Deprem Hasarını Etkileyen Parametrelerin CBS tabanlı Rastgele Ormanlar Makine Öğrenmesi Modeli Kullanılarak Değerlendirilmesi: Türkiye’de 6 Şubat 2023 Kahramanmaraş Depremleri Örneği
Türkiye, tektonik özellikleri nedeniyle sismik aktivitenin yoğun olduğu bir coğrafyada yer almaktadır. Bu kadar yüksek deprem riskine rağmen, deprem hasarını etkileyen parametrelerin değerlendirilmesi Türkiye'de hala çok yetersizdir. Bu çalışmanın amacı, Türkiye Cumhuriyeti tarihinde en fazla can kaybına neden olan 6 Şubat 2023 Kahramanmaraş depremlerinde deprem hasarını etkileyen parametreleri değerlendirmektir. Bu nedenle, Türkiye'nin farklı bölgelerinde deprem tehlikesi durumunda yapıların davranışlarındaki farklılıkları anlamak için veri üretilmiştir. Çalışmada, depremin hissedildiği yerleşim bölgelerinde farklı yapısal hasar türlerine sahip 198.634 binadan alınan örnek veriler kullanılmıştır. Bu veriler ile yapısal hasara neden olan temel faktörler arasındaki ilişki Coğrafi Bilgi Sistemleri (CBS) tabanlı Rastgele Ormanlar (RO) Makine Öğrenimi (MÖ) modeli kullanılarak analiz edilmiştir. Çalışma sonucunda, 6 Şubat 2023 Kahramanmaraş depremlerinin bina yaşı, yerel zemin koşulları, fay hatlarına uzaklık, merkez üssüne uzaklık, zemin kayma hızı, maksimum zemin hızı ve zemin sıvılaşma etkisi faktörlerinin farklı kombinasyonları sonucunda yapısal hasara neden olduğu anlaşılmıştır.
2023 Turkey Earthquakes (2023). Building Damage Assessment Map. https://hasar.6subatdepremi.org. google scholar
Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna A. & Rosakis, A. J. (2023). Revealing the dynamics of the Feb. 6, 2023M7.8 Kahramanmaras/Pazarcik Earthquake: near-field records and dynamic rupture modeling. EarthArXiv. https://doi. org/10.31223/X5066R. google scholar
AFAD (2023a). February 06, 2023, Kahramanmaraş (Pazarcık and Elbistan) Earthquake Preliminary Reconnaissance Report (February 24, 2023). Ministry of Interior, Disaster and Emergency Management Presidency, Department of Earthquake. https://deprem.afad.gov.tr/ assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf. google scholar
AFAD (2023b). February 06, 2023 Pazarcık (Kahramanmaraş) Mw 7.7, Elbistan (Kahramanmaraş) Mw 7.6 Earthquake Preliminary Assessment Report (February 9, 2023). Ministry of Interior, Disaster and Emergency Management Presidency, Department of Earthquake. https://deprem.afad.gov.tr/assets/pdf/Kahramanmaras%20%20 Depremleri_%20On%20Degerlendirme%20Raporu.pdf. google scholar
AFAD (2023c). 06 February 2023 Pazarcık-Elbistan (Kahramanmaraş) Mw: 7.7 - Mw: 7.6 Earthquakes Report. https://deprem.afad.gov.tr/ assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20 Raporu_02.06.2023.pdf. google scholar
Aggarwal, Y. & Saha, S. K. (2023). Improved rapid visual screening method for seismic vulnerability assessment of reinforced concrete buildings in Indian Himalayan region. Bulletin of Earthquake Engineering, 21, 319347. https://doi.org/10.1007/s10518-022-01537-2. google scholar
Akbulut, M. & Ayfer, A. (2005). Proposed evaluation approach for determining earthquake vulnerability based on observations. Megaron, 1(1), 88-98. https://jag.journalagent.com/megaron/pdfs/ MEGARON-51423-ARTICLE-AKBULUT.pdf. google scholar
Alpaslan, N. (2013). Soil liquefaction and mechanism. Batman University Journal of Life Sciences, 3(2), 67-89. https://dergipark. org.tr/tr/pub/buyasambid/issue/29820/320770. google scholar
Alptekin, I. (2020). 1999 effect of 1999 gölcük earthquake on the region of avcılar and methods of ground improvement applied in the region of avcılar. (Publication No. 645012) [Master Thesis, Istanbul Gelisim University]. YÖK Thesis Center. https://hdl.handle.net/11363/2686. google scholar
Ambraseys, N.N. & Jackson, J.A. (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophysical Journal International, 133(2), 390-406. https:// doi.org/10.1046/j.1365-246X.1998.00508.x. google scholar
Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distributions of February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). https:// doi.org/10.26443/seismica.v2i3.502. google scholar
Bektaş, N. & Kegyes-Brassai, O. (2023). Development of fuzzy logic-based rapid visual screening method for seismic vulnerability assessment of buildings. Geosciences, 13(1), 6. https://doi. org/10.3390/geosciences13010006. google scholar
Biljecki, F., Chow YS. & Lee, K. (2023). Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap attributes. Building and Environment, 237, 110295. https://doi.org/10.1016/j.buildenv.2023.110295. google scholar
Bozdoğan, Y.E. (2023). Earthquake risk assessment in Kahramanmaraş province. (Master Thesis). Kahramanmaraş Sütçü İmam University Institute of Social Sciences, Kahramanmaraş. google scholar
Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodinamica Acta, 14(1-3), 3-30. https://doi.org/10.1080/09853111.2001.11432432. google scholar
Breiman, L. (2001). Random forest. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324. google scholar
