Araştırma Makalesi
BibTex RIS Kaynak Göster

Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi

Yıl 2023, , 123 - 135, 25.05.2023
https://doi.org/10.26650/JGEOG2023-1180818

Öz

Havran Lagünü; Balıkesir’in Havran ilçesinde, Ege Denizi kıyısında, Havran Çayı’nın ağız kısmında oluşan bir sulak alandır. Bu çalışmanın amacı; yörede hızla artan antropojenik aktivitelerden kaynaklanan element kirliliğinin lagün üzerindeki ekolojik etkilerini araştırmaktır. Bu kapsamda; Havran Lagünü’nden 34 cm uzunluğunda bir sediment karotu alınmıştır. Elementlerin taşınım süreçlerindeki rollerini belirlemek için klorofil bozunma ürünleri ve toplam organik karbon analizi yapılmıştır. Çoklu element analizleri ICP-MS ile Bureau Veritas Analytical Laboratuvarı’nda (Kanada) gerçekleştirilmiştir. Zenginleşme faktörü ve jeoakümülasyon indeksi ile element kaynakları belirlenmiştir. Ekolojik risk değerlendirmesi için toksik risk indeksi, ekolojik ve potansiyel ekolojik risk indeksi kullanılmıştır. Zenginleşme faktörü sonuçlarına göre karotun farklı bölümlerinde Mo, Ti, Mn ve Cd orta düzeyde, As önemli düzeyde zenginleşmiştir. Bu durum, bahsi geçen elementlerin antropojenik aktivitelerden etkilendiğini göstermektedir. Temel Bileşen Analizi sonuçlarına göre; Mo, Cu, Mn, Cd, Zn, Ni, Hg ve Cu, Pb, As ortak kaynaklı görünmektedir. Toksik risk karotun alt bölümlerinde yüksek As kontaminasyonuna bağlı olarak orta dereceye ulaşmış ancak yüzeyde düşük seviyeye inmiştir. Hg ve As orta derecede, Cd orta – önemli derecede ekolojik risk oluşturmaktadır. Lagünde orta derecede potansiyel ekolojik risk bulunmaktadır. Karot yüzeyinde artan organik karbon ve klorofil bozunma ürünleri konsantrasyonu organik kirliliğin bir göstergesidir. Elementlerin kaynak tanımlamalarında tarım, endüstri, yerleşme baskın antropojenik faaliyetler olarak belirlenmiştir.

Destekleyen Kurum

Ardahan Üniversitesi

Proje Numarası

2020-006

Teşekkür

Bu çalışma, Ardahan Üniversitesi, Bilimsel Araştırma Projeleri Birimi tarafından 2020-006 nolu proje kapsamında desteklenmiştir. Destekleri için Ardahan Üniversitesi BAP birimine teşekkür ederiz. Arazi çalışmasındaki destekleri için Prof. Dr. Abdullah SOYKAN ve Uzman Furkan İNAN’a teşekkür ederiz.

