Araştırma Makalesi
BibTex RIS Kaynak Göster

Cezalandırılmış Coğrafi Ağırlıklı Regresyon Modellerini Kullanarak Yolcu, Uçak Talebi ve Yük Miktarını Etkileyen Bölgesel Faktörlerin Analizi

Yıl 2024, , 19 - 30, 31.12.2024
https://doi.org/10.26650/JGEOG2024-1426209

Öz

Havayolu yolcu talebi, uçak talebi ve yük hacmi, havayolu şirketlerinin ve havalimanı yönetiminin ekonomik karar alma süreçlerinde en kritik faktörler arasında yer almaktadır. Havayolu yolcu talebini, uçak talebini ve yük hacmini etkileyen bölgesel faktörler iki ana gruba ayrılabilir: sosyo-ekonomik faktörler ve havayolu taşımacılığı faktörleri. Bu çalışmanın iki temel amacı vardır: Birincisi, bölgesel veriler olduğunda ve değişkenler arasında local çoklu bağlantı ile karşılaşıldığında cezalandırılmış modellerin kullanılmasının daha uygun olduğunu vurgulamak; ikinci olarak yolcu sayısı, uçak sayısı ve yük hacminin bölgesel sosyo-ekonomik göstergelerle ilişkili olup olmadığını araştırmak. Bu amaçla TÜİK'ten bölgesel göstergeler kullanılarak 48 şehire ilişkin havayolu istatistikleri ve ekonomik göstergeler elde edilmiştir. Model performans kriterlerine göre Coğrafi Ağırlıklı Lasso Regresyonu, verilerin analizi için en uygun model olarak belirlenmiştir. Bu çalışmanın bulguları, yolcu talebini, uçak talebini ve yük hacmini etkileyen en önemli faktörün bölgesel ekonomik büyümenin bir göstergesi olan ihracaatın olduğunu ortaya koymaktadır.