Bulut Üstün, A., Altuntaş, G., Demirörs, U. & Karayazı, O. (2023). February 6, 2023 Kahramanmaras Earthquakes and February 20, 2023 Defne (Hatay) Earthquake, resulting in Liquefaction Structures Field Observations and Evaluations. MTA Department of Geological Surveys, Ankara. https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/deprem/pdf/sivilasma-yapilari-sahagozlemleri.pdf google scholar
Mohammadi, C., Nazmfar, H. & Asghari Saraskanrood, S. (2023). An analysis of the vulnerability of Kermanshah’s city to earthquake risk with an emphasis on. Journal of Environmental Science Studies, 8(2), 6338-6350. https://doi.org/10.22034/jess.2022.355794.1852. google scholar
Cabalar, A. F., Canbolat, A., Akbulut, N., Tercan, S. H. & Isik, H. (2019). Soil liquefaction potential in Kahramanmaras, Turkey. Geomatics, Natural hazards and Risk, 10(1), 1822-1838. https:// doi.org/10.1080/19475705.2019.1629106. google scholar
Carrera-Cevallos, A. & Carrera-Cevallos, D. (2023). Hit of two earthquakes in Turkey-Syria: Mw=7,8 Gaziantep-Mw=7,5 Kahramanmaras (March 17, 2023). https://ssrn.com/abstract=4392215 or http://dx.doi.org/10.2139/ssrn.4392215. google scholar
Chadha, R. K. (2023). An mw 7.8 earthquake occurred on February 6, 2023, on the east anatolian fault, Turkey. Journal of the Geological Society of India, 99, 449-453. https://doi.org/10.1007/s12594-023-2331-z. google scholar
Coskun, O. & Aldemir, A. (2023). Machine learning network suitable for rapid seismic risk estimation of masonry building stocks. Natural Hazards, 115, 261-287. https://doi.org/10.1007/s11069-022-05553-y. google scholar
Çalım, G., Bal, İ.E. & Gülay, G. (2019). Probabilistic calculation of earthquake risk in transmission lines and a case study. Dicle University Journal of Engineering, 10(1), 397-408. https://doi. org/10.24012/dumf.538436. google scholar
Çoban, V. & Yerel Kandemir, S. (2023). Rating factors affecting the dimension of vulnerability from earthquake. European Journal of Science and Technology, (49), 61-67. https://dergipark.org.tr/en/ download/article-file/2987937. google scholar
DEU (2023). 06 February 2023, 04:17, Mw=7.7, h=9 km Pazarcık (Kahramanmaras) Earthquake, 06 February 2023, 13:24, Mw=7.6, h=7 km Elbıstan (Kahramanmaraş) Earthquake, 20 February 2023, 20:04, Mw=6.4, h=22 km Defne (Hatay) Earthquake Earthquake Report. https://haberler.itu.edu.tr/docs/default-source/default-document-library/2023_itu_subat_2023_deprem_son_raporu. pdf?sfvrsn=1583fe76_2. google scholar
Dinçer, İ., Akın, M.K., Akın, M., Orhan, A., Varol, O.O., Başer, M. & Benlioğlu, T. B. (2023). February 6, 2023, Kahramanmaras Earthquakes (Mw 7.7 and 7.6) in Adana City Center, Preliminary Assessment Report on the Relationship of Building Damages and destruction with Geological Conditions. https://doi.org/10.13140/ RG.2.2.35770.26565. google scholar
Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active Fault Map Series of Türkiye (Scale: 1:250.000). Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-56-1. https://www.mta.gov. tr/v3.0/bilgi-merkezi/turkiye-diri-fay-haritasi-sayisal. google scholar
ESRI (2023a). The base map. Available at: https://pro.arcgis.com/en/ pro-app/latest/help/mapping/map-authoring/author-a-basemap.htm google scholar
ESRI (2023b). Near (Analysis). Available at: https://pro.arcgis.com/en/ pro-app/latest/tool-reference/analysis/near.htm. google scholar
ESRI (2023c). Forest-based classification and regression (Spatial Statistics). Available at: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/forest-basedclassificationregression.htm. google scholar
ESTU (2023). 06 February 2023, 04:17, Mw 7.7, Kahramanmaras (Pazarcık, Türkoğlu), Hatay (Kırıkhan), and 13:24, Mw 7.6 Kahramanmaraş (Elbistan, Nurhak) Earthquakes, Preliminary Assessment Report on the Identification of Destroyed Buildings and Disaster Management Processes in Elbistan District Center. https://www.eskisehir.edu.tr/Uploads/www/files/ESTU%CC%88_ ELBI%CC%87STAN_RAPORU_V3(1).pdf google scholar
European Environment Agency Corine Land Cover (2000). Version 2020_20u1. Available online: https://land.copernicus. eu/pan-european/corine-land-cover/clc-2000. google scholar
Eyidoğan, H. (2022). An example of public seismology “earthquake testimony” in determining earthquake intensity. TUBITAK Science and Future, 218, 54-57. google scholar
Fischer, E., Barreca, G., Greco, A., Martinico, F., Pluchino A. & Rapisarda, A. (2023). Seismic risk assessment of a large metropolitan area with simulated earthquakes. Natural Hazards, 118, 117-153. https://doi.org/10.1007/s11069-023-05995-y. google scholar
Görüm, T., Tanyas, H., Karabacak, F., Yılmaz, A., Girgin, S., Allstadt, K.E., Süzen, M.L. & Burgi, P. (2023). Preliminary documentation of coseismic ground failure triggered by the February 6, 2023, Türkiye earthquake sequence. Engineering Geology, 327, 107315. https://doi.org/10.1016/j.enggeo.2023.107315. google scholar
GTU/MARTEST (2023). February 6, 2023, Maraş Earthquakes (Pazarcık Mw7.7 and Elbistan Mw7.6) Aftermath of Strong Ground Motion, Geotechnical, Superstructure, and Infrastructure Field Observations Preliminary Investigation Report. https://www.gtu. edu.tr/fileman/Files/UserFiles/insaat_muhendisligi_bolumu/GTU_ Maras%20Depremleri%20Deg%CC%86erlendirme%20Raporu_ Final_07.03.2023.pdf. google scholar
