Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 8 Sayı: 2, 293 - 319, 18.11.2020
https://doi.org/10.26650/JPLC2020-813328

Öz

Destekleyen Kurum

Destekleyen kurum bulunmamaktadır.

Proje Numarası

Proje kapsamında değildir.

Teşekkür

Teşekkür kısmı bulunmamaktadır.

Kaynakça

  • Abdullah, N., Ismail, S. A., Sophiayati, S., & Sam, S. M. (2015). Data quality in big data: a review. International Journal of Advances in Soft Computing & Its Applications, 7(3). google scholar
  • Adamović, S., Miškovic, V., Maček, N., Milosavljević, M., Šarac, M., Saračević, M., & Gnjatović, M. (2020). An efficient novel approach for iris recognition based on stylometric features and machine learning techniques. Future Generation Computer Systems, 107, 144-157. google scholar
  • Adewumi, A. O., & Akinyelu, A. A. (2017). A survey of machine-learning and nature-inspired based credit card fraud detection techniques. International Journal of System Assurance Engineering and Management, 8(2), 937-953. google scholar
  • Aggarwal, C. C. (2018). Machine learning for text. Cham: Springer International Publishing. google scholar
  • Agrahari, A., & Rao, D. (2017). A review paper on Big Data: technologies, tools and trends. Int Res J Eng Technol, 4(10), 640-649. google scholar
  • Agu, S. C., Ajah, I., & Ibe, W. E. (2019). Impact of Human Character and Information System on Corruption Risk in Nigeria. International Journal of Scientific Research and Engineering Development, 2(4), 481-485. google scholar
  • Ahmed, A. (2020). “From Data to Wisdom” Using Machine Learning Capabilities in Accounting and Finance Professionals. Talent Development & Excellence, 12. google scholar
  • Ajans Press, 2017. [Online]. Available: https://www.cnnturk.com/bilim-teknoloji/ turkiye-cep-telefonuylakonusmada-avrupa-birincisi?page=1 (accessed 5.12.18). google scholar
  • Akdemir, N., & Lawless, C. J. (2020). Exploring the human factor in cyber-enabled and cyber-dependent crime victimisation: a lifestyle routine activities approach. Internet Research, 30(6), 1665-1687. google scholar
  • Aledhari, M., Di Pierro, M., Hefeida, M., & Saeed, F. (2018). A deep learning-based data minimization algorithm for fast and secure transfer of big genomic datasets. IEEE Transactions on Big Data. google scholar
  • Arora, S., Bhatia, M. P. S., & Kukreja, H. (2020, February). A Multimodal Biometric System for Secure User Identification Based on Deep Learning. In International Congress on Information and Communication Technology (pp. 95-103). Springer, Singapore. google scholar
  • Arshad, H., Jantan, A., & Omolara, E. (2019). Evidence collection and forensics on social networks: Research challenges and directions. Digital Investigation, 28, 126-138. google scholar
  • Ateş, E.C., Bostanci, E., & Guzel, M. S. (2020). Security Evaluation of Industry 4.0: Understanding Industry 4.0 on the Basis of Crime, Big Data, Internet Of Thing (IoT) and Cyber Physical Systems. Güvenlik Bilimleri Dergisi, (International Security Congress Special Issue), 29-50. google scholar
  • Ayre, L. B., & Craner, J. (2017). Open data: What it is and why you should care. Public Library Quarterly, 36(2), 173-184. google scholar
  • Beniwal, S., & Arora, J. (2012). Classification and feature selection techniques in data mining. International journal of engineering research & technology (IJERT), 1(6), 1-6. google scholar
  • Berk, R. (2017). An impact assessment of machine learning risk forecasts on parole board decisions and recidivism. Journal of Experimental Criminology, 13(2), 193-216. google scholar
  • Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25- 71). Springer, Berlin, Heidelberg. google scholar
  • Bhuyan, M. H., Saharia, S., & Bhattacharyya, D. K. (2012). An effective method for fingerprint classification. arXiv preprint arXiv:1211.4658. google scholar
  • Blei, D. M., & Smyth, P. (2017). Science and data science. Proceedings of the National Academy of Sciences, 114(33), 8689-8692. google scholar
  • Bock, F. E., Aydin, R. C., Cyron, C. J., Huber, N., Kalidindi, S. R., & Klusemann, B. (2019). A review of the application of machine learning and data mining approaches in continuum materials mechanics. Frontiers in Materials, 6, 110. google scholar
  • Bode, J. (2019, June). Every Contact Leaves a Trace: A Literary Reality of Locard’s Exchange Principle. In Outside the Box: A Multi-Lingual Forum (p. 18). google scholar
  • Bostanci, E. (2015). 3D reconstruction of crime scenes and design considerations for an interactive investigation tool. arXiv preprint arXiv:1512.03156. google scholar
  • Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5), 662-679. google scholar
  • Bulgakova, E., Bulgakov, V., Trushchenkov, I., Vasilev, D., & Kravets, E. (2019). Big data in investigating and preventing crimes. In Big Data-driven World: Legislation Issues and Control Technologies (pp. 61-69). Springer, Cham. google scholar
  • Campbell, C., & Ying, Y. (2011). Learning with support vector machines. Synthesis lectures on artificial intelligence and machine learning, 5(1), 1-95. google scholar
  • Ch, R., Gadekallu, T. R., Abidi, M. H., & Al-Ahmari, A. (2020). Computational System to Classify Cyber Crime Offenses Using Machine Learning. Sustainability, 12(10), 4087. google scholar
  • Chan, J., & Bennett Moses, L. (2017). Making sense of big data for security. The British journal of criminology, 57(2), 299-319. google scholar
  • Chau, D. H., Pandit, S., & Faloutsos, C. (2006, September). Detecting fraudulent personalities in networks of online auctioneers. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 103-114). Springer, Berlin, Heidelberg. google scholar
  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209. google scholar
  • Clarke, C. (2006). Proactive policing: Standing on the shoulders of community‐based policing. Police Practice and Research, 7(1), 3-17. google scholar
  • Commission, (2017). Kriminalistik. Gendarmerie and Coast Guard Academy, Ankara. google scholar
  • Cooper, P. (2017). Data, information, knowledge and wisdom. Anaesthesia & Intensive Care Medicine, 18(1), 55-56. google scholar
  • Dey, A. (2016). Machine learning algorithms: a review. International Journal of Computer Science and Information Technologies, 7(3), 1174-1179. google scholar
  • Feng, M., Zheng, J., Ren, J., Hussain, A., Li, X., Xi, Y., & Liu, Q. (2019). Big data analytics and mining for effective visualization and trends forecasting of crime data. IEEE Access, 7, 106111-106123. google scholar
  • Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the process industry: The role of machine learning. Special Section On Data-Driven Monitoring, Fault Diagnosis and Control Of CyberPhysical Systems, 5, 20590-20616. google scholar