Kaynakça

  • Altuntaş, M., and Kiliç, E. (2021). Havayolu Taşımacılığı Ile Ekonomik Büyüme Arasındaki İlişkinin İncelenmesi: Türkiye Örneği. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi 23(1): 187-202 google scholar
  • Alnipak, S. and Kale, S. (2021). Avrupa Bölgesinde Havayolu Yolcu Talebini Etkileyen Faktörler. International Social Sciences Studies Journal 7 (90): 4948-4957 google scholar
  • Baikgaki, O.A. and Daw, O.D. (2013). The Determinants Of Domestic Air Passenger Demand In The Republic Of South Africa. Mediterranean Journal Of Social Sciences 4(13): 389-389 google scholar
  • Chen, Z., Barros, C., & Yu, Y. (2017). Spatial Distribution Characteristics of Chinese Airports: A Spatial Cost Function Approach. Journal Of Air Transport Management: 59, 63- 70 google scholar
  • Chioni, E., Iliopoulou, C., Milioti, C., & Kepaptsoglou, K. (2020). Factors Affecting Bus BunchingAt The Stop Level:A Geographically Weighted Regression Approach. The International Journal Of Transportation Science And Technology 9(3): 207-217 google scholar
  • Choo, Y.Y. (2018). Immigration And Inbound Air Travel Demand In Canada. Journal Of Air Transport Management 71: 153-159 google scholar
  • Das, A.K., Bardhan, A.K. and Fageda, X. (2022). What Is Driving Passenger Demand on New Regional Air Routes In India: A Study Using The Gravity Model. Case Study Transport Policy 10(1): 637-646 google scholar
  • Efendigil, T., and Eminler, Ö. (2017). The Importance Of Demand Estimation In The Aviation Sector: A Model To Estimate Airline Passenger Demand. Journal Of Yasar University 12: (14) google scholar
  • He, Y., Zhao, Y., & Tsui, K.L. (2021). An Adapted Geographically Weighted Lasso (Ada-Gwl) Model For Predicting Subway Ridership. Transportation 48(3). google scholar
  • Görür, Ç., Yüzbaşı, B. (2024). Study of factors influencing cultural similarity in the post-migration adaptation process in the Van Province, using the GWR method. Cografya Dergisi, 48, 137-154. https://doi.org/10.26650/JGEOG2024-1353398 google scholar
  • Kiraci, K., & Yaşar, M. (2020). The Determinants OfAirline Operational Performance: An Empirical Study On Major World Airlines. Sosyoekonomi 28(43): 107-117. google scholar
  • Leung, Y., Mei, C., & Zhang, W. (2000). Statistical tests for spatial nonstationarity based on a geographically weighted regression model. Environment and Planning A, 32(1), 9-32. google scholar
  • Lewandowska, G. K. (2018). Geographically Weighted Regression In The Analysis Of Unemployment In Poland. Isprs International Journal Of Geo-Information: 7(1), 17. google scholar
  • Maheshwari, A., Davendralingam, N. and Delaurentis, D.A. (2018). A Comparative Study Of Machine Learning Techniques For Aviation Applications. 2018 Aviation Technology, Integration, And Operations Conference, June 25-29, 2018, Atlanta, Georgia. google scholar
  • Millo, G., & Piras, G. (2012). Splm: Spatial Panel Data Models In R. Journal Of Statistical Software, 47(1), 1-38. google scholar
  • Pan, Y., Chen, S., Li, T., Niu, S., & Tang, K. (2019). Exploring Spatial Variations in the Bus Stop Influence Zone With Multi-Source Data: A Case Study In Zhenjiang, China. Journal Of Transport Policy 76: 166-177. google scholar
  • Pourmohammadi, P., Strager, M.P., Dougherty, M.J., and Adjeroh, D.A. (2021). Analysis Of Land Development Drivers Using Geographically Weighted Ridge Regression. Remote Sensing 13(7): 1307. google scholar
  • Republic Of Turkey Ministry Of Transport And Infrastructure, General Directorate Of State Airports Authority, Airline Industry Report (2019) [Online].Available:Https://Www. Dhmi. Gov. Tr/Lists/ Havayolusektorraporlari/Attachments/ (Accessed December 1, 2020) google scholar
  • Saputro, D. R. S., Hastutik, R. D., &Widyaningsih, P. (2021). Modeling the Human Development Index (Hdi) In Papua—Indonesia Using Geographically Weighted Ridge Regression (Gwrr). Proceedings of the Aip Conference 2326( 1), P 020025, Aip Publishing Ltd. google scholar Srisaeng, P., Baxter, G., & Wild, G. (2015). An Artificial Neural Network Approach To Forecast Australia‘s Domestic Passenger Air Travel Demand. World Review Of Intermodal Transportation Research 5(3): 281-313. google scholar
  • Taneja, N.K. (1971). A Model For Forecasting Future Air Travel Demand On The North Atlantic. Cambridge, MA: North Atlantic. Massachusetts Institute Of Technology, Flight Transportation Laboratory. google scholar
  • Tanyel, S., Topal, A., Görkem, Ç., Şengöz, B., & Özuysal, M. (2010). Adnan Menderes Havaalani Yolcu Ve Yük Taleplerinin Değişimi Üzerine Bir İnceleme. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 12(1): 19-33. google scholar
  • Tirtha, S.D., Bhowmik, T., and Eluru, N. (2022). An Airport Level Framework For Examining The Impact Of Covid-19 On Airline Demand. Transport Research Part A: Policy And Practice 159: 169-181. google scholar
  • Valdes, V. (2015). Determinants OfAir Travel Demand In Middle Income Countries. Journal Of Air Transport Management 42: 75-84. google scholar
  • Wheeler, D. C. (2007). Diagnostic Tools And A Remedial Method For Collinearity In Geographically Weighted Regression. Environment Planning A 39(10): 2464-2481. google scholar
  • Wheeler, D. C. (2009). Simultaneous Coefficient Penalization And Model Selection In Geographically Weighted Regression: The Geographically Weighted Lasso. Environment Planing A 41(3): 722-742. google scholar
  • Yüzbaşı, B. & Görür, Ç. (2023). Examining Job Role by Geographically Weighted Poisson Regression in Post-migration Adaptation Process: The Case of Van. Van Yüzüncü Yıl University, Journal of Social Sciences Institute, Republic Special Issue, 11-27. google scholar
  • Zhang, W., Jiang, L., Cui, Y., Xu, Y., Wang, C., Yu, J., Streets, D., & Lin, B. (2019). Effects Of Urbanization On Airport Co2 Emissions: A Geographically Weighted Approach Using Nighttime Light Data In China. Resour Conserv Recy. Advances 150: 104454. google scholar

Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models

Yıl 2024, , 19 - 30, 31.12.2024
https://doi.org/10.26650/JGEOG2024-1426209

Öz

Airline passenger demand, aircraft demand, and cargo volume are among the most critical factors in the economic decision-making processes of airlines and airport management. Regional factors affecting airline passenger demand, aircraft demand and cargo volume can be divided into two main groups: socio-economic factors and air transport-related factors. This study has two main objectives: First, it emphasizes that when dealing with regional data and encountering local multicollinearity between variables, penalized models are more appropriate; second, to investigate whether the number of passengers, number of aircraft, and cargo volume are related to regional socioeconomic indicators. For this purpose, regional indicators from 48 provinces were obtained from TÜİK (Turkish Statistical Institute), including statistics on air transport and economic indicators. Based on the model performance criteria, Geographically Weighted Lasso Regression was determined as the most suitable model for data analysis. The findings reveal that the most important factor affecting passenger, aircraft, and cargo demand is exports, which is an indicator of regional economic growth.

Kaynakça

  • Altuntaş, M., and Kiliç, E. (2021). Havayolu Taşımacılığı Ile Ekonomik Büyüme Arasındaki İlişkinin İncelenmesi: Türkiye Örneği. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi 23(1): 187-202 google scholar
  • Alnipak, S. and Kale, S. (2021). Avrupa Bölgesinde Havayolu Yolcu Talebini Etkileyen Faktörler. International Social Sciences Studies Journal 7 (90): 4948-4957 google scholar
  • Baikgaki, O.A. and Daw, O.D. (2013). The Determinants Of Domestic Air Passenger Demand In The Republic Of South Africa. Mediterranean Journal Of Social Sciences 4(13): 389-389 google scholar
  • Chen, Z., Barros, C., & Yu, Y. (2017). Spatial Distribution Characteristics of Chinese Airports: A Spatial Cost Function Approach. Journal Of Air Transport Management: 59, 63- 70 google scholar
  • Chioni, E., Iliopoulou, C., Milioti, C., & Kepaptsoglou, K. (2020). Factors Affecting Bus BunchingAt The Stop Level:A Geographically Weighted Regression Approach. The International Journal Of Transportation Science And Technology 9(3): 207-217 google scholar
  • Choo, Y.Y. (2018). Immigration And Inbound Air Travel Demand In Canada. Journal Of Air Transport Management 71: 153-159 google scholar
  • Das, A.K., Bardhan, A.K. and Fageda, X. (2022). What Is Driving Passenger Demand on New Regional Air Routes In India: A Study Using The Gravity Model. Case Study Transport Policy 10(1): 637-646 google scholar
  • Efendigil, T., and Eminler, Ö. (2017). The Importance Of Demand Estimation In The Aviation Sector: A Model To Estimate Airline Passenger Demand. Journal Of Yasar University 12: (14) google scholar
  • He, Y., Zhao, Y., & Tsui, K.L. (2021). An Adapted Geographically Weighted Lasso (Ada-Gwl) Model For Predicting Subway Ridership. Transportation 48(3). google scholar
  • Görür, Ç., Yüzbaşı, B. (2024). Study of factors influencing cultural similarity in the post-migration adaptation process in the Van Province, using the GWR method. Cografya Dergisi, 48, 137-154. https://doi.org/10.26650/JGEOG2024-1353398 google scholar
  • Kiraci, K., & Yaşar, M. (2020). The Determinants OfAirline Operational Performance: An Empirical Study On Major World Airlines. Sosyoekonomi 28(43): 107-117. google scholar
  • Leung, Y., Mei, C., & Zhang, W. (2000). Statistical tests for spatial nonstationarity based on a geographically weighted regression model. Environment and Planning A, 32(1), 9-32. google scholar
  • Lewandowska, G. K. (2018). Geographically Weighted Regression In The Analysis Of Unemployment In Poland. Isprs International Journal Of Geo-Information: 7(1), 17. google scholar
  • Maheshwari, A., Davendralingam, N. and Delaurentis, D.A. (2018). A Comparative Study Of Machine Learning Techniques For Aviation Applications. 2018 Aviation Technology, Integration, And Operations Conference, June 25-29, 2018, Atlanta, Georgia. google scholar
  • Millo, G., & Piras, G. (2012). Splm: Spatial Panel Data Models In R. Journal Of Statistical Software, 47(1), 1-38. google scholar
  • Pan, Y., Chen, S., Li, T., Niu, S., & Tang, K. (2019). Exploring Spatial Variations in the Bus Stop Influence Zone With Multi-Source Data: A Case Study In Zhenjiang, China. Journal Of Transport Policy 76: 166-177. google scholar
  • Pourmohammadi, P., Strager, M.P., Dougherty, M.J., and Adjeroh, D.A. (2021). Analysis Of Land Development Drivers Using Geographically Weighted Ridge Regression. Remote Sensing 13(7): 1307. google scholar
  • Republic Of Turkey Ministry Of Transport And Infrastructure, General Directorate Of State Airports Authority, Airline Industry Report (2019) [Online].Available:Https://Www. Dhmi. Gov. Tr/Lists/ Havayolusektorraporlari/Attachments/ (Accessed December 1, 2020) google scholar
  • Saputro, D. R. S., Hastutik, R. D., &Widyaningsih, P. (2021). Modeling the Human Development Index (Hdi) In Papua—Indonesia Using Geographically Weighted Ridge Regression (Gwrr). Proceedings of the Aip Conference 2326( 1), P 020025, Aip Publishing Ltd. google scholar Srisaeng, P., Baxter, G., & Wild, G. (2015). An Artificial Neural Network Approach To Forecast Australia‘s Domestic Passenger Air Travel Demand. World Review Of Intermodal Transportation Research 5(3): 281-313. google scholar
  • Taneja, N.K. (1971). A Model For Forecasting Future Air Travel Demand On The North Atlantic. Cambridge, MA: North Atlantic. Massachusetts Institute Of Technology, Flight Transportation Laboratory. google scholar
  • Tanyel, S., Topal, A., Görkem, Ç., Şengöz, B., & Özuysal, M. (2010). Adnan Menderes Havaalani Yolcu Ve Yük Taleplerinin Değişimi Üzerine Bir İnceleme. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 12(1): 19-33. google scholar
  • Tirtha, S.D., Bhowmik, T., and Eluru, N. (2022). An Airport Level Framework For Examining The Impact Of Covid-19 On Airline Demand. Transport Research Part A: Policy And Practice 159: 169-181. google scholar
  • Valdes, V. (2015). Determinants OfAir Travel Demand In Middle Income Countries. Journal Of Air Transport Management 42: 75-84. google scholar
  • Wheeler, D. C. (2007). Diagnostic Tools And A Remedial Method For Collinearity In Geographically Weighted Regression. Environment Planning A 39(10): 2464-2481. google scholar
  • Wheeler, D. C. (2009). Simultaneous Coefficient Penalization And Model Selection In Geographically Weighted Regression: The Geographically Weighted Lasso. Environment Planing A 41(3): 722-742. google scholar
  • Yüzbaşı, B. & Görür, Ç. (2023). Examining Job Role by Geographically Weighted Poisson Regression in Post-migration Adaptation Process: The Case of Van. Van Yüzüncü Yıl University, Journal of Social Sciences Institute, Republic Special Issue, 11-27. google scholar
  • Zhang, W., Jiang, L., Cui, Y., Xu, Y., Wang, C., Yu, J., Streets, D., & Lin, B. (2019). Effects Of Urbanization On Airport Co2 Emissions: A Geographically Weighted Approach Using Nighttime Light Data In China. Resour Conserv Recy. Advances 150: 104454. google scholar
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Beşeri Coğrafya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Semra Türkan 0000-0002-4236-2021