Kaynakça

  • Aljahdali, O.M., Alhassan, B.A. (2020). Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea. Saudi Journal of Biological Sciences, 27, (4), 1174 - 1184. https://doi.Org/10.1016/j.sjbs.2020.02.004. google scholar
  • Audry, S., Schafer, J., Blanc, G., Jouanneau, J. M. (2004). Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 132, 413426. https://doi.org/10.1016/j.envpol.2004.05.025. google scholar
  • Arienzo, M., Masuccio, A. A., & Ferrara, L. (2013). Evaluation of Sediment Contamination by Heavy Metals, Organochlorinated Pesticides, and Polycyclic Aromatic Hydrocarbons in the Berre Coastal Lagoon (Southeast France). Archives of Environmental Contamination and Toxicology, (65), 396-406. https://doi. org/10.1007/s00244-013-9915-3. google scholar
  • Atılgan, İ., & Egemen, Ö. (2001). Güllük ve Homa Lagünü Sedimentlerinde Karbon, Yanabilen Madde ve Bazı Ağır Metal (Cu, Zn) Düzeylerinin Karşılaştırmalı Olarak Araştırılması. Su Ürünleri Dergisi, 18, (1), 225 - 232. google scholar
  • Bat, L., Özkan, E. Y., Büyükışık, H. B., & Öztekin, H. C. (2017). Assessment of Metal Pollution in Sediments along Sinop peninsula of the Black Sea. International Journal of Marine Science, 7, (22), 205 - 213. https://doi.org/10.5376/ijms.2017.07.0022. google scholar
  • Botsou, F., Karageorgis, P.A., Paraskevopoulou, V., Dassenakis, M., Scoullos, M. (2019). Critical Processes of Trace Metals Mobility in Transitional Waters: Implications from the Remote, Antinioti Lagoon, Corfu Island, Greece. Journal of Marine Science and Engineering, 7, 2-25. https://doi.org/103390/jmse7090307. google scholar
  • Botello, A. V., Villanueva, F. S., & Rivera, R. F. (2018). Analysis and Tendencies of Metals and POPs in a Sediment Core from the Alvarado Lagoon System (ALS), Veracruz, Mexico. Archives of Environmental Contamination and Toxicology, (75), 157-173. https://doi.org/10.1007/s00244-018-0516-z. google scholar
  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187 (306). https://doi.org/10.1007/s10661-015-4563-x. google scholar
  • Coordination of Information on the Environment (CORINE), (2018). https://land.copernicus.eu/pan-european/corine-land-cover. google scholar
  • Deng, M., Yang, X., Dai, X., Zhang, Q., Malik, A., & Sadeghpour, A. (2020). Heavy metal pollution risk assessments and their transportation in sediment and overlay water for the typical Chinese reservoirs. Ecological Indicators, 112. https://doi.org/10.1016/j.ecolind.2020.106166. google scholar
  • Dural, M., & Göksu, M. L. (2006). Çamlık Lagünü (Karataş, Adana), seston, bentoz ve sedimentinde mevsimsel ağır metal değişimi. Ege Journal of Fisheries and Aquatic Sciences, 23, (1), 65-69. google scholar
  • Fural, Ş. (2020). İkizcetepeler Baraj Gölü (Balıkesir) Çökellerinin Ekolojik Risk Analizi. (Doktora Tezi). Balıkesir Üniversitesi, Sosyal Bilimler Enstitüsü,Balıkesir. google scholar
  • Fural, Ş., & Kükrer, S. (2021). Sulak alanlarda potansiyel toksik element (PTE) kaynaklı bölgesel ekolojik risk araştırmalarında kullanılan analitik metotlar. Türk Coğrafya Dergisi, 77, 211-222. https://doi. org/10.17211/tcd.930273. google scholar
  • Fural, Ş., Kükrer, S., & Cürebal, İ. (2019). İkizcetepeler Baraj Gölü (Balıkesir) Çökellerindeki Organik Karbon Miktarının Zamansal ve Mekansal Dağılışı. Turkish Journal of Agriculture - Food Science and Technology, 7, (12), 2204-2208. https://doi.org/10.24925/turjaf. v7i12.2204-2208.2966 google scholar
  • Gaudette, H., Flight, V., Toner, L., & Folger, D. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, (44), 249-253. google scholar
  • Gier, Y. G., Kaçar, A., Gönül, T., Pazı, İ., Küçüksezgin, F., Eraslanoğlu, N., & Toker, K. (2017). Evaluation of the relationship of picoplankton and viruses to environmental variables in a lagoon system (Çakalburnu Lagoon, Turkey). Chemistry and Ecology, 34, (3), 211-228. https://doi.org/10.1080/02757540.2018.1427230. google scholar
  • Goher, M., Farhat, H., Abdo, M., & Salem, G. (2014). Metal Pollution Assessment in the Surface Sediment of Lake Nasser, Egypt. The Egyptian Journal of Aquatic Research, 3, (40), 203-224. https://doi. org/10.1016/j.ejar.2014.09.004. google scholar
  • Gonzalez, I., Aguila, E., & Galan, E. (2007). Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environmental Geology, (52), 15-33. https://doi.org/10.1007/s00254-006-0602-9. google scholar
  • Ghrefat, H., Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65, 2114-2121. https://doi.org/10.1016/j.chemosphere.2006.06.043. google scholar
  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 8, (14), 975-1001. google scholar
  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176, 677-691. https:// doi.org/10.1007/s10661-010-1612-3. google scholar
  • Hoşgören, M. Y. (2015). Hidrografya’nın Ana Çizgileri II. İstanbul: Çantay Kitabevi. google scholar
  • Ibach, L. (1982). Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. American Association of Petroleum Geologists Bulletin, (66), 170-188. google scholar