Güler, E. & Canbaz, M. (2017). Determination of the earthquake risk of structures using a street screening method. In: Muammer Tün, Emrah Pekkan, Özgür Avşar (Eds.), 4th International Conference on Earthquake Engineering and Seismology Proceedings (pp.1-8), Turkish Earthquake Engineering Society. https://www.tdmd.org. tr/4UDMSK/pdf2017/3834.pdf. google scholar
Güllü, H. (2013). Prediction of shear wave velocity at local sites of strong ground motion stations: An application using artificial intelligence. Bulletin of Earthquake Engineering, 11(4), 969-997. https://doi.org/10.1007/s10518-013-9425-8. google scholar
Gündüz, A., Türkmen, S., Eryiğit, U., Karaca, Y. & Aydın M. (2013). Is Turkey an earthquake country?. Eurasian Journal of Emergency Medicine, 12, 33-37. https://cms.eajem.com/Uploads/Article_22069/ EAJEM-12-33-En.pdf. google scholar
Hu, J. & Szymczak, S. (2023). A review of longitudinal data analysis with random forest. Briefings in Bioinformatics, 24 (2), bbad002. https://doi.org/10.1093/bib/bbad002. google scholar
Hu, J., Liu, M., Taymaz, T., Ding, L. & Irmak, T.S. (2024). Characteristics of strong ground motion in the 2023 Mw 7.8 and Mw 7.6 Kahramanmaraş earthquake sequence. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-023-01844-2. google scholar
ITU (2023). 06 February 2023, 04:17, Mw 7.8 Kahramanmaraş (Pazarcık, Türkoğlu), Hatay (Kırıkhan), and 13:24, Mw 7.7 Kahramanmaraş (Elbistan, Nurhak-Çardak) Earthquakes Final Report. https://haberler. itu.edu.tr/docs/default-source/default-document-library/2023_itu_ subat_2023_deprem_son_raporu.pdf?sfvrsn=1583fe76_2. google scholar
İnel, M., Özmen, H.B. & Çaycı, B.T. (2013). Evaluation of reasons for damage after Simav and Van (2011) earthquakes. Pamukkale University Journal of Engineering Sciences, 19(6), 256-265. https:// dergipark.org.tr/tr/pub/pajes/issue/20499/218246. google scholar
Zhu, J., Baise, L.G. & Thompson, E. M. (2017). Updated Geospatial Liquefaction Model for Global Application. Bulletin of the Seismological Society of America, 107(3), 1-21. https://doi.org/10.1785/0120160198. google scholar
Jia, H., Lin, J. & Liu, J. (2019). Earthquake Fatalities Assessment Method Based on Feature Importance with Deep Learning and Random Forest Models. Sustainability, 11(10), 2727. https://doi. org/10.3390/su11102727. google scholar
Jia, H., Lin, J. & Liu, J. (2020). Bridge Seismic Damage Assessment Model Employing Artificial Neural Networks and the Random Forest Algorithm. Advances in Civil Engineering, Article ID 6548682. https://doi.org/10.1155/2020/6548682. google scholar
Sajan, K. C., Bhusal, A., Gautam, D. & Rupakhety, R. (2023). Earthquake damage and rehabilitation intervention prediction using machine learning. Engineering Failure Analysis, 144, 106949. https://doi.org/10.1016/j.engfailanal.2022.106949. google scholar
Karabacak, V., Özkaymak, Ç., Sözbilir, H., Tatar, O., Aktuğ, B., Özdağ, Ö.C., Çakir, R., Aksoy, E., Koçbulut, F. & Softa, M. (2023). The 2023 Pazarcık (Kahramanmaraş, Türkiye) earthquake (Mw 7.7): implications for surface rupture dynamics in the East Anatolian Fault Zone. Journal of the Geological Society, 180(3), jgs2023-020. https://doi.org/10.1144/jgs2023-020. google scholar
Karabulut, H., Güvercin, S.E., Hollingsworth J. & Konca, A.Ö. (2023). Long silence on the east anatolian fault zone (Southern Turkey) ended with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the eastern mediterranean region. Journal of the Geological Society, 180(3), jgs2023-021. https://doi.org/10.1144/jgs2023-021. google scholar
Karalar, M. & Çavuşli, M. (2020). Seismic effects of earthquake epicenter distance on the 3D damage performance of CG dams. Earthquakes and Structures, 18(2), 201-213. https://doi. org/10.12989/eas.2020.18.2.201. google scholar
Karasözen, E., Büyükakpınar, P., Ertuncay, D., Havazlı, E., & Oral, E. (2023). A call from early career Turkish scientists: seismic resilience is only feasible with “earthquake culture”. Seismica, 2(3). https:// doi.org/10.26443/seismica.v2i3.1012. google scholar
Kassem, M.M. & Mohamed Nazri, F. (2023). Integrated approach between seismic resilience and vulnerability indexes with regularity index for vertical irregularity planar frames risk assessment. Bulletin of Earthquake Engineering, 21, 1903-1941. https://doi.org/10.1007/ s10518-022-01588-5. google scholar
Kazemi, F., Asgarkhani, N. & Jankowski, R. (2023). Machine learning-based assessment of seismic fragility and vulnerability in reinforced concrete structures. Soil Dynamics and Earthquake Engineering, 166, 107761. https://doi.org/10.1016/j.soildyn.2023.107761. google scholar
Korkmaz, H. (2006). Relationship Between Ground Conditions and Earthquake Effect In Antakya. Turkish Journal of Geographical Sciences, 4(2), 49-66. https://doi.org/10.1501/Cogbil_0000000066. google scholar
