massachusetts,. google scholar
  • Tantuğ, A. C., & Adalı, E. (2018). Machine Translation Between Turkic Languages. In K. Oflazer, & M. (. Saraçlar, Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Tantuğ, A. C., Oflazer, K., & El-Kahlout, I. D. (2008). BLEU+: a Tool for Fine-Grained BLEU Computation. Proceedings of the International Conference on Language Resources and Evaluation, LREC. google scholar
  • Tiedemann, J. (2012). Parallel Data, Tools and Interfaces in OPUS. Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), (pp. 2214 - 2218). google scholar
  • Tyers, F. M., & Alperen, M. S. (2010). South-east European Times: A parallel corpus of Balkan Languages. Proceedings of LREC 2010, Seventh International Conference on Language Resources and Evaluation. Retrieved from http://nlp.ffzg.hr/resources/corpora/setimes/ google scholar
  • Way, A. (2018). Quality Expectations of Machine Translation. In S. Castilho, J. Moorkens, & F. &. Gaspari (Eds.), Translation Quality Assessment: From Principles to Practice (pp. 159-178). Springer. google scholar
  • Way, A., & Hearne, M. (2011). On the Role of Translations in State-of-the-Art Statistical Machine Translation. Language and Linguistics Compass, 5/5, 227-248. google scholar
  • Wolk, K., & Marasek, K. (2014). Building Subject-aligned Comparable Corpora and Mining it for Truly Parallel Sentence Pairs. Procedia Technology, 18, 126-132. google scholar
Yıl 2022, , 95 - 115, 29.12.2022
https://doi.org/10.26650/iujts.2022.1182687