  • Ghorbani, R., & Ghousi, R. (2019). Predictive data mining approaches in medical diagnosis: A review of some diseases prediction. International Journal of Data and Network Science, 3(2), 47-70. google scholar
  • Guenther, A.J. (2012). Role of Social Media in Law Enforcement Significant and Growing [Online]. Available: http://www.lexisnexis.com/en-us/about-us/media/press-release.page?id =1342623085481181 google scholar
  • Gupta, M. K., & Chandra, P. (2019, March). A comparative study of clustering algorithms. In 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 801-805). IEEE. google scholar
  • Hand, D. J., & Adams, N. M. (2014). Data Mining. Wiley StatsRef: Statistics Reference Online, 1-7. google scholar
  • Hassani, H., Huang, X., Silva, E. S., & Ghodsi, M. (2016). A review of data mining applications in crime. Statistical Analysis and Data Mining: The ASA Data Science Journal, 9(3), 139-154. google scholar
  • He, L., Páez, A., Jiao, J., An, P., Lu, C., Mao, W., & Long, D. (2020). Ambient Population and Larceny-Theft: A Spatial Analysis Using Mobile Phone Data. ISPRS International Journal of Geo-Information, 9(6), 342. google scholar
  • Heickerö, R. (2014). Cyber terrorism: Electronic jihad. Strategic Analysis, 38(4), 554-565. google scholar
  • Hey, J. (2004). The data, information, knowledge, wisdom chain: the metaphorical link. Intergovernmental Oceanographic Commission, 26, 1-18. google scholar
  • Jackson, J. (2002). Data mining; a conceptual overview. Communications of the Association for Information Systems, 8(1), 19. google scholar
  • Kelleher, J. D., & Tierney, B. (2018). Data science. MIT Press. google scholar
  • Khare, A. R., & Shrivasta, P. (2018). Data mining for the internet of things. In Exploring the Convergence of Big Data and the Internet of Things (pp. 181-191). IGI Global. google scholar
  • Koyuncugil, A. S., & Özgülbaş, N. (2009). Veri madenciliği: Tıp ve sağlık hizmetlerinde kullanımı ve uygulamaları. İnternational Journal Of Informatics Technologies, 2(2). google scholar
  • Kumar, R., & Nagpal, B. (2019). Analysis and prediction of crime patterns using big data. International Journal of Information Technology, 11(4), 799-805. google scholar
  • Lau, P. Y., & Fung, W. K. (2020). Evaluation of marker selection methods and statistical models for chronological age prediction based on DNA methylation. Legal Medicine, 47, 101744. google scholar
  • Lei, C. (2019). Legal Control over Big Data Criminal Investigation. Social Sciences in China, 40(3), 189-204. google scholar
  • Li, X., Liu, B., & Philip, S. Y. (2006, September). Discovering overlapping communities of named entities. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 593-600). Springer, Berlin, Heidelberg. google scholar
  • Martinovic, I., Rasmussen, K., Roeschlin, M., & Tsudik, G. (2017). Authentication using pulse-response biometrics. Communications of the ACM, 60(2), 108-115. google scholar
  • Mcclendon, L., & Meghanathan, N. (2015). Using machine learning algorithms to analyze crime data. Machine Learning and Applications: An International Journal (MLAIJ), 2(1), 1-12. google scholar
  • McCue, C. (2014). Data mining and predictive analysis: Intelligence gathering and crime analysis. ButterworthHeinemann. google scholar
  • Mesgarpour, M., & Dickinson, I. (2014). Enhancing the value of commercial vehicle telematics data through analytics and optimisation techniques. Archives of Transport System Telematics, 7. google scholar
  • Mistek, E., Fikiet, M. A., Khandasammy, S. R., & Lednev, I. K. (2018). Toward locard’s exchange principle: recent developments in forensic trace evidence analysis. Analytical chemistry, 91(1), 637-654. google scholar
  • Mittal, M., Goyal, L. M., Hemanth, D. J., & Sethi, J. K. (2019). Clustering approaches for high‐dimensional databases: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1300. google scholar
  • Mittal, M., Goyal, L. M., Sethi, J. K., & Hemanth, D. J. (2018). Monitoring the impact of economic crisis on crime in India using machine learning. Computational Economics, 53(4), 1467-1485. google scholar
  • Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., & Coello, C. A. C. (2013). A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Transactions on Evolutionary Computation, 18(1), 4-19. google scholar
  • Muneer, A., & Fati, S. M. (2020). A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter. Future Internet, 12(11), 187. google scholar
  • Ngai, E. W., Xiu, L., & Chau, D. C. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert systems with applications, 36(2), 2592-2602. google scholar
  • Odia, J. O., & Akpata, O. T. (2020). Role of Data Science and Data Analytics in Forensic Accounting and Fraud Detection. In Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics (pp. 203-227). IGI Global. google scholar
  • Olson, D. L., & Lauhoff, G. (2019). Descriptive data mining. In Descriptive Data Mining (pp. 129-130). Springer, Singapore. google scholar
  • Pandey R.K., Zhou Y., Kota B.U., Govindaraju V. (2017) Learning Representations for Cryptographic Hash Based Face Template Protection. In: Bhanu B., Kumar A. (eds) Deep Learning for Biometrics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-61657-5_11 google scholar
  • Pandya, B., Cosma, G., Alani, A. A., Taherkhani, A., Bharadi, V., & McGinnity, T. M. (2018, May). Fingerprint classification using a deep convolutional neural network. In 2018 4th International Conference on Information Management (ICIM) (pp. 86-91). IEEE. google scholar
  • Pauleen, D. J., Rooney, D., & Intezari, A. (2017). Big data, little wisdom: trouble brewing? Ethical implications for the information systems discipline. Social Epistemology, 31(4), 400-416. google scholar
  • Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19-50. google scholar
  • Power, D. J. (2016). “Big Brother” can watch us. Journal of Decision systems, 25(sup1), 578-588. google scholar
  • Quick, D., & Choo, K. K. R. (2016). Big forensic data reduction: digital forensic images and electronic evidence. Cluster Computing, 19(2), 723-740. google scholar
  • Ristea, A., Al Boni, M., Resch, B., Gerber, M. S., & Leitner, M. (2020). Spatial crime distribution and prediction for sporting events using social media. International Journal of Geographical Information Science, 1-32. google scholar
  • Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., & Beling, P. (2018, April). Deep learning detecting fraud in credit card transactions. In 2018 Systems and Information Engineering Design Symposium (SIEDS) (pp. 129-134). IEEE. google scholar