  • İpek, H. (2003). Molibden. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 14, (1), 73-76. google scholar
  • Karthikeyan, P., Vennila, G., Nanthakumar, G., & Aswini, M. (2020). Dataset for spatial distribution and pollution indices of heavy metals in the surface sediments of Emerald Lake, Tamil Nadu, India. Data in Brief, (28). https://doi.org/10.1016/j.dib.2019.104877. google scholar
  • Kükrer, S., Erginal, A. E., Kılıç, Ş., Bay, Ö., Akarsu, T., & Öztura, E. (2020). Ecological risk assesment of surface sediments of Çardak Lagoon along a human disturbance gradient. Environmental Monitoring and Assesment (192). https://doi.org/10.1007/s10661-020-08336-9. google scholar
  • Kükrer, S., Erginal, A. E., Şeker, S., & Karabıyıkoğlu, M. (2015). Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environmental Monitoring and Assessment, (187). https://doi.org/10.1007/s10661-015-4685-1 google scholar
  • Liu, X., Zeng, B., & Lin, G. (2022). Arsenic (As) contamination in sediments from coastal areas of China. Marine Pollution Bulletin, 175, 1-9. https://doi.org/10.1016/j.marpolbul.2022.113350. google scholar
  • Lorenzen, C. (1971). Chlorophyll-degradation products in sediments of Black Sea. Woods Hole Oceanographic Institution Contribution, (28), 426-428. google scholar
  • MacDonald, D., Ingersoll, C., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for fresh-water ecosystems. Archives of Environmental Contamination and Toxicology, (39), 20 - 31. https://doi.org/10.1007/s002440010075. google scholar
  • Mutlu, E., Demir, T., Yanık, T., & Şutan, N. A. (2016). Determination of environmentally relevant water quality parameters in Serefiye Dam-Turkey. Fresenius Environmental Bulletin, 25, (12), 5812 - 5818. google scholar
  • Mutlu, Y. E. (2020). Havran Çayı Havzası’nın (Balıkesir) Uygulamalı Jeomorfolojisi.(Doktora Tezi) Balıkesir Üniversitesi, Sosyal Bilimler Enstitüsü, Balıkesir. google scholar
  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. GeoJournal, 12, (2), 108 -118. google scholar
  • Obi, C. C., Adebusoye, S. A., Ugoji, E. O., Ilori, M. O., Amund, O. O., & Hickey, W. J. (2016). Microbial communities in sediments of Lagos Lagoon, Nigeria: elucidation of community structure and potential impacts of contamination by municipal and industrial wastes. Frontiers in Microbiology, 5, (7). https://doi.org/10.3389/ fmicb.2016.01213 google scholar
  • Ouro-Sama, K., Solitoke, D.H., Tanouayi, G., Lazar, M.L., Bran, P., Nadejde, M., et al. (2021). Spatial and seasonal variation of trace elements contamination in the sediments of a tropical lagoon ecosystem: the Lake TogoLagoon of Aneho complex (southern Togo). Environmental Earth Sciences,80, https://doi.org/10.1007/ s12665-021-09390-3. google scholar
  • Özkan, E. Y., Fural, Ş., Kükrer, S., & Büyükışık, H. B. (2022). Seasonal and spatial variations of ecological risk from potential toxic elements in the southern littoral zone of İzmir Inner Gulf, Turkey. EnvironmentalScience andPollution Research, (29), 62669-62689. https://doi.org/10.1007/s11356-022-19987-1. google scholar
  • Ribeiro, C., Ribeiro, A. R., & Tiritan, M. E. (2016). Occurrence of persistent organic pollutants in sediments and biota from Portugal versus European incidence: A critical overview. Environmental Science and Health, 51, (3), 143-153. https://doi.org/10.1080/0360 1234.2015.1108793. google scholar
  • Uluturhan , E., Kontaş, A., & Can, E. (2011). Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): Assessment of contamination and ecological risks. Marine Pollution Bulletin, 62, (9), 1989-1997. https://doi.org/10.1016/j.marpolbul.2011.06.019. google scholar
  • Ustaoğlu, F., & Saiful, I. M. (2020). Potential toxic elements in sediment of some rivers at Giresun, NortheastTurkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 2 -15. https://doi.org/10.1016/j.ecolind.2020.106237. google scholar
  • Ustaoğlu, F., Tepe, Y., & Aydın, H. (2020). Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: Contamination and ecological risk assessment. Environmental Forensics, 21, (2), 145-156. https://doi.org/10.1080/15275922.2020 .1728433. google scholar
  • Yabanlı, M., Yozukmaz, A., Şener, İ., Çoker, T., Hasanhocaoğlı Yapıcı, H., Çetin Kasa, E., 2022. Heavy Metal Contamination Status and Risk Assessment in Surface Sediments of Köyceğiz Lagoon Estuary System (KLES) (South-West Anatolia), Acta Aquatica Turcica, 18, (1), 109-120. https://doi.org/10.22392/actaquatr.993135. google scholar
  • Zhang, G., Bai, J., Zhao, Q., & vd. (2016). Heavy metals in wetland soils along a wetland-forming chronose quence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators, (69), 331-3399. https://doi.org/10.1016/j.ecolind.2016.04.042. google scholar
  • Zhu, Z., Zhang, W., & Cheng, C. Y. (2011). A literature review of titanium solvent extraction in chloride media. Hydrometallurgy, 105, (3-4), 304-313. https://doi.org/10.1016/j.hydromet.2 010. 11.006. google scholar