Öz

Kaynakça

  • Ataman, D. (2018). Bianet: A Parallel News Corpus in Turkish, Kurdish and English. Proceedings of the LREC Workshop MLP-Moment, (pp. 14-17). google scholar
  • Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus Phrase-Based Machine Translation Quality: a Case Study. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, (pp. 257-267). doi:10.18653/v1/D16-1025 google scholar
  • Burlot, F., Scherrer, Y., Ravishankar, V., Bojar, O., Gronroos, S.-A., Koponen, M., . . . Yvon, F. (2018). The WMT’18 Morpheval test suites for English-Czech, English-German, English- Finnish and Turkish-English. Proceedings of the Third Conference on Machine Translation: Shared Task Papers, (pp. 546-560). google scholar
  • Castilho, S., Doherty, S., Gaspari, F., & Moorkens, J. (2018). Approaches to human and machine translation quality assessment. In J. Moorkens, S. Castilho, F. Gaspari, & S. (. Doherty (Eds.), Translation Quality Assessment (pp. 9-38). Springer. google scholar
  • Castilho, S., Moorkens, J., & Gaspari, F. e. (2018). Evaluating MT for massive open online courses: A multifaceted comparison between PBSMT and NMT systems. Machine Translation, 32, 255-278. doi:https:// doi.org/10.1007/s10590-018-9221-y google scholar
  • Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., & Way, A. (2017). Is Neural Machine Translation the New State of the Art? The Prague Bulletin of Mathematical Linguistics, 108(1), pp. 109-120. doi:https:// doi.org/10.1515/pralin-2017-0013 google scholar
  • Doğru, G., Martin-Mor, A., & Aguilar-Amat, A. (2018). Parallel Corpora Preparation for Machine Translation of Low-Resource Languages: Turkish-to-English Cardiology Corpora. Proceedings of the LREC 2018 Workshop “MultilingualBIO: Multilingual Biomedical Text Processing”, (pp. 12 - 15). Miyazaki. google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2006). Initial Explorations in English ^ Turkish Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine Translation, (pp. 7-14). google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2010). Exploiting Morphology and Local Word Reordering in English ^ Turkish Phrase-based Statistical Machine Translation. IEEE Transactions on Audio, Speech and Language Processing, 1313-1322. google scholar
  • Esplâ-Gomis, M., Forcada, M. L., Ramirez-Sanchez, G., & Hoang, H. (2019). ParaCrawl: Web-scale parallel corpora for the languages of the EU. Proceedings of MT Summit XVII, volume 2, (pp. 118 - 119). google scholar
  • Forcada, M. L. (2010). Machine translation today. In Y. Gambier, & L. Doorslaer (Eds.), Handbook of Translation Studies (pp. 215-223). Amsterdam and Philadelphia: John Benjamins. google scholar
  • Koehn, P. (2020). Neural Machine Translation. Cambridge University Press. google scholar
  • Lumeras, M., & Way, A. (2017). On the Complementarity between Human Translators and Machine Translation. HERMES - Journal of Language and Communication in Business(56), 21-42. doi:https://doi.org/10.7146/ hjlcb.v0i56.97200 google scholar
  • Melamed, I., Green, R., & Turian, J. (2003). Precision and recall of machine translation. Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, (pp. 61-63). Edmonton. google scholar
  • Oflazer, K., & El-Kahlout, I. D. (2007). Exploring different representational units in English-to-Turkish statistical machine translation. Proceedings of the Second Workshop on Statistical Machine Translation, (pp. 25-32). Prague. google scholar
  • Oflazer, K., & Saraclar, M. (2018). Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Papineni, K., Roukos, S., Ward, T., & J, Z. W. (2002). BLEU: a method for automatic evaluation of machine. google scholar
  • Proceedings of the 40th annual meeting on association for computational linguistics, (pp. 311-318). Philadelphia, Pennsylvania, USA. google scholar
  • Perez-Ortiz, J. A., Forcada, M. L., & Sanchez-Martinez, F. (2022). How neural machine translation works. In D. Kenny, Machine translation for everyone: Empowering users in the age of artificial intelligence (pp. 141-164). Dublin: Language Science Press. google scholar
  • Şahin, M. (2015). Çevirmen Adaylarının Gözünden İngilizce- Türkçe Bilgisayar Çevirisi ve Bilgisayar Destekli Çeviri: Google Deneyi. Çeviribilim ve Uygulamaları Dergisi, Journal of Translation Studies(21), 43-60. google scholar
  • Shterionov, D., Superbo, R., Nagle, P., Casanellas, L., O’Dowd, T., & Way, A. (2018). Human versus automatic quality evaluation of NMT and PBSMT. Machine Translation, 32, 217- 235. doi:https://doi.org/10.1007/ s10590-018-9220-z google scholar
  • Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. 2006. Proceedings of the 7th conference of the association for machine translation of the Americas. Visions for the future of machine translation, (pp. 223-231). Cambridge,Massachusetts,. google scholar
  • Tantuğ, A. C., & Adalı, E. (2018). Machine Translation Between Turkic Languages. In K. Oflazer, & M. (. Saraçlar, Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Tantuğ, A. C., Oflazer, K., & El-Kahlout, I. D. (2008). BLEU+: a Tool for Fine-Grained BLEU Computation. Proceedings of the International Conference on Language Resources and Evaluation, LREC. google scholar
  • Tiedemann, J. (2012). Parallel Data, Tools and Interfaces in OPUS. Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), (pp. 2214 - 2218). google scholar
  • Tyers, F. M., & Alperen, M. S. (2010). South-east European Times: A parallel corpus of Balkan Languages. Proceedings of LREC 2010, Seventh International Conference on Language Resources and Evaluation. Retrieved from http://nlp.ffzg.hr/resources/corpora/setimes/ google scholar
  • Way, A. (2018). Quality Expectations of Machine Translation. In S. Castilho, J. Moorkens, & F. &. Gaspari (Eds.), Translation Quality Assessment: From Principles to Practice (pp. 159-178). Springer. google scholar
  • Way, A., & Hearne, M. (2011). On the Role of Translations in State-of-the-Art Statistical Machine Translation. Language and Linguistics Compass, 5/5, 227-248. google scholar
  • Wolk, K., & Marasek, K. (2014). Building Subject-aligned Comparable Corpora and Mining it for Truly Parallel Sentence Pairs. Procedia Technology, 18, 126-132. google scholar
Yıl 2022, , 95 - 115, 29.12.2022
https://doi.org/10.26650/iujts.2022.1182687