  • Rutkowski, L., Jaworski, M., & Duda, P. (2020). Stream data mining: algorithms and their probabilistic properties. Cham: Springer. google scholar
  • Shao, L., Duan, Y., Sun, X., Gao, H., Zhu, D., & Miao, W. (2017, July). Answering Who/When, What, How, Why through Constructing Data Graph, Information Graph, Knowledge Graph and Wisdom Graph. In SEKE (pp. 1-6). google scholar
  • Snaphaan, T., & Hardyns, W. (2019). Environmental criminology in the big data era. European Journal of Criminology, 1477370819877753. google scholar
  • Song, G., Bernasco, W., Liu, L., Xiao, L., Zhou, S., & Liao, W. (2019). Crime feeds on legal activities: Daily mobility flows help to explain thieves’ target location choices. Journal of Quantitative Criminology, 35(4), 831-854. google scholar
  • Srinivas, K., Rani, B. K., & Govrdhan, A. (2010). Applications of data mining techniques in healthcare and prediction of heart attacks. International Journal on Computer Science and Engineering (IJCSE), 2(02), 250-255. google scholar
  • Steenbruggen, J., Tranos, E., & Nijkamp, P. (2015). Data from mobile phone operators: A tool for smarter cities?. Telecommunications Policy, 39(3-4), 335-346. google scholar
  • Stewart, L. (2019). Big Data Discrimination: Maintaining Protection of Individual Privacy without Disincentivizing Businesses’ Use of Biometric Data to Enhance Security. BCL Rev., 60, 349. google scholar
  • Sundararajan, K., & Woodard, D.L. (2018). Deep Learning for Biometrics: A Survey. ACM Comput. Surv. 51(3), DOI:https://doi.org/10.1145/3190618. google scholar
  • Tassone, C., Martini, B., & Choo, K. K. (2017). Forensic visualization: survey and future research directions. In Contemporary Digital Forensic Investigations of Cloud and Mobile Applications (pp. 163-184). Syngress. google scholar
  • Tilley, N., & Sidebottom, A. (2017). Handbook of crime prevention and community safety. Routledge. google scholar
  • Tirgari, V. (2012). Information technology policies and procedures against unstructured data: A phenomenological study of information technology professionals. Journal of Management Information and Decision Sciences, 15(2), 87. google scholar
  • Tiwari, S., Chourasia, J. N., & Chourasia, V. S. (2015). A review of advancements in biometric systems. International Journal of Innovative Research in Advanced Engineering, 2(1), 187-204. google scholar
  • Traunmueller, M., Quattrone, G., & Capra, L. (2014, November). Mining mobile phone data to investigate urban crime theories at scale. In International Conference on Social Informatics (pp. 396-411). Springer, Cham. google scholar
  • Turkish Ministry of Justice. (2020). Judicial Statistics 2019. [Online]. Available: https://adlisicil.adalet.gov.tr/ Resimler/SayfaDokuman/1092020162733adalet_ist-2019.pdf (accessed 10.09.20). google scholar
  • Turing, A., (1950). Computing machinery and intelligence: Mind, 59, 433–460. google scholar
  • TÜİK (Turkish Statistical Institute). (2020). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, 2019. [Online]. Available: https://adlisicil.adalet.gov.tr/Resimler/SayfaDokuman /1092020162733adalet_ist-2019.pdf (accessed 10.09.20). google scholar
  • Umair, S., Muhammad, S., Amna, U., Aniqa, M., Abdul, B.S., Sheikh, K.R., (2015). Application of Machine learning Algorithms in Crime Classification and Classification Rule Mining. Res. J. Recent Sci. (pp. 106–114). google scholar
  • Uliyan, D. M., Sadeghi, S., & Jalab, H. A. (2020). Anti-spoofing method for fingerprint recognition using patch based deep learning machine. Engineering Science and Technology, an International Journal, 23(2), 264-273. google scholar
  • Vaidhyanathan, S., & Bulock, C. (2014). Knowledge and dignity in the era of “big data”. The Serials Librarian, 66(1-4), 49-64. google scholar
  • Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. google scholar
  • Wang, H., Kifer, D., Graif, C., & Li, Z. (2016, August). Crime rate inference with big data. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 635-644). google scholar Wani, M. A., Bhat, F. A., Afzal, S., & Khan, A. I. (2020). Supervised Deep Learning in Fingerprint Recognition. In Advances in Deep Learning (pp. 111-132). Springer, Singapore. google scholar Wearesocials & Hootsuide, (2018). Digital in 2018: World’s ınternet users pass the 4 billion mark. URL https:// wearesocial.com/blog/2018/01/global-digital-report-2018 (accessed 16.02.20). google scholar Wheeler, A. P., & Steenbeek, W. (2020). Mapping the risk terrain for crime using machine learning. Journal of Quantitative Criminology, 1-36. google scholar
  • White, M. (2012). Digital workplaces: Vision and reality. Business information review, 29(4), 205-214. google scholar
  • Williams, G. J. (2009). Rattle: a data mining GUI for R. The R Journal, 1(2), 45-55. google scholar
  • Williams, M. L., Burnap, P., Javed, A., Liu, H., & Ozalp, S. (2020). Hate in the machine: anti-Black and antiMuslim social media posts as predictors of offline racially and religiously aggravated crime. The British Journal of Criminology, 60(1), 93-117. google scholar
  • Wilson, D. B., McClure, D., & Weisburd, D. (2010). Does forensic DNA help to solve crime? The benefit of sophisticated answers to naive questions. Journal of Contemporary Criminal Justice, 26(4), 458-469. google scholar
  • Win, K. N., Li, K., Chen, J., Viger, P. F., & Li, K. (2020). Fingerprint classification and identification algorithms for criminal investigation: A survey. Future Generation Computer Systems, 110, 758-771. google scholar
  • Xu, H. (2020). Big data challenges in genomics. In Handbook of Statistics (Vol. 43, pp. 337-348). Elsevier google scholar
  • Yao, S., Wei, M., Yan, L., Wang, C., Dong, X., Liu, F., & Xiong, Y. (2020, August). Prediction of Crime Hotspots based on Spatial Factors of Random Forest. In 2020 15th International Conference on Computer Science & Education (ICCSE) (pp. 811-815). IEEE. google scholar
  • Yavanoglu, U., Colak, M., Caglar, B., Cakir, S., Milletsever, O., & Sagiroglu, S. (2013, December). Intelligent approach for identifying political views over social networks. In 2013 12th International Conference on Machine Learning and Applications (Vol. 2, pp. 281-287). IEEE. google scholar
  • Yoo, J. S. (2019, December). Crime data warehousing and crime pattern discovery. In Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems (pp. 1-6). google scholar
  • Zins, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal of the American society for information science and technology, 58(4), 479-493. google scholar

Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data

Yıl 2020, Cilt: 8 Sayı: 2, 293 - 319, 18.11.2020
https://doi.org/10.26650/JPLC2020-813328

Öz

Along with the rapid change of information technologies and the widespread use of the internet over time, data stacks with ample diversity and quite large volumes has emerged. The use of data mining is increasing day by day due to the huge part it plays in the acquisition of information by making necessary analyses especially within a large amount of data. Obtaining accurate information is a key factor affecting decision-making processes. Crime data is included among the application areas of data mining, being one of the data stacks which is rapidly growing with each passing day. Crime events constitute unwanted behaviour in every society. For this reason, it is important to extract meaningful information from crime data. This article aims to provide an overview of the use of data mining and machine learning in crime data and to give a new perspective on the decision-making processes by presenting examples of the use of data mining for a crime. For this purpose, some examples of data mining and machine learning in crime and security areas are presented by giving a conceptual framework in the subject of big data, data mining, machine learning, and deep learning along with task types, processes, and methods.

Proje Numarası

Proje kapsamında değildir.

Kaynakça

  • Abdullah, N., Ismail, S. A., Sophiayati, S., & Sam, S. M. (2015). Data quality in big data: a review. International Journal of Advances in Soft Computing & Its Applications, 7(3). google scholar
  • Adamović, S., Miškovic, V., Maček, N., Milosavljević, M., Šarac, M., Saračević, M., & Gnjatović, M. (2020). An efficient novel approach for iris recognition based on stylometric features and machine learning techniques. Future Generation Computer Systems, 107, 144-157. google scholar
  • Adewumi, A. O., & Akinyelu, A. A. (2017). A survey of machine-learning and nature-inspired based credit card fraud detection techniques. International Journal of System Assurance Engineering and Management, 8(2), 937-953. google scholar
  • Aggarwal, C. C. (2018). Machine learning for text. Cham: Springer International Publishing. google scholar
  • Agrahari, A., & Rao, D. (2017). A review paper on Big Data: technologies, tools and trends. Int Res J Eng Technol, 4(10), 640-649. google scholar
  • Agu, S. C., Ajah, I., & Ibe, W. E. (2019). Impact of Human Character and Information System on Corruption Risk in Nigeria. International Journal of Scientific Research and Engineering Development, 2(4), 481-485. google scholar
  • Ahmed, A. (2020). “From Data to Wisdom” Using Machine Learning Capabilities in Accounting and Finance Professionals. Talent Development & Excellence, 12. google scholar
  • Ajans Press, 2017. [Online]. Available: https://www.cnnturk.com/bilim-teknoloji/ turkiye-cep-telefonuylakonusmada-avrupa-birincisi?page=1 (accessed 5.12.18). google scholar
  • Akdemir, N., & Lawless, C. J. (2020). Exploring the human factor in cyber-enabled and cyber-dependent crime victimisation: a lifestyle routine activities approach. Internet Research, 30(6), 1665-1687. google scholar
  • Aledhari, M., Di Pierro, M., Hefeida, M., & Saeed, F. (2018). A deep learning-based data minimization algorithm for fast and secure transfer of big genomic datasets. IEEE Transactions on Big Data. google scholar
  • Arora, S., Bhatia, M. P. S., & Kukreja, H. (2020, February). A Multimodal Biometric System for Secure User Identification Based on Deep Learning. In International Congress on Information and Communication Technology (pp. 95-103). Springer, Singapore. google scholar
  • Arshad, H., Jantan, A., & Omolara, E. (2019). Evidence collection and forensics on social networks: Research challenges and directions. Digital Investigation, 28, 126-138. google scholar
  • Ateş, E.C., Bostanci, E., & Guzel, M. S. (2020). Security Evaluation of Industry 4.0: Understanding Industry 4.0 on the Basis of Crime, Big Data, Internet Of Thing (IoT) and Cyber Physical Systems. Güvenlik Bilimleri Dergisi, (International Security Congress Special Issue), 29-50. google scholar
  • Ayre, L. B., & Craner, J. (2017). Open data: What it is and why you should care. Public Library Quarterly, 36(2), 173-184. google scholar
  • Beniwal, S., & Arora, J. (2012). Classification and feature selection techniques in data mining. International journal of engineering research & technology (IJERT), 1(6), 1-6. google scholar
  • Berk, R. (2017). An impact assessment of machine learning risk forecasts on parole board decisions and recidivism. Journal of Experimental Criminology, 13(2), 193-216. google scholar
  • Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25- 71). Springer, Berlin, Heidelberg. google scholar
  • Bhuyan, M. H., Saharia, S., & Bhattacharyya, D. K. (2012). An effective method for fingerprint classification. arXiv preprint arXiv:1211.4658. google scholar
  • Blei, D. M., & Smyth, P. (2017). Science and data science. Proceedings of the National Academy of Sciences, 114(33), 8689-8692. google scholar
  • Bock, F. E., Aydin, R. C., Cyron, C. J., Huber, N., Kalidindi, S. R., & Klusemann, B. (2019). A review of the application of machine learning and data mining approaches in continuum materials mechanics. Frontiers in Materials, 6, 110. google scholar