Temporal Change in The Ecological Risk Level of The Havran Lagoon (Balıkesir)

Yıl 2023, , 123 - 135, 25.05.2023
https://doi.org/10.26650/JGEOG2023-1180818

Öz

The Havran Lagoon is formed at the mouth of the Havran Stream in the Havran district of Balıkesir, located on the Aegean Sea coast. This study aimed to investigate the ecological effects of element pollution on the lagoon caused by rapidly increasing anthropogenic activities in the region. In this context, 34 cm-long core was taken from the Havran Lagoon, and then to determine their role in the transport processes of the elements, chlorophyll degradation products and total organic carbon analysis were performed. Element concentration analyzes were performed with ICP-MS at the Bureau Veritas Analytical Laboratory (Canada). Element sources were identified with the help of the enrichment factor and geo-accumulation index. The toxic risk index, ecological risk index, and potential ecological risk index were used for ecological risk assessment. According to the findings obtained from enrichment factor, Mo, Ti, Mn and Cd were found to be moderately enriched, while As was significantly enriched in different parts of the core. Hence, it was confirmed that the mentioned elements were affected by anthropogenic activities. According to the results of the principal component analysis, Mo, Cu, Mn, Cd, Zn, Ni, and Hg and Cu, Pb, and As appear to have common sources. The toxic risk reached a moderate level due to high As contamination in the lower parts of the core, but decreased to a low level at the surface. Hg and As produced a moderate ecological risk, while Cd was associated with a moderate to significant ecological risk. There is a moderate potential ecological risk in the lagoon. The increasing concentration of organic carbon and chlorophyll degradation products in recent years indicates organic pollution. The dominant anthropogenic activities were identified to be agriculture, industry, and settlement during the resource definition of the elements.