Kurcer, A., Elmacı, H., Özdemir, E., Güven, C., Güler, T., Avcu, İ., Olgun, Ş., Avcı, H., Aydoğan, H., Yüce, A., Çetin, F.E., Ayrancı, A., Akyol, Z.S.Ö., Altuntaş, G., Demirörs, U., Karayazı, O., Bayrak, A. & Özalp, S. (2023). 06 Şubat 2023 Pazarcık (Kahramanmaraş) Depremi (Mw 7,8) Saha Gözlemleri ve Değerlendirmeler. MTA Genel Müdürlüğü, Rapor No: 14138, 187 s., Ankara. google scholar
Lee, S.J., Liu, T.Y. & Lin, T.C. (2024). Abnormal clear superheat rupture with discontinuous jumping propagation during the 2023 Türkiye M7.8 earthquake. Communications Earth & Environment, 5, 331. https://doi.org/10.1038/s43247-024-01481-w. google scholar
Li, S.Q. (2023). Comparison of empirical structural vulnerability prediction models considering typical earthquakes. Structures, 49, 377-401. https://doi.org/10.1016/j.istruc.2023.01.130. google scholar
Li, S.Q., Chen, Y.S., Liu, H.B. & Del Gaudio, C. (2023). Empirical seismic vulnerability assessment model of typical urban buildings. Bulletin of Earthquake Engineering, 21, 2217-2257. https://doi. org/10.1007/s10518-022-01585-8. google scholar
Liu, C., Lay, T., Wang, R., Taymaz, T., Xie, Z., Xiong, X., Irmak, T.S., Kahraman, M. & Erman, C. (2023). Complex multi-fault rupture and triggering during a 2023 earthquake doublet in southeastern Türkiye. Nature Communications 14, 5564. https://doi.org/10.1038/ s41467-023-41404-5. google scholar
Maden, S. (2023). February 6, 2023, Earthquakes in Kahramanmaraş and an Overview of Earthquake Journalism in Turkey: An Interview with Prof. Dr. Süleyman İrvan. Etkileşim, 11, 406-420. https://doi. org/10.32739/etkilesim.2023.6.11.202. google scholar
Mai, P.M., Aspiotis, T., Aquib, T.A., Cano, E.V, Castro-Cruz, D., Espindola-Carmona, A., Li, B., Li, X., Liu, J., Matrau, R., Nobile, A., Palgunadi, K.H., Ribot, M., Parisi, L., Suhendi, C., Tang, Y., Yalcin, B., Avşar, U., Klinger, Y. & Jönsson, S. (2023). Destructive earthquake doublet of 6 February 2023 in south-central Türkiye and northwestern Syria: initial observations and analyses. The Seismic Record, 3(2), 105-115. https://doi.org/10.1785/0320230007. google scholar
Mangalathu, S., Sun, H., Nweke, C.C., Yi Z. & Burton, H. V. (2020). Classify earthquake damage to buildings using machine learning. Earthquake Spectra, 36(1), 183-208. https://doi.org/10.1177/8755293019878137. google scholar
Mavrouli, M., Mavroulis, S., Lekkas E. & Tsakris, A. (2023). Emerging health crisis in Turkey and Syria after the earthquake disaster of 6 February 2023: risk factors, prevention, and management of infectious diseases. Healthcare, 11(7), 1022. https://doi.org/10.3390/ healthcare11071022. google scholar
Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbilen, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan AH. & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi. org/10.26443/seismica.v2i3.387. google scholar
METU DMAM (2023). February 6, 2023 Kahramanmaraş-Pazarcık Mw=7.7 and Elbistan Mw=7.6 Earthquakes Preliminary Assessment Report (Report No: METU/EERC 2023-01). https://eerc.metu.edu. tr/tr/system/files/documents/DMAM_2023_Kahramanmaras-Pazarcik_ve_Elbistan_Depremleri_Raporu_TR_final.pdf. google scholar
MEUCC. (2023a). Damage Assessment Search. https://hasartespit.csb. gov.tr/. google scholar
MEUCC. (2023b, February 23). Minister Kurum announced 98% of the demolished buildings were constructed before 1999. Sabah. https:// www.sabah.com.tr/gundem/2023/02/23/bakan-kurum-acikladi-yikilan-binalarin-yuzde-98i-1999-oncesine-ait. google scholar
Mertol, H. C. (2023). Explanation of the Problems in Reinforced Concrete Buildings Observed in the February 6th, 2023 Earthquakes with a Hierarchical Triangle. Journal of the Institute of Science and Technology, 13(4), 2717-2729. https://doi.org/10.21597/jist.1263348. google scholar
MTA (2002). 1:500.000 Scaled Turkish Geology Map Series. https:// www.mta.gov.tr/v3.0/hizmetler/500bas. google scholar
Okuwaki, R., Yagi, Y., Taymaz, T. & Hicks, S. P. (2023). Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet. Geophysical Research Letters, 50, e2023GL103480. https://doi.org/10.1029/2023GL103480. google scholar
Özel, G., Türkan, S., Ünal, C. (2022). Tubitak 2237-A evaluation of statistical modeling methods and applications training in natural sciences. Bilge International Journal of Science and Technology Research, 6(1), 20-28. http://doi.org/10.30516/bilgesci.1037043. google scholar
Özşahin E. & Eroğlu, İ. (2019). Impact of local soil conditions on earthquake sensitivity in Erzincan City. Journal of Natural Hazards and Environment, 5(1), 41-57. https://doi.org/10.21324/dacd.428012. google scholar
Özşahin, E. & Kaymaz, Ç.K. (2013). An Example for the Evaluation of Disaster Culture: Antakya City. In: Cemal Geneş (Eds.), Proceedings of the 2nd Turkish Earthquake Engineering and Seismology Conference (pp. 1-8), Turkish Earthquake Engineering Society. https://www.tdmd.org.tr/pdf/TDMSK039.pdf. google scholar
Özşahin, E. (2010). Discussion of Geographical Survey In Respect of Geomorphologic Characteristics And Natural Risks In Antakya (Hatay). Balıkesir University the Journal of Social Sciences Institute, 13(23), 1-16. https://dergipark.org.tr/tr/download/article-file/857049. google scholar