  • Bode, J. (2019, June). Every Contact Leaves a Trace: A Literary Reality of Locard’s Exchange Principle. In Outside the Box: A Multi-Lingual Forum (p. 18). google scholar
  • Bostanci, E. (2015). 3D reconstruction of crime scenes and design considerations for an interactive investigation tool. arXiv preprint arXiv:1512.03156. google scholar
  • Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5), 662-679. google scholar
  • Bulgakova, E., Bulgakov, V., Trushchenkov, I., Vasilev, D., & Kravets, E. (2019). Big data in investigating and preventing crimes. In Big Data-driven World: Legislation Issues and Control Technologies (pp. 61-69). Springer, Cham. google scholar
  • Campbell, C., & Ying, Y. (2011). Learning with support vector machines. Synthesis lectures on artificial intelligence and machine learning, 5(1), 1-95. google scholar
  • Ch, R., Gadekallu, T. R., Abidi, M. H., & Al-Ahmari, A. (2020). Computational System to Classify Cyber Crime Offenses Using Machine Learning. Sustainability, 12(10), 4087. google scholar
  • Chan, J., & Bennett Moses, L. (2017). Making sense of big data for security. The British journal of criminology, 57(2), 299-319. google scholar
  • Chau, D. H., Pandit, S., & Faloutsos, C. (2006, September). Detecting fraudulent personalities in networks of online auctioneers. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 103-114). Springer, Berlin, Heidelberg. google scholar
  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209. google scholar
  • Clarke, C. (2006). Proactive policing: Standing on the shoulders of community‐based policing. Police Practice and Research, 7(1), 3-17. google scholar
  • Commission, (2017). Kriminalistik. Gendarmerie and Coast Guard Academy, Ankara. google scholar
  • Cooper, P. (2017). Data, information, knowledge and wisdom. Anaesthesia & Intensive Care Medicine, 18(1), 55-56. google scholar
  • Dey, A. (2016). Machine learning algorithms: a review. International Journal of Computer Science and Information Technologies, 7(3), 1174-1179. google scholar
  • Feng, M., Zheng, J., Ren, J., Hussain, A., Li, X., Xi, Y., & Liu, Q. (2019). Big data analytics and mining for effective visualization and trends forecasting of crime data. IEEE Access, 7, 106111-106123. google scholar
  • Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the process industry: The role of machine learning. Special Section On Data-Driven Monitoring, Fault Diagnosis and Control Of CyberPhysical Systems, 5, 20590-20616. google scholar
  • Ghorbani, R., & Ghousi, R. (2019). Predictive data mining approaches in medical diagnosis: A review of some diseases prediction. International Journal of Data and Network Science, 3(2), 47-70. google scholar
  • Guenther, A.J. (2012). Role of Social Media in Law Enforcement Significant and Growing [Online]. Available: http://www.lexisnexis.com/en-us/about-us/media/press-release.page?id =1342623085481181 google scholar
  • Gupta, M. K., & Chandra, P. (2019, March). A comparative study of clustering algorithms. In 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 801-805). IEEE. google scholar
  • Hand, D. J., & Adams, N. M. (2014). Data Mining. Wiley StatsRef: Statistics Reference Online, 1-7. google scholar
  • Hassani, H., Huang, X., Silva, E. S., & Ghodsi, M. (2016). A review of data mining applications in crime. Statistical Analysis and Data Mining: The ASA Data Science Journal, 9(3), 139-154. google scholar
  • He, L., Páez, A., Jiao, J., An, P., Lu, C., Mao, W., & Long, D. (2020). Ambient Population and Larceny-Theft: A Spatial Analysis Using Mobile Phone Data. ISPRS International Journal of Geo-Information, 9(6), 342. google scholar
  • Heickerö, R. (2014). Cyber terrorism: Electronic jihad. Strategic Analysis, 38(4), 554-565. google scholar
  • Hey, J. (2004). The data, information, knowledge, wisdom chain: the metaphorical link. Intergovernmental Oceanographic Commission, 26, 1-18. google scholar
  • Jackson, J. (2002). Data mining; a conceptual overview. Communications of the Association for Information Systems, 8(1), 19. google scholar
  • Kelleher, J. D., & Tierney, B. (2018). Data science. MIT Press. google scholar
  • Khare, A. R., & Shrivasta, P. (2018). Data mining for the internet of things. In Exploring the Convergence of Big Data and the Internet of Things (pp. 181-191). IGI Global. google scholar
  • Koyuncugil, A. S., & Özgülbaş, N. (2009). Veri madenciliği: Tıp ve sağlık hizmetlerinde kullanımı ve uygulamaları. İnternational Journal Of Informatics Technologies, 2(2). google scholar
  • Kumar, R., & Nagpal, B. (2019). Analysis and prediction of crime patterns using big data. International Journal of Information Technology, 11(4), 799-805. google scholar
  • Lau, P. Y., & Fung, W. K. (2020). Evaluation of marker selection methods and statistical models for chronological age prediction based on DNA methylation. Legal Medicine, 47, 101744. google scholar
  • Lei, C. (2019). Legal Control over Big Data Criminal Investigation. Social Sciences in China, 40(3), 189-204. google scholar
  • Li, X., Liu, B., & Philip, S. Y. (2006, September). Discovering overlapping communities of named entities. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 593-600). Springer, Berlin, Heidelberg. google scholar