Proje Numarası

2020-006

Kaynakça

  • Aljahdali, O.M., Alhassan, B.A. (2020). Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea. Saudi Journal of Biological Sciences, 27, (4), 1174 - 1184. https://doi.Org/10.1016/j.sjbs.2020.02.004. google scholar
  • Audry, S., Schafer, J., Blanc, G., Jouanneau, J. M. (2004). Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 132, 413426. https://doi.org/10.1016/j.envpol.2004.05.025. google scholar
  • Arienzo, M., Masuccio, A. A., & Ferrara, L. (2013). Evaluation of Sediment Contamination by Heavy Metals, Organochlorinated Pesticides, and Polycyclic Aromatic Hydrocarbons in the Berre Coastal Lagoon (Southeast France). Archives of Environmental Contamination and Toxicology, (65), 396-406. https://doi. org/10.1007/s00244-013-9915-3. google scholar
  • Atılgan, İ., & Egemen, Ö. (2001). Güllük ve Homa Lagünü Sedimentlerinde Karbon, Yanabilen Madde ve Bazı Ağır Metal (Cu, Zn) Düzeylerinin Karşılaştırmalı Olarak Araştırılması. Su Ürünleri Dergisi, 18, (1), 225 - 232. google scholar
  • Bat, L., Özkan, E. Y., Büyükışık, H. B., & Öztekin, H. C. (2017). Assessment of Metal Pollution in Sediments along Sinop peninsula of the Black Sea. International Journal of Marine Science, 7, (22), 205 - 213. https://doi.org/10.5376/ijms.2017.07.0022. google scholar
  • Botsou, F., Karageorgis, P.A., Paraskevopoulou, V., Dassenakis, M., Scoullos, M. (2019). Critical Processes of Trace Metals Mobility in Transitional Waters: Implications from the Remote, Antinioti Lagoon, Corfu Island, Greece. Journal of Marine Science and Engineering, 7, 2-25. https://doi.org/103390/jmse7090307. google scholar
  • Botello, A. V., Villanueva, F. S., & Rivera, R. F. (2018). Analysis and Tendencies of Metals and POPs in a Sediment Core from the Alvarado Lagoon System (ALS), Veracruz, Mexico. Archives of Environmental Contamination and Toxicology, (75), 157-173. https://doi.org/10.1007/s00244-018-0516-z. google scholar
  • Brady, J. P., Ayoko, G. A., Martens, W. N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187 (306). https://doi.org/10.1007/s10661-015-4563-x. google scholar
  • Coordination of Information on the Environment (CORINE), (2018). https://land.copernicus.eu/pan-european/corine-land-cover. google scholar
  • Deng, M., Yang, X., Dai, X., Zhang, Q., Malik, A., & Sadeghpour, A. (2020). Heavy metal pollution risk assessments and their transportation in sediment and overlay water for the typical Chinese reservoirs. Ecological Indicators, 112. https://doi.org/10.1016/j.ecolind.2020.106166. google scholar
  • Dural, M., & Göksu, M. L. (2006). Çamlık Lagünü (Karataş, Adana), seston, bentoz ve sedimentinde mevsimsel ağır metal değişimi. Ege Journal of Fisheries and Aquatic Sciences, 23, (1), 65-69. google scholar
  • Fural, Ş. (2020). İkizcetepeler Baraj Gölü (Balıkesir) Çökellerinin Ekolojik Risk Analizi. (Doktora Tezi). Balıkesir Üniversitesi, Sosyal Bilimler Enstitüsü,Balıkesir. google scholar
  • Fural, Ş., & Kükrer, S. (2021). Sulak alanlarda potansiyel toksik element (PTE) kaynaklı bölgesel ekolojik risk araştırmalarında kullanılan analitik metotlar. Türk Coğrafya Dergisi, 77, 211-222. https://doi. org/10.17211/tcd.930273. google scholar
  • Fural, Ş., Kükrer, S., & Cürebal, İ. (2019). İkizcetepeler Baraj Gölü (Balıkesir) Çökellerindeki Organik Karbon Miktarının Zamansal ve Mekansal Dağılışı. Turkish Journal of Agriculture - Food Science and Technology, 7, (12), 2204-2208. https://doi.org/10.24925/turjaf. v7i12.2204-2208.2966 google scholar
  • Gaudette, H., Flight, V., Toner, L., & Folger, D. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, (44), 249-253. google scholar
  • Gier, Y. G., Kaçar, A., Gönül, T., Pazı, İ., Küçüksezgin, F., Eraslanoğlu, N., & Toker, K. (2017). Evaluation of the relationship of picoplankton and viruses to environmental variables in a lagoon system (Çakalburnu Lagoon, Turkey). Chemistry and Ecology, 34, (3), 211-228. https://doi.org/10.1080/02757540.2018.1427230. google scholar
  • Goher, M., Farhat, H., Abdo, M., & Salem, G. (2014). Metal Pollution Assessment in the Surface Sediment of Lake Nasser, Egypt. The Egyptian Journal of Aquatic Research, 3, (40), 203-224. https://doi. org/10.1016/j.ejar.2014.09.004. google scholar
  • Gonzalez, I., Aguila, E., & Galan, E. (2007). Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management. Environmental Geology, (52), 15-33. https://doi.org/10.1007/s00254-006-0602-9. google scholar
  • Ghrefat, H., Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65, 2114-2121. https://doi.org/10.1016/j.chemosphere.2006.06.043. google scholar
  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 8, (14), 975-1001. google scholar
  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176, 677-691. https:// doi.org/10.1007/s10661-010-1612-3. google scholar
  • Hoşgören, M. Y. (2015). Hidrografya’nın Ana Çizgileri II. İstanbul: Çantay Kitabevi. google scholar
  • Ibach, L. (1982). Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. American Association of Petroleum Geologists Bulletin, (66), 170-188. google scholar