Papazafeiropoulos, G. & Plevris, V. (2023). Kahramanmaraş-Gaziantep, Türkiye Mw 7.8 earthquake on February 6, 2023: strong ground motion and building response estimations. Buildings, 13(5), 1194. https://doi.org/10.3390/buildings13051194. google scholar
Peek-Asa, C., Ramirez, M., Seligson, H. & Shoaf, K. (2003). Seismic, structural, and individual factors associated with earthquake-related injury. Injury Prevention, 9, 62-66. https://injuryprevention.bmj. com/content/injuryprev/9/1/62.full.pdf. google scholar
Pourghasemi, H.R., Pouyan, S., Bordbar, M., Golkar F. & Clague, J. J. (2023). Flood, landslides, forest fires, and earthquake susceptibility maps using machine learning techniques and their combination. Natural Hazards, 116, 3797-3816. https://doi.org/10.1007/s11069-023-05836-y. google scholar
Qu, Z., Wang, F., Chen, X., Wang X. & Zhou, Z. (2023). Rapid report of seismic damage to hospitals during the 2023 Turkey earthquake sequences. Earthquake Research Advances, 100234. https://doi. org/10.1016/j.eqrea.2023.100234.100234. google scholar
Rashidian, V. & Baise, L. G. (2020). Regional efficacy of a global geospatial liquefaction model. Engineering Geology, 272, 105644. https://doi.org/10.1016/j.enggeo.2020.105644. google scholar
Sadeghi, J., Oghabi, M., Sarvari, H., Sabeti, M.S., Kashefi, H., Chan, D.W.M. & Lotfata, A. (2023). Hybrid risk assessment approach for assessing earthquake risks in worn-out urban fabrics: a case study in Iran. International Journal of Disaster Resilience in the Built Environment, 14(2), 193-211. https://doi.org/10.1108/IJDRBE-09-2021-0128. google scholar
Reitman, N.G., Briggs, R.W., Barnhart, W.D., Hatem, A.E., Thompson Jobe, J.A., DuRoss, C.B., Gold, R.D., Mejstrik, J.D., Collett, C., Koehler, R.D. & Akçiz, S. (2023). Rapid Surface Rupture Mapping from Satellite Data: The 2023 Kahramanmaraş, Turkey (Türkiye), Earthquake Sequence. The Seismic Record, 3(4), 289-298. https:// doi.org/10.1785/0320230029. google scholar
SBB (2023). 2023 Kahramanmaraş and Hatay Earthquakes Report. Presidency of the Republic of Turkey, Presidency of Strategy and Budget. https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay-Depremleri-Raporu.pdf. google scholar
Selçuk, L. & Aydın, H. (2012). Effect of quaternary alluvium on strong ground motion: 2011 Van earthquakes. Journal of Geological Engineering, 36(2), 75-98. https://dergipark.org.tr/en/pub/jmd/ issue/28181/295927. google scholar
Sengör, A.M.C. & Yazıcı, M. (2020). The etiology of the geotectonic evolution of Turkey. Mediterranean Geoscience Reviews, 2, 327339. https://doi.org/10.1007/s42990-020-00039-0. google scholar
Sengör, A.M.C., Gorur, N. & Saroglu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K., & Christie-Blick, N. (Eds)., Strike-slip Faulting and Basin Formation. Society of Economic Paleontologists and Mineralogists, Special Publication 37, Tulsa, OK. google scholar
Sönmez, M.E. (2014). An analysis of earthquake damage risk based on geographic ınformation system (GIS) as example: Zeytinburnu (Istanbul). Turkish Geographical Review, 56, 11-22. https:// dergipark.org.tr/tr/pub/tcd/issue/21225/227787. google scholar
Stein, R.S., Toda, S., Özbakir, A. D., Sevilgen, V., Gonzalez-Huizar, H., Lotto, G. & Sevilgen, S. (2023). Interactions, stress changes, mysteries, and partial forecasts of the 2023 Kahramanmaraş, Türkiye earthquakes. Temblor. http://doi.org/10.32858/temblor.299. google scholar
Şen, S. (2023). The effects of the Kahramanmaraş earthquakes on the economy. The Journal of Diplomacy and Strategy, 4, 1-55. https:// dergipark.org.tr/en/download/article-file/3049226. google scholar
Şen Z. (2011). Supervised fuzzy logic modelling for building earthquake hazard assessment. Expert Systems With Applications, 38, 1456414573. https://doi.org/10.1016/j.eswa.2011.05.026. google scholar
Şengezer, B., Ansal A. & Bilen, Ö. (2008). Evaluation of parameters affecting earthquake damage using decision tree techniques. Natural Hazards, 47, 547-568. https://doi.org/10.1007/s11069-008-9238-2. google scholar
Şenol, C. (2023). Turkey from the Perspective of the Kahramanmaraş Earthquakes (2023). In Assoc. Prof. Dr. Doğa Başar SARIIPEK, 5th International Palandoken Scientific Studies Congress Congress Book (ss.699-711). https://www.isarconference.org/_files/ ugd/6dc816_89d95311c142494bb9313d95eaa3c4e6.pdf. google scholar
Taftsoglou, M., Valkaniotis, S., Papathanassiou G. & Karantanellis, E. (2023a). Satellite Imagery for Rapid Detection of Liquefaction Surface Manifestations: A Case Study of Türkiye-Syria 2023 Earthquakes. Remote Sensing, 15(17), 4190. https://doi.org/10.3390/rs15174190. google scholar
Taftsoglou, M., Valkaniotis, S., Karantanellis, E., Goula E. & Papathanassiou. (2023b). Preliminary mapping of liquefaction phenomena triggered by the February 6, 2023 M7.7 earthquake, Türkiye/Syria, based on remote sensing data. Zenodo. https://doi. org/10.5281/zenodo.7668401. google scholar
Taştan, B. & Aydınoğlu, A.Ç. (2015). Requirement analysis to determine hazard and vulnerability in multiple disaster risk management. Marmara Geographical Review, 31, 366-397. https://doi. org/10.14781/mcd.83405. google scholar