  • Martinovic, I., Rasmussen, K., Roeschlin, M., & Tsudik, G. (2017). Authentication using pulse-response biometrics. Communications of the ACM, 60(2), 108-115. google scholar
  • Mcclendon, L., & Meghanathan, N. (2015). Using machine learning algorithms to analyze crime data. Machine Learning and Applications: An International Journal (MLAIJ), 2(1), 1-12. google scholar
  • McCue, C. (2014). Data mining and predictive analysis: Intelligence gathering and crime analysis. ButterworthHeinemann. google scholar
  • Mesgarpour, M., & Dickinson, I. (2014). Enhancing the value of commercial vehicle telematics data through analytics and optimisation techniques. Archives of Transport System Telematics, 7. google scholar
  • Mistek, E., Fikiet, M. A., Khandasammy, S. R., & Lednev, I. K. (2018). Toward locard’s exchange principle: recent developments in forensic trace evidence analysis. Analytical chemistry, 91(1), 637-654. google scholar
  • Mittal, M., Goyal, L. M., Hemanth, D. J., & Sethi, J. K. (2019). Clustering approaches for high‐dimensional databases: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1300. google scholar
  • Mittal, M., Goyal, L. M., Sethi, J. K., & Hemanth, D. J. (2018). Monitoring the impact of economic crisis on crime in India using machine learning. Computational Economics, 53(4), 1467-1485. google scholar
  • Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., & Coello, C. A. C. (2013). A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Transactions on Evolutionary Computation, 18(1), 4-19. google scholar
  • Muneer, A., & Fati, S. M. (2020). A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter. Future Internet, 12(11), 187. google scholar
  • Ngai, E. W., Xiu, L., & Chau, D. C. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert systems with applications, 36(2), 2592-2602. google scholar
  • Odia, J. O., & Akpata, O. T. (2020). Role of Data Science and Data Analytics in Forensic Accounting and Fraud Detection. In Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics (pp. 203-227). IGI Global. google scholar
  • Olson, D. L., & Lauhoff, G. (2019). Descriptive data mining. In Descriptive Data Mining (pp. 129-130). Springer, Singapore. google scholar
  • Pandey R.K., Zhou Y., Kota B.U., Govindaraju V. (2017) Learning Representations for Cryptographic Hash Based Face Template Protection. In: Bhanu B., Kumar A. (eds) Deep Learning for Biometrics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-61657-5_11 google scholar
  • Pandya, B., Cosma, G., Alani, A. A., Taherkhani, A., Bharadi, V., & McGinnity, T. M. (2018, May). Fingerprint classification using a deep convolutional neural network. In 2018 4th International Conference on Information Management (ICIM) (pp. 86-91). IEEE. google scholar
  • Pauleen, D. J., Rooney, D., & Intezari, A. (2017). Big data, little wisdom: trouble brewing? Ethical implications for the information systems discipline. Social Epistemology, 31(4), 400-416. google scholar
  • Perols, J. (2011). Financial statement fraud detection: An analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice & Theory, 30(2), 19-50. google scholar
  • Power, D. J. (2016). “Big Brother” can watch us. Journal of Decision systems, 25(sup1), 578-588. google scholar
  • Quick, D., & Choo, K. K. R. (2016). Big forensic data reduction: digital forensic images and electronic evidence. Cluster Computing, 19(2), 723-740. google scholar
  • Ristea, A., Al Boni, M., Resch, B., Gerber, M. S., & Leitner, M. (2020). Spatial crime distribution and prediction for sporting events using social media. International Journal of Geographical Information Science, 1-32. google scholar
  • Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., & Beling, P. (2018, April). Deep learning detecting fraud in credit card transactions. In 2018 Systems and Information Engineering Design Symposium (SIEDS) (pp. 129-134). IEEE. google scholar
  • Rutkowski, L., Jaworski, M., & Duda, P. (2020). Stream data mining: algorithms and their probabilistic properties. Cham: Springer. google scholar
  • Shao, L., Duan, Y., Sun, X., Gao, H., Zhu, D., & Miao, W. (2017, July). Answering Who/When, What, How, Why through Constructing Data Graph, Information Graph, Knowledge Graph and Wisdom Graph. In SEKE (pp. 1-6). google scholar
  • Snaphaan, T., & Hardyns, W. (2019). Environmental criminology in the big data era. European Journal of Criminology, 1477370819877753. google scholar
  • Song, G., Bernasco, W., Liu, L., Xiao, L., Zhou, S., & Liao, W. (2019). Crime feeds on legal activities: Daily mobility flows help to explain thieves’ target location choices. Journal of Quantitative Criminology, 35(4), 831-854. google scholar
  • Srinivas, K., Rani, B. K., & Govrdhan, A. (2010). Applications of data mining techniques in healthcare and prediction of heart attacks. International Journal on Computer Science and Engineering (IJCSE), 2(02), 250-255. google scholar
  • Steenbruggen, J., Tranos, E., & Nijkamp, P. (2015). Data from mobile phone operators: A tool for smarter cities?. Telecommunications Policy, 39(3-4), 335-346. google scholar
  • Stewart, L. (2019). Big Data Discrimination: Maintaining Protection of Individual Privacy without Disincentivizing Businesses’ Use of Biometric Data to Enhance Security. BCL Rev., 60, 349. google scholar