  • İpek, H. (2003). Molibden. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 14, (1), 73-76. google scholar
  • Karthikeyan, P., Vennila, G., Nanthakumar, G., & Aswini, M. (2020). Dataset for spatial distribution and pollution indices of heavy metals in the surface sediments of Emerald Lake, Tamil Nadu, India. Data in Brief, (28). https://doi.org/10.1016/j.dib.2019.104877. google scholar
  • Kükrer, S., Erginal, A. E., Kılıç, Ş., Bay, Ö., Akarsu, T., & Öztura, E. (2020). Ecological risk assesment of surface sediments of Çardak Lagoon along a human disturbance gradient. Environmental Monitoring and Assesment (192). https://doi.org/10.1007/s10661-020-08336-9. google scholar
  • Kükrer, S., Erginal, A. E., Şeker, S., & Karabıyıkoğlu, M. (2015). Distribution and environmental risk evaluation of heavy metal in core sediments from Lake Çıldır (NE Turkey). Environmental Monitoring and Assessment, (187). https://doi.org/10.1007/s10661-015-4685-1 google scholar
  • Liu, X., Zeng, B., & Lin, G. (2022). Arsenic (As) contamination in sediments from coastal areas of China. Marine Pollution Bulletin, 175, 1-9. https://doi.org/10.1016/j.marpolbul.2022.113350. google scholar
  • Lorenzen, C. (1971). Chlorophyll-degradation products in sediments of Black Sea. Woods Hole Oceanographic Institution Contribution, (28), 426-428. google scholar
  • MacDonald, D., Ingersoll, C., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for fresh-water ecosystems. Archives of Environmental Contamination and Toxicology, (39), 20 - 31. https://doi.org/10.1007/s002440010075. google scholar
  • Mutlu, E., Demir, T., Yanık, T., & Şutan, N. A. (2016). Determination of environmentally relevant water quality parameters in Serefiye Dam-Turkey. Fresenius Environmental Bulletin, 25, (12), 5812 - 5818. google scholar
  • Mutlu, Y. E. (2020). Havran Çayı Havzası’nın (Balıkesir) Uygulamalı Jeomorfolojisi.(Doktora Tezi) Balıkesir Üniversitesi, Sosyal Bilimler Enstitüsü, Balıkesir. google scholar
  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. GeoJournal, 12, (2), 108 -118. google scholar
  • Obi, C. C., Adebusoye, S. A., Ugoji, E. O., Ilori, M. O., Amund, O. O., & Hickey, W. J. (2016). Microbial communities in sediments of Lagos Lagoon, Nigeria: elucidation of community structure and potential impacts of contamination by municipal and industrial wastes. Frontiers in Microbiology, 5, (7). https://doi.org/10.3389/ fmicb.2016.01213 google scholar
  • Ouro-Sama, K., Solitoke, D.H., Tanouayi, G., Lazar, M.L., Bran, P., Nadejde, M., et al. (2021). Spatial and seasonal variation of trace elements contamination in the sediments of a tropical lagoon ecosystem: the Lake TogoLagoon of Aneho complex (southern Togo). Environmental Earth Sciences,80, https://doi.org/10.1007/ s12665-021-09390-3. google scholar
  • Özkan, E. Y., Fural, Ş., Kükrer, S., & Büyükışık, H. B. (2022). Seasonal and spatial variations of ecological risk from potential toxic elements in the southern littoral zone of İzmir Inner Gulf, Turkey. EnvironmentalScience andPollution Research, (29), 62669-62689. https://doi.org/10.1007/s11356-022-19987-1. google scholar
  • Ribeiro, C., Ribeiro, A. R., & Tiritan, M. E. (2016). Occurrence of persistent organic pollutants in sediments and biota from Portugal versus European incidence: A critical overview. Environmental Science and Health, 51, (3), 143-153. https://doi.org/10.1080/0360 1234.2015.1108793. google scholar
  • Uluturhan , E., Kontaş, A., & Can, E. (2011). Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): Assessment of contamination and ecological risks. Marine Pollution Bulletin, 62, (9), 1989-1997. https://doi.org/10.1016/j.marpolbul.2011.06.019. google scholar
  • Ustaoğlu, F., & Saiful, I. M. (2020). Potential toxic elements in sediment of some rivers at Giresun, NortheastTurkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 2 -15. https://doi.org/10.1016/j.ecolind.2020.106237. google scholar
  • Ustaoğlu, F., Tepe, Y., & Aydın, H. (2020). Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: Contamination and ecological risk assessment. Environmental Forensics, 21, (2), 145-156. https://doi.org/10.1080/15275922.2020 .1728433. google scholar
  • Yabanlı, M., Yozukmaz, A., Şener, İ., Çoker, T., Hasanhocaoğlı Yapıcı, H., Çetin Kasa, E., 2022. Heavy Metal Contamination Status and Risk Assessment in Surface Sediments of Köyceğiz Lagoon Estuary System (KLES) (South-West Anatolia), Acta Aquatica Turcica, 18, (1), 109-120. https://doi.org/10.22392/actaquatr.993135. google scholar
  • Zhang, G., Bai, J., Zhao, Q., & vd. (2016). Heavy metals in wetland soils along a wetland-forming chronose quence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators, (69), 331-3399. https://doi.org/10.1016/j.ecolind.2016.04.042. google scholar
  • Zhu, Z., Zhang, W., & Cheng, C. Y. (2011). A literature review of titanium solvent extraction in chloride media. Hydrometallurgy, 105, (3-4), 304-313. https://doi.org/10.1016/j.hydromet.2 010. 11.006. google scholar
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beşeri Coğrafya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Dilek Aykır 0000-0002-2748-4055