Öz

Kaynakça

  • Ataman, D. (2018). Bianet: A Parallel News Corpus in Turkish, Kurdish and English. Proceedings of the LREC Workshop MLP-Moment, (pp. 14-17). google scholar
  • Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus Phrase-Based Machine Translation Quality: a Case Study. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, (pp. 257-267). doi:10.18653/v1/D16-1025 google scholar
  • Burlot, F., Scherrer, Y., Ravishankar, V., Bojar, O., Gronroos, S.-A., Koponen, M., . . . Yvon, F. (2018). The WMT’18 Morpheval test suites for English-Czech, English-German, English- Finnish and Turkish-English. Proceedings of the Third Conference on Machine Translation: Shared Task Papers, (pp. 546-560). google scholar
  • Castilho, S., Doherty, S., Gaspari, F., & Moorkens, J. (2018). Approaches to human and machine translation quality assessment. In J. Moorkens, S. Castilho, F. Gaspari, & S. (. Doherty (Eds.), Translation Quality Assessment (pp. 9-38). Springer. google scholar
  • Castilho, S., Moorkens, J., & Gaspari, F. e. (2018). Evaluating MT for massive open online courses: A multifaceted comparison between PBSMT and NMT systems. Machine Translation, 32, 255-278. doi:https:// doi.org/10.1007/s10590-018-9221-y google scholar
  • Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., & Way, A. (2017). Is Neural Machine Translation the New State of the Art? The Prague Bulletin of Mathematical Linguistics, 108(1), pp. 109-120. doi:https:// doi.org/10.1515/pralin-2017-0013 google scholar
  • Doğru, G., Martin-Mor, A., & Aguilar-Amat, A. (2018). Parallel Corpora Preparation for Machine Translation of Low-Resource Languages: Turkish-to-English Cardiology Corpora. Proceedings of the LREC 2018 Workshop “MultilingualBIO: Multilingual Biomedical Text Processing”, (pp. 12 - 15). Miyazaki. google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2006). Initial Explorations in English ^ Turkish Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine Translation, (pp. 7-14). google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2010). Exploiting Morphology and Local Word Reordering in English ^ Turkish Phrase-based Statistical Machine Translation. IEEE Transactions on Audio, Speech and Language Processing, 1313-1322. google scholar
  • Esplâ-Gomis, M., Forcada, M. L., Ramirez-Sanchez, G., & Hoang, H. (2019). ParaCrawl: Web-scale parallel corpora for the languages of the EU. Proceedings of MT Summit XVII, volume 2, (pp. 118 - 119). google scholar
  • Forcada, M. L. (2010). Machine translation today. In Y. Gambier, & L. Doorslaer (Eds.), Handbook of Translation Studies (pp. 215-223). Amsterdam and Philadelphia: John Benjamins. google scholar
  • Koehn, P. (2020). Neural Machine Translation. Cambridge University Press. google scholar
  • Lumeras, M., & Way, A. (2017). On the Complementarity between Human Translators and Machine Translation. HERMES - Journal of Language and Communication in Business(56), 21-42. doi:https://doi.org/10.7146/ hjlcb.v0i56.97200 google scholar
  • Melamed, I., Green, R., & Turian, J. (2003). Precision and recall of machine translation. Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, (pp. 61-63). Edmonton. google scholar
  • Oflazer, K., & El-Kahlout, I. D. (2007). Exploring different representational units in English-to-Turkish statistical machine translation. Proceedings of the Second Workshop on Statistical Machine Translation, (pp. 25-32). Prague. google scholar
  • Oflazer, K., & Saraclar, M. (2018). Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Papineni, K., Roukos, S., Ward, T., & J, Z. W. (2002). BLEU: a method for automatic evaluation of machine. google scholar
  • Proceedings of the 40th annual meeting on association for computational linguistics, (pp. 311-318). Philadelphia, Pennsylvania, USA. google scholar
  • Perez-Ortiz, J. A., Forcada, M. L., & Sanchez-Martinez, F. (2022). How neural machine translation works. In D. Kenny, Machine translation for everyone: Empowering users in the age of artificial intelligence (pp. 141-164). Dublin: Language Science Press. google scholar
  • Şahin, M. (2015). Çevirmen Adaylarının Gözünden İngilizce- Türkçe Bilgisayar Çevirisi ve Bilgisayar Destekli Çeviri: Google Deneyi. Çeviribilim ve Uygulamaları Dergisi, Journal of Translation Studies(21), 43-60. google scholar
  • Shterionov, D., Superbo, R., Nagle, P., Casanellas, L., O’Dowd, T., & Way, A. (2018). Human versus automatic quality evaluation of NMT and PBSMT. Machine Translation, 32, 217- 235. doi:https://doi.org/10.1007/ s10590-018-9220-z google scholar
  • Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. 2006. Proceedings of the 7th conference of the association for machine translation of the Americas. Visions for the future of machine translation, (pp. 223-231). Cambridge,Massachusetts,. google scholar
  • Tantuğ, A. C., & Adalı, E. (2018). Machine Translation Between Turkic Languages. In K. Oflazer, & M. (. Saraçlar, Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Tantuğ, A. C., Oflazer, K., & El-Kahlout, I. D. (2008). BLEU+: a Tool for Fine-Grained BLEU Computation. Proceedings of the International Conference on Language Resources and Evaluation, LREC. google scholar
  • Tiedemann, J. (2012). Parallel Data, Tools and Interfaces in OPUS. Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), (pp. 2214 - 2218). google scholar
  • Tyers, F. M., & Alperen, M. S. (2010). South-east European Times: A parallel corpus of Balkan Languages. Proceedings of LREC 2010, Seventh International Conference on Language Resources and Evaluation. Retrieved from http://nlp.ffzg.hr/resources/corpora/setimes/ google scholar
  • Way, A. (2018). Quality Expectations of Machine Translation. In S. Castilho, J. Moorkens, & F. &. Gaspari (Eds.), Translation Quality Assessment: From Principles to Practice (pp. 159-178). Springer. google scholar
  • Way, A., & Hearne, M. (2011). On the Role of Translations in State-of-the-Art Statistical Machine Translation. Language and Linguistics Compass, 5/5, 227-248. google scholar
  • Wolk, K., & Marasek, K. (2014). Building Subject-aligned Comparable Corpora and Mining it for Truly Parallel Sentence Pairs. Procedia Technology, 18, 126-132. google scholar