  • Sundararajan, K., & Woodard, D.L. (2018). Deep Learning for Biometrics: A Survey. ACM Comput. Surv. 51(3), DOI:https://doi.org/10.1145/3190618. google scholar
  • Tassone, C., Martini, B., & Choo, K. K. (2017). Forensic visualization: survey and future research directions. In Contemporary Digital Forensic Investigations of Cloud and Mobile Applications (pp. 163-184). Syngress. google scholar
  • Tilley, N., & Sidebottom, A. (2017). Handbook of crime prevention and community safety. Routledge. google scholar
  • Tirgari, V. (2012). Information technology policies and procedures against unstructured data: A phenomenological study of information technology professionals. Journal of Management Information and Decision Sciences, 15(2), 87. google scholar
  • Tiwari, S., Chourasia, J. N., & Chourasia, V. S. (2015). A review of advancements in biometric systems. International Journal of Innovative Research in Advanced Engineering, 2(1), 187-204. google scholar
  • Traunmueller, M., Quattrone, G., & Capra, L. (2014, November). Mining mobile phone data to investigate urban crime theories at scale. In International Conference on Social Informatics (pp. 396-411). Springer, Cham. google scholar
  • Turkish Ministry of Justice. (2020). Judicial Statistics 2019. [Online]. Available: https://adlisicil.adalet.gov.tr/ Resimler/SayfaDokuman/1092020162733adalet_ist-2019.pdf (accessed 10.09.20). google scholar
  • Turing, A., (1950). Computing machinery and intelligence: Mind, 59, 433–460. google scholar
  • TÜİK (Turkish Statistical Institute). (2020). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, 2019. [Online]. Available: https://adlisicil.adalet.gov.tr/Resimler/SayfaDokuman /1092020162733adalet_ist-2019.pdf (accessed 10.09.20). google scholar
  • Umair, S., Muhammad, S., Amna, U., Aniqa, M., Abdul, B.S., Sheikh, K.R., (2015). Application of Machine learning Algorithms in Crime Classification and Classification Rule Mining. Res. J. Recent Sci. (pp. 106–114). google scholar
  • Uliyan, D. M., Sadeghi, S., & Jalab, H. A. (2020). Anti-spoofing method for fingerprint recognition using patch based deep learning machine. Engineering Science and Technology, an International Journal, 23(2), 264-273. google scholar
  • Vaidhyanathan, S., & Bulock, C. (2014). Knowledge and dignity in the era of “big data”. The Serials Librarian, 66(1-4), 49-64. google scholar
  • Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. google scholar
  • Wang, H., Kifer, D., Graif, C., & Li, Z. (2016, August). Crime rate inference with big data. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 635-644). google scholar Wani, M. A., Bhat, F. A., Afzal, S., & Khan, A. I. (2020). Supervised Deep Learning in Fingerprint Recognition. In Advances in Deep Learning (pp. 111-132). Springer, Singapore. google scholar Wearesocials & Hootsuide, (2018). Digital in 2018: World’s ınternet users pass the 4 billion mark. URL https:// wearesocial.com/blog/2018/01/global-digital-report-2018 (accessed 16.02.20). google scholar Wheeler, A. P., & Steenbeek, W. (2020). Mapping the risk terrain for crime using machine learning. Journal of Quantitative Criminology, 1-36. google scholar
  • White, M. (2012). Digital workplaces: Vision and reality. Business information review, 29(4), 205-214. google scholar
  • Williams, G. J. (2009). Rattle: a data mining GUI for R. The R Journal, 1(2), 45-55. google scholar
  • Williams, M. L., Burnap, P., Javed, A., Liu, H., & Ozalp, S. (2020). Hate in the machine: anti-Black and antiMuslim social media posts as predictors of offline racially and religiously aggravated crime. The British Journal of Criminology, 60(1), 93-117. google scholar
  • Wilson, D. B., McClure, D., & Weisburd, D. (2010). Does forensic DNA help to solve crime? The benefit of sophisticated answers to naive questions. Journal of Contemporary Criminal Justice, 26(4), 458-469. google scholar
  • Win, K. N., Li, K., Chen, J., Viger, P. F., & Li, K. (2020). Fingerprint classification and identification algorithms for criminal investigation: A survey. Future Generation Computer Systems, 110, 758-771. google scholar
  • Xu, H. (2020). Big data challenges in genomics. In Handbook of Statistics (Vol. 43, pp. 337-348). Elsevier google scholar
  • Yao, S., Wei, M., Yan, L., Wang, C., Dong, X., Liu, F., & Xiong, Y. (2020, August). Prediction of Crime Hotspots based on Spatial Factors of Random Forest. In 2020 15th International Conference on Computer Science & Education (ICCSE) (pp. 811-815). IEEE. google scholar
  • Yavanoglu, U., Colak, M., Caglar, B., Cakir, S., Milletsever, O., & Sagiroglu, S. (2013, December). Intelligent approach for identifying political views over social networks. In 2013 12th International Conference on Machine Learning and Applications (Vol. 2, pp. 281-287). IEEE. google scholar
  • Yoo, J. S. (2019, December). Crime data warehousing and crime pattern discovery. In Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems (pp. 1-6). google scholar
  • Zins, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal of the American society for information science and technology, 58(4), 479-493. google scholar
Toplam 102 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hukuk
Bölüm Araştırma Makalesi
Yazarlar