Şakir Fural 0000-0002-1603-2424

Serkan Kükrer 0000-0001-6924-3199

Yunus Emre Mutlu 0000-0003-0421-4535

Proje Numarası 2020-006
Yayımlanma Tarihi 25 Mayıs 2023
Gönderilme Tarihi 27 Eylül 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aykır, D., Fural, Ş., Kükrer, S., Mutlu, Y. E. (2023). Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi. Journal of Geography(46), 123-135. https://doi.org/10.26650/JGEOG2023-1180818
AMA Aykır D, Fural Ş, Kükrer S, Mutlu YE. Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi. Journal of Geography. Mayıs 2023;(46):123-135. doi:10.26650/JGEOG2023-1180818
Chicago Aykır, Dilek, Şakir Fural, Serkan Kükrer, ve Yunus Emre Mutlu. “Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi”. Journal of Geography, sy. 46 (Mayıs 2023): 123-35. https://doi.org/10.26650/JGEOG2023-1180818.
EndNote Aykır D, Fural Ş, Kükrer S, Mutlu YE (01 Mayıs 2023) Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi. Journal of Geography 46 123–135.
IEEE D. Aykır, Ş. Fural, S. Kükrer, ve Y. E. Mutlu, “Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi”, Journal of Geography, sy. 46, ss. 123–135, Mayıs 2023, doi: 10.26650/JGEOG2023-1180818.
ISNAD Aykır, Dilek vd. “Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi”. Journal of Geography 46 (Mayıs 2023), 123-135. https://doi.org/10.26650/JGEOG2023-1180818.
JAMA Aykır D, Fural Ş, Kükrer S, Mutlu YE. Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi. Journal of Geography. 2023;:123–135.
MLA Aykır, Dilek vd. “Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi”. Journal of Geography, sy. 46, 2023, ss. 123-35, doi:10.26650/JGEOG2023-1180818.
Vancouver Aykır D, Fural Ş, Kükrer S, Mutlu YE. Havran Lagünü’nde (Balıkesir) Ekolojik Risk Seviyesinin Zamansal Değişimi. Journal of Geography. 2023(46):123-35.