Özel Alanlarda Düşük Kaynaklara Sahip Makine Çevirisinde Çeviri Kalitesi: Türkçeden İngilizceye İstatistiksel ve Nöral Makine Çevirisi Üzerine Ayrıntılı Bir Karşılaştırmalı Çalışma

Yıl 2022, , 95 - 115, 29.12.2022
https://doi.org/10.26650/iujts.2022.1182687

Öz

Derlem tabanlı makine çevirisi (MÇ), son otuz yılda hem akademide hem de endüstride MÇ sistemleri geliştirmek ve uygulamak konusunda ana yaklaşım olmuştur. MÇ motorlarını eğitmek için kullanılan derlemin türü ve boyutu, iki baskın derlem tabanlı yaklaşım olan istatistiksel MÇ (İMÇ) sistemleri ve nöral MÇ (NMÇ) sistemleri için problemler ortaya çıkarmıştır. Ayrıca bu çerçevede Türkçe → İngilizce gibi dil çiftleri üzerinde yeterince çalışma yapılmamıştır. Bu makale, farklı derlem boyutu ve türü üzerinde eğitilmiş Türkçe → İngilizce, özelleştirilmiş MÇ sistemlerinde çeviri kalitesini değerlendirmeyi amaçlamaktadır. İki NMÇ motoru ve iki İMÇ motoru, yalnızca alana özgü kardiyoloji derlemi veya bu derlem artı bir karma alanlı derlem ile iki farklı MÇ eğitme derlemi türü kullanılarak KantanMT platformunda eğitildi. Hem BLEU, F-Measure ve TER gibi metriklerle otomatik değerlendirmeler, hem de akıcılık, A/B testi ve yeterlilik gibi metriklerle kapsamlı bir insan değerlendirmesi yapıldı. Son olarak, kardiyoloji gibi belirli bir alana dayalı metin türleri için çok önemli olduğundan farklı MÇ sistemlerinin terminolojiyi nasıl ele aldığını araştırmak adına ayrı, öznel bir terminoloji değerlendirmesi gerçekleştirildi. Otomatik değerlendirme sonuçları, İMÇ motorlarının NMÇ motorlarından daha iyi performans sergilediğini gösterirken, tüm insan değerlendiriciler, karma alanlı NMÇ motorunu en yüksek performanslı motor olarak değerlendirdi. Yine de terminoloji değerlendirme görevi, endüstri ve akademi NMÇ'ye doğru kaysa da İMÇ'nin yine de daha iyi performans gösterebileceğini ve daha az terminoloji hatası yapabileceğini ortaya koydu.