Tan, O. & Taymaz, T. (2006). Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. Special Paper of the Geological Society of America, 409, 531-578. https://doi.org/10.1130/2006.2409(25). google scholar
Taymaz, T., Ganas, A., Yolsal-Çevikbilen, S., Vera, F., Eken, T., Erman, C., Keleş, D., Kapetanidis, V., Valkaniotis, S., Karasante, I., Tsironi, V., Gaebler, P., Melgar D. & Öcalan, T. (2021). Source mechanism and rupture process of the 24 January 2020 MW 6.7 Doganyol-Sivrice earthquake obtained from seismological waveform analysis and space geodetic observations in the East Anatolian Fault Zone (Turkey). Tectonophysics, 804, 228745. https://doi.org/10.1016/j. tecto.2021.228745. google scholar
Tokgöz, H. & Bayraktar, H. (2015). In determining buildings risk of Duzce-Kaynasli district Using Street scanning methods. Düzce University Journal of Science & Techology, 3(1), 107-116. https:// dergipark.org.tr/en/pub/dubited/issue/4809/66236?publisher=duzce. google scholar
U.S. Geological Survey (2023a). M 7.8 Pazarcik earthquake, Kahramanmaras earthquake sequence, Turkey (Türkiye) on February 6, 2023. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive. google scholar
U.S. Geological Survey (2023b). M 7.5 - Elbistan earthquake, Kahramanmaras earthquake sequence, Turkey (Türkiye) on February 6, 2023. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive. google scholar
Utkucu, M., Durmuş, H., Uzunca, F. & Nalbant, S. (2023). Evaluation of the February 6, 2023 Gaziantep (Mw=7.7) and Elbistan (Mw=7.5) Earthquakes. Sakarya University Disaster Management Application and Research Center and Department of Geophysical Engineering. http://www.aym.sakarya.edu.tr/wp-content/uploads/Rapor_Son.pdf. google scholar
Uyanık, O. (2015). Predicting Heavy Earthquake Damage Areas and Importance of Macro and Microzoning for Urban Planning. Suleyman Demirel University Journal of Natural and Applied Science 19(2), 24-38. https://dergipark.org.tr/tr/pub/sdufenbed/ issue/20807/222263. google scholar
Yalçın, H., Gülen L. & Utkucu, M. (2013). Active fault database and assessment of earthquake hazards in Turkey and surrounding regions. Yerbilimleri, 34(3), 141-168. https://dergipark.org.tr/tr/ pub/yerbilimleri/issue/13653/165234. google scholar
Yıldız, A. (2023). Geographical analysis of assembly areas before and after the 06 February 2023 Kahramanmaraş earthquakes and earthquake park proposal: Antakya and its surroundings. (Master Thesis). Hatay Mustafa Kemal University Institute of Social Sciences, Hatay. google scholar
Yılmaz, A. (2012). Disaster related problems in Turkey. Manas Journal of Social Studies, 1(1), 61-81. https://dergipark.org.tr/tr/pub/mjss/ issue/40475/484882. google scholar
Yön, B., Sayin, E. & Onat, O. (2017). Earthquakes and Structural Damages. Chapter:13, Earthquakes - Tectonics, Hazard and Risk Mitigation, InTech, 319-339, https://doi.org/10.5772/65425. google scholar
Zhang, Y., Tang, X., Liu, D., Taymaz, T., Eken, T., Guo, R., Zheng, Y., Wang J. & Sun, H. (2023). Geometric control of cascading rupture of the 2023 Kahramanmaraş earthquake doublet. Nature Geoscience, 16, 1054-1060. https://doi.org/10.1038/s41561-023-01283-3. google scholar
Evaluation of Parameters Affecting Earthquake Damage Using a GIS-based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye
Türkiye is a geographical feature with intense seismic activity due to its tectonic features. Despite such a high earthquake risk, the evaluation of parameters affecting earthquake damage is still very inadequate in Türkiye. The aim of this study was to evaluate the parameters affecting earthquake damage in the 6 February 2023 Kahramanmaras earthquake, which caused the highest number of casualties in the history of the Republic of Türkiye. Therefore, data were produced to understand the differences in the behavior of structures in the case of an earthquake hazard in different parts of Türkiye. The study used sample data from 198,634 buildings with varying types of structural damage in residential areas where the earthquake had been felt. The relationship between these data and key factors causing structural damage was analyzed using a Geographic Information Systems (GIS)-based Random Forests (RF) Machine Learning (ML) model. As a result of this study, it was understood that the 6 February 2023 Kahramanmaras earthquakes caused structural damage as a result of different combinations of building age, local soil conditions, distance to fault lines, distance to the epicenter, ground slip velocity, maximum ground velocity, and soil liquefaction effect factors.
I confirm that all authors have made substantial contributions to the manuscript, have approved the final version of the manuscript, and have agreed to its submission to the Journal of Geography.
Destekleyen Kurum
No
Teşekkür
We thank Said Turksever for his help in obtaining the sample data used in this study. We wish mercy from Allah for those who lost their lives in this earthquake and a speedy recovery to those who were injured.