Emre Cihan Ateş 0000-0001-9550-4532

Gazi Erkan Bostancı 0000-0001-8547-7569

Serdar Msg 0000-0002-3408-0083

Proje Numarası Proje kapsamında değildir.
Yayımlanma Tarihi 18 Kasım 2020
Gönderilme Tarihi 20 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

APA Ateş, E. C., Bostancı, G. E., & Msg, S. (2020). Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data. Ceza Hukuku Ve Kriminoloji Dergisi, 8(2), 293-319. https://doi.org/10.26650/JPLC2020-813328
AMA Ateş EC, Bostancı GE, Msg S. Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data. Ceza Hukuku ve Kriminoloji Dergisi. Kasım 2020;8(2):293-319. doi:10.26650/JPLC2020-813328
Chicago Ateş, Emre Cihan, Gazi Erkan Bostancı, ve Serdar Msg. “Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data”. Ceza Hukuku Ve Kriminoloji Dergisi 8, sy. 2 (Kasım 2020): 293-319. https://doi.org/10.26650/JPLC2020-813328.
EndNote Ateş EC, Bostancı GE, Msg S (01 Kasım 2020) Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data. Ceza Hukuku ve Kriminoloji Dergisi 8 2 293–319.
IEEE E. C. Ateş, G. E. Bostancı, ve S. Msg, “Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data”, Ceza Hukuku ve Kriminoloji Dergisi, c. 8, sy. 2, ss. 293–319, 2020, doi: 10.26650/JPLC2020-813328.
ISNAD Ateş, Emre Cihan vd. “Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data”. Ceza Hukuku ve Kriminoloji Dergisi 8/2 (Kasım 2020), 293-319. https://doi.org/10.26650/JPLC2020-813328.
JAMA Ateş EC, Bostancı GE, Msg S. Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data. Ceza Hukuku ve Kriminoloji Dergisi. 2020;8:293–319.
MLA Ateş, Emre Cihan vd. “Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data”. Ceza Hukuku Ve Kriminoloji Dergisi, c. 8, sy. 2, 2020, ss. 293-19, doi:10.26650/JPLC2020-813328.
Vancouver Ateş EC, Bostancı GE, Msg S. Big Data, Data Mining, Machine Learning, and Deep Learning Concepts in Crime Data. Ceza Hukuku ve Kriminoloji Dergisi. 2020;8(2):293-319.