Kaynakça

  • Ataman, D. (2018). Bianet: A Parallel News Corpus in Turkish, Kurdish and English. Proceedings of the LREC Workshop MLP-Moment, (pp. 14-17). google scholar
  • Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural versus Phrase-Based Machine Translation Quality: a Case Study. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, (pp. 257-267). doi:10.18653/v1/D16-1025 google scholar
  • Burlot, F., Scherrer, Y., Ravishankar, V., Bojar, O., Gronroos, S.-A., Koponen, M., . . . Yvon, F. (2018). The WMT’18 Morpheval test suites for English-Czech, English-German, English- Finnish and Turkish-English. Proceedings of the Third Conference on Machine Translation: Shared Task Papers, (pp. 546-560). google scholar
  • Castilho, S., Doherty, S., Gaspari, F., & Moorkens, J. (2018). Approaches to human and machine translation quality assessment. In J. Moorkens, S. Castilho, F. Gaspari, & S. (. Doherty (Eds.), Translation Quality Assessment (pp. 9-38). Springer. google scholar
  • Castilho, S., Moorkens, J., & Gaspari, F. e. (2018). Evaluating MT for massive open online courses: A multifaceted comparison between PBSMT and NMT systems. Machine Translation, 32, 255-278. doi:https:// doi.org/10.1007/s10590-018-9221-y google scholar
  • Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., & Way, A. (2017). Is Neural Machine Translation the New State of the Art? The Prague Bulletin of Mathematical Linguistics, 108(1), pp. 109-120. doi:https:// doi.org/10.1515/pralin-2017-0013 google scholar
  • Doğru, G., Martin-Mor, A., & Aguilar-Amat, A. (2018). Parallel Corpora Preparation for Machine Translation of Low-Resource Languages: Turkish-to-English Cardiology Corpora. Proceedings of the LREC 2018 Workshop “MultilingualBIO: Multilingual Biomedical Text Processing”, (pp. 12 - 15). Miyazaki. google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2006). Initial Explorations in English ^ Turkish Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine Translation, (pp. 7-14). google scholar
  • El-Kahlout, İ. D., & Oflazer, K. (2010). Exploiting Morphology and Local Word Reordering in English ^ Turkish Phrase-based Statistical Machine Translation. IEEE Transactions on Audio, Speech and Language Processing, 1313-1322. google scholar
  • Esplâ-Gomis, M., Forcada, M. L., Ramirez-Sanchez, G., & Hoang, H. (2019). ParaCrawl: Web-scale parallel corpora for the languages of the EU. Proceedings of MT Summit XVII, volume 2, (pp. 118 - 119). google scholar
  • Forcada, M. L. (2010). Machine translation today. In Y. Gambier, & L. Doorslaer (Eds.), Handbook of Translation Studies (pp. 215-223). Amsterdam and Philadelphia: John Benjamins. google scholar
  • Koehn, P. (2020). Neural Machine Translation. Cambridge University Press. google scholar
  • Lumeras, M., & Way, A. (2017). On the Complementarity between Human Translators and Machine Translation. HERMES - Journal of Language and Communication in Business(56), 21-42. doi:https://doi.org/10.7146/ hjlcb.v0i56.97200 google scholar
  • Melamed, I., Green, R., & Turian, J. (2003). Precision and recall of machine translation. Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, (pp. 61-63). Edmonton. google scholar
  • Oflazer, K., & El-Kahlout, I. D. (2007). Exploring different representational units in English-to-Turkish statistical machine translation. Proceedings of the Second Workshop on Statistical Machine Translation, (pp. 25-32). Prague. google scholar
  • Oflazer, K., & Saraclar, M. (2018). Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Papineni, K., Roukos, S., Ward, T., & J, Z. W. (2002). BLEU: a method for automatic evaluation of machine. google scholar
  • Proceedings of the 40th annual meeting on association for computational linguistics, (pp. 311-318). Philadelphia, Pennsylvania, USA. google scholar
  • Perez-Ortiz, J. A., Forcada, M. L., & Sanchez-Martinez, F. (2022). How neural machine translation works. In D. Kenny, Machine translation for everyone: Empowering users in the age of artificial intelligence (pp. 141-164). Dublin: Language Science Press. google scholar
  • Şahin, M. (2015). Çevirmen Adaylarının Gözünden İngilizce- Türkçe Bilgisayar Çevirisi ve Bilgisayar Destekli Çeviri: Google Deneyi. Çeviribilim ve Uygulamaları Dergisi, Journal of Translation Studies(21), 43-60. google scholar
  • Shterionov, D., Superbo, R., Nagle, P., Casanellas, L., O’Dowd, T., & Way, A. (2018). Human versus automatic quality evaluation of NMT and PBSMT. Machine Translation, 32, 217- 235. doi:https://doi.org/10.1007/ s10590-018-9220-z google scholar
  • Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006). A study of translation edit rate with targeted human annotation. 2006. Proceedings of the 7th conference of the association for machine translation of the Americas. Visions for the future of machine translation, (pp. 223-231). Cambridge,Massachusetts,. google scholar
  • Tantuğ, A. C., & Adalı, E. (2018). Machine Translation Between Turkic Languages. In K. Oflazer, & M. (. Saraçlar, Turkish Natural Language Processing. Springer International Publishing. google scholar
  • Tantuğ, A. C., Oflazer, K., & El-Kahlout, I. D. (2008). BLEU+: a Tool for Fine-Grained BLEU Computation. Proceedings of the International Conference on Language Resources and Evaluation, LREC. google scholar
  • Tiedemann, J. (2012). Parallel Data, Tools and Interfaces in OPUS. Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC 2012), (pp. 2214 - 2218). google scholar
  • Tyers, F. M., & Alperen, M. S. (2010). South-east European Times: A parallel corpus of Balkan Languages. Proceedings of LREC 2010, Seventh International Conference on Language Resources and Evaluation. Retrieved from http://nlp.ffzg.hr/resources/corpora/setimes/ google scholar
  • Way, A. (2018). Quality Expectations of Machine Translation. In S. Castilho, J. Moorkens, & F. &. Gaspari (Eds.), Translation Quality Assessment: From Principles to Practice (pp. 159-178). Springer. google scholar
  • Way, A., & Hearne, M. (2011). On the Role of Translations in State-of-the-Art Statistical Machine Translation. Language and Linguistics Compass, 5/5, 227-248. google scholar
  • Wolk, K., & Marasek, K. (2014). Building Subject-aligned Comparable Corpora and Mining it for Truly Parallel Sentence Pairs. Procedia Technology, 18, 126-132. google scholar
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm MAKALELER
Yazarlar