Kaynakça
2023 Turkey Earthquakes (2023). Building Damage Assessment Map. https://hasar.6subatdepremi.org. google scholar
Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna A. & Rosakis, A. J. (2023). Revealing the dynamics of the Feb. 6, 2023M7.8 Kahramanmaras/Pazarcik Earthquake: near-field records and dynamic rupture modeling. EarthArXiv. https://doi. org/10.31223/X5066R. google scholar
AFAD (2023a). February 06, 2023, Kahramanmaraş (Pazarcık and Elbistan) Earthquake Preliminary Reconnaissance Report (February 24, 2023). Ministry of Interior, Disaster and Emergency Management Presidency, Department of Earthquake. https://deprem.afad.gov.tr/ assets/pdf/Arazi_Onrapor_28022023_surum1_revize.pdf. google scholar
AFAD (2023b). February 06, 2023 Pazarcık (Kahramanmaraş) Mw 7.7, Elbistan (Kahramanmaraş) Mw 7.6 Earthquake Preliminary Assessment Report (February 9, 2023). Ministry of Interior, Disaster and Emergency Management Presidency, Department of Earthquake. https://deprem.afad.gov.tr/assets/pdf/Kahramanmaras%20%20 Depremleri_%20On%20Degerlendirme%20Raporu.pdf. google scholar
AFAD (2023c). 06 February 2023 Pazarcık-Elbistan (Kahramanmaraş) Mw: 7.7 - Mw: 7.6 Earthquakes Report. https://deprem.afad.gov.tr/ assets/pdf/Kahramanmara%C5%9F%20Depremi%20%20 Raporu_02.06.2023.pdf. google scholar
Aggarwal, Y. & Saha, S. K. (2023). Improved rapid visual screening method for seismic vulnerability assessment of reinforced concrete buildings in Indian Himalayan region. Bulletin of Earthquake Engineering, 21, 319347. https://doi.org/10.1007/s10518-022-01537-2. google scholar
Akbulut, M. & Ayfer, A. (2005). Proposed evaluation approach for determining earthquake vulnerability based on observations. Megaron, 1(1), 88-98. https://jag.journalagent.com/megaron/pdfs/ MEGARON-51423-ARTICLE-AKBULUT.pdf. google scholar
Alpaslan, N. (2013). Soil liquefaction and mechanism. Batman University Journal of Life Sciences, 3(2), 67-89. https://dergipark. org.tr/tr/pub/buyasambid/issue/29820/320770. google scholar
Alptekin, I. (2020). 1999 effect of 1999 gölcük earthquake on the region of avcılar and methods of ground improvement applied in the region of avcılar. (Publication No. 645012) [Master Thesis, Istanbul Gelisim University]. YÖK Thesis Center. https://hdl.handle.net/11363/2686. google scholar
Ambraseys, N.N. & Jackson, J.A. (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophysical Journal International, 133(2), 390-406. https:// doi.org/10.1046/j.1365-246X.1998.00508.x. google scholar
Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M. T., Braitenberg, C., & Gurbuz, G. (2023). Slip distributions of February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey earthquake sequence in the East Anatolian Fault Zone. Seismica, 2(3). https:// doi.org/10.26443/seismica.v2i3.502. google scholar
Bektaş, N. & Kegyes-Brassai, O. (2023). Development of fuzzy logic-based rapid visual screening method for seismic vulnerability assessment of buildings. Geosciences, 13(1), 6. https://doi. org/10.3390/geosciences13010006. google scholar
Biljecki, F., Chow YS. & Lee, K. (2023). Quality of crowdsourced geospatial building information: A global assessment of OpenStreetMap attributes. Building and Environment, 237, 110295. https://doi.org/10.1016/j.buildenv.2023.110295. google scholar
Bozdoğan, Y.E. (2023). Earthquake risk assessment in Kahramanmaraş province. (Master Thesis). Kahramanmaraş Sütçü İmam University Institute of Social Sciences, Kahramanmaraş. google scholar
Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodinamica Acta, 14(1-3), 3-30. https://doi.org/10.1080/09853111.2001.11432432. google scholar
Breiman, L. (2001). Random forest. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324. google scholar
Bulut Üstün, A., Altuntaş, G., Demirörs, U. & Karayazı, O. (2023). February 6, 2023 Kahramanmaras Earthquakes and February 20, 2023 Defne (Hatay) Earthquake, resulting in Liquefaction Structures Field Observations and Evaluations. MTA Department of Geological Surveys, Ankara. https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/deprem/pdf/sivilasma-yapilari-sahagozlemleri.pdf google scholar
Mohammadi, C., Nazmfar, H. & Asghari Saraskanrood, S. (2023). An analysis of the vulnerability of Kermanshah’s city to earthquake risk with an emphasis on. Journal of Environmental Science Studies, 8(2), 6338-6350. https://doi.org/10.22034/jess.2022.355794.1852. google scholar
Cabalar, A. F., Canbolat, A., Akbulut, N., Tercan, S. H. & Isik, H. (2019). Soil liquefaction potential in Kahramanmaras, Turkey. Geomatics, Natural hazards and Risk, 10(1), 1822-1838. https:// doi.org/10.1080/19475705.2019.1629106. google scholar
Carrera-Cevallos, A. & Carrera-Cevallos, D. (2023). Hit of two earthquakes in Turkey-Syria: Mw=7,8 Gaziantep-Mw=7,5 Kahramanmaras (March 17, 2023). https://ssrn.com/abstract=4392215 or http://dx.doi.org/10.2139/ssrn.4392215. google scholar
Chadha, R. K. (2023). An mw 7.8 earthquake occurred on February 6, 2023, on the east anatolian fault, Turkey. Journal of the Geological Society of India, 99, 449-453. https://doi.org/10.1007/s12594-023-2331-z. google scholar
Coskun, O. & Aldemir, A. (2023). Machine learning network suitable for rapid seismic risk estimation of masonry building stocks. Natural Hazards, 115, 261-287. https://doi.org/10.1007/s11069-022-05553-y. google scholar
Çalım, G., Bal, İ.E. & Gülay, G. (2019). Probabilistic calculation of earthquake risk in transmission lines and a case study. Dicle University Journal of Engineering, 10(1), 397-408. https://doi. org/10.24012/dumf.538436. google scholar
Çoban, V. & Yerel Kandemir, S. (2023). Rating factors affecting the dimension of vulnerability from earthquake. European Journal of Science and Technology, (49), 61-67. https://dergipark.org.tr/en/ download/article-file/2987937. google scholar
DEU (2023). 06 February 2023, 04:17, Mw=7.7, h=9 km Pazarcık (Kahramanmaras) Earthquake, 06 February 2023, 13:24, Mw=7.6, h=7 km Elbıstan (Kahramanmaraş) Earthquake, 20 February 2023, 20:04, Mw=6.4, h=22 km Defne (Hatay) Earthquake Earthquake Report. https://haberler.itu.edu.tr/docs/default-source/default-document-library/2023_itu_subat_2023_deprem_son_raporu. pdf?sfvrsn=1583fe76_2. google scholar
Dinçer, İ., Akın, M.K., Akın, M., Orhan, A., Varol, O.O., Başer, M. & Benlioğlu, T. B. (2023). February 6, 2023, Kahramanmaras Earthquakes (Mw 7.7 and 7.6) in Adana City Center, Preliminary Assessment Report on the Relationship of Building Damages and destruction with Geological Conditions. https://doi.org/10.13140/ RG.2.2.35770.26565. google scholar
Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. & Şaroğlu, F. (2013). Active Fault Map Series of Türkiye (Scale: 1:250.000). Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye. ISBN: 978-605-5310-56-1. https://www.mta.gov. tr/v3.0/bilgi-merkezi/turkiye-diri-fay-haritasi-sayisal. google scholar
ESRI (2023a). The base map. Available at: https://pro.arcgis.com/en/ pro-app/latest/help/mapping/map-authoring/author-a-basemap.htm google scholar
ESRI (2023b). Near (Analysis). Available at: https://pro.arcgis.com/en/ pro-app/latest/tool-reference/analysis/near.htm. google scholar
ESRI (2023c). Forest-based classification and regression (Spatial Statistics). Available at: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/forest-basedclassificationregression.htm. google scholar
ESTU (2023). 06 February 2023, 04:17, Mw 7.7, Kahramanmaras (Pazarcık, Türkoğlu), Hatay (Kırıkhan), and 13:24, Mw 7.6 Kahramanmaraş (Elbistan, Nurhak) Earthquakes, Preliminary Assessment Report on the Identification of Destroyed Buildings and Disaster Management Processes in Elbistan District Center. https://www.eskisehir.edu.tr/Uploads/www/files/ESTU%CC%88_ ELBI%CC%87STAN_RAPORU_V3(1).pdf google scholar
European Environment Agency Corine Land Cover (2000). Version 2020_20u1. Available online: https://land.copernicus. eu/pan-european/corine-land-cover/clc-2000. google scholar
Eyidoğan, H. (2022). An example of public seismology “earthquake testimony” in determining earthquake intensity. TUBITAK Science and Future, 218, 54-57. google scholar
Fischer, E., Barreca, G., Greco, A., Martinico, F., Pluchino A. & Rapisarda, A. (2023). Seismic risk assessment of a large metropolitan area with simulated earthquakes. Natural Hazards, 118, 117-153. https://doi.org/10.1007/s11069-023-05995-y. google scholar
Görüm, T., Tanyas, H., Karabacak, F., Yılmaz, A., Girgin, S., Allstadt, K.E., Süzen, M.L. & Burgi, P. (2023). Preliminary documentation of coseismic ground failure triggered by the February 6, 2023, Türkiye earthquake sequence. Engineering Geology, 327, 107315. https://doi.org/10.1016/j.enggeo.2023.107315. google scholar
GTU/MARTEST (2023). February 6, 2023, Maraş Earthquakes (Pazarcık Mw7.7 and Elbistan Mw7.6) Aftermath of Strong Ground Motion, Geotechnical, Superstructure, and Infrastructure Field Observations Preliminary Investigation Report. https://www.gtu. edu.tr/fileman/Files/UserFiles/insaat_muhendisligi_bolumu/GTU_ Maras%20Depremleri%20Deg%CC%86erlendirme%20Raporu_ Final_07.03.2023.pdf. google scholar
Güler, E. & Canbaz, M. (2017). Determination of the earthquake risk of structures using a street screening method. In: Muammer Tün, Emrah Pekkan, Özgür Avşar (Eds.), 4th International Conference on Earthquake Engineering and Seismology Proceedings (pp.1-8), Turkish Earthquake Engineering Society. https://www.tdmd.org. tr/4UDMSK/pdf2017/3834.pdf. google scholar
Güllü, H. (2013). Prediction of shear wave velocity at local sites of strong ground motion stations: An application using artificial intelligence. Bulletin of Earthquake Engineering, 11(4), 969-997. https://doi.org/10.1007/s10518-013-9425-8. google scholar
Gündüz, A., Türkmen, S., Eryiğit, U., Karaca, Y. & Aydın M. (2013). Is Turkey an earthquake country?. Eurasian Journal of Emergency Medicine, 12, 33-37. https://cms.eajem.com/Uploads/Article_22069/ EAJEM-12-33-En.pdf. google scholar
Hu, J. & Szymczak, S. (2023). A review of longitudinal data analysis with random forest. Briefings in Bioinformatics, 24 (2), bbad002. https://doi.org/10.1093/bib/bbad002. google scholar
Hu, J., Liu, M., Taymaz, T., Ding, L. & Irmak, T.S. (2024). Characteristics of strong ground motion in the 2023 Mw 7.8 and Mw 7.6 Kahramanmaraş earthquake sequence. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-023-01844-2. google scholar
ITU (2023). 06 February 2023, 04:17, Mw 7.8 Kahramanmaraş (Pazarcık, Türkoğlu), Hatay (Kırıkhan), and 13:24, Mw 7.7 Kahramanmaraş (Elbistan, Nurhak-Çardak) Earthquakes Final Report. https://haberler. itu.edu.tr/docs/default-source/default-document-library/2023_itu_ subat_2023_deprem_son_raporu.pdf?sfvrsn=1583fe76_2. google scholar
İnel, M., Özmen, H.B. & Çaycı, B.T. (2013). Evaluation of reasons for damage after Simav and Van (2011) earthquakes. Pamukkale University Journal of Engineering Sciences, 19(6), 256-265. https:// dergipark.org.tr/tr/pub/pajes/issue/20499/218246. google scholar
Zhu, J., Baise, L.G. & Thompson, E. M. (2017). Updated Geospatial Liquefaction Model for Global Application. Bulletin of the