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 26 Ocak 2024
Kabul Tarihi 1 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Türkan, S. (2024). Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models. Journal of Geography(49), 19-30. https://doi.org/10.26650/JGEOG2024-1426209
AMA Türkan S. Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models. Journal of Geography. Aralık 2024;(49):19-30. doi:10.26650/JGEOG2024-1426209
Chicago Türkan, Semra. “Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models”. Journal of Geography, sy. 49 (Aralık 2024): 19-30. https://doi.org/10.26650/JGEOG2024-1426209.
EndNote Türkan S (01 Aralık 2024) Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models. Journal of Geography 49 19–30.
IEEE S. Türkan, “Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models”, Journal of Geography, sy. 49, ss. 19–30, Aralık 2024, doi: 10.26650/JGEOG2024-1426209.
ISNAD Türkan, Semra. “Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models”. Journal of Geography 49 (Aralık 2024), 19-30. https://doi.org/10.26650/JGEOG2024-1426209.
JAMA Türkan S. Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models. Journal of Geography. 2024;:19–30.
MLA Türkan, Semra. “Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models”. Journal of Geography, sy. 49, 2024, ss. 19-30, doi:10.26650/JGEOG2024-1426209.
Vancouver Türkan S. Analyzing Regional Factors Influencing Passenger, Aircraft Demand, and Freight Demand Using Penalized Geographically Weighted Regression Models. Journal of Geography. 2024(49):19-30.