Gokhan Dogru

Yayımlanma Tarihi 29 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Dogru, G. (2022). Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems. IU Journal of Translation Studies(17), 95-115. https://doi.org/10.26650/iujts.2022.1182687
AMA Dogru G. Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems. IU Journal of Translation Studies. Aralık 2022;(17):95-115. doi:10.26650/iujts.2022.1182687
Chicago Dogru, Gokhan. “Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems”. IU Journal of Translation Studies, sy. 17 (Aralık 2022): 95-115. https://doi.org/10.26650/iujts.2022.1182687.
EndNote Dogru G (01 Aralık 2022) Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems. IU Journal of Translation Studies 17 95–115.
IEEE G. Dogru, “Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems”, IU Journal of Translation Studies, sy. 17, ss. 95–115, Aralık 2022, doi: 10.26650/iujts.2022.1182687.
ISNAD Dogru, Gokhan. “Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems”. IU Journal of Translation Studies 17 (Aralık 2022), 95-115. https://doi.org/10.26650/iujts.2022.1182687.
JAMA Dogru G. Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems. IU Journal of Translation Studies. 2022;:95–115.
MLA Dogru, Gokhan. “Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems”. IU Journal of Translation Studies, sy. 17, 2022, ss. 95-115, doi:10.26650/iujts.2022.1182687.
Vancouver Dogru G. Translation Quality Regarding Low-Resource, Custom Machine Translations: A Fine-Grained Comparative Study on Turkish-to-English Statistical and Neural Machine Translation Systems. IU Journal of Translation Studies. 2022(17):95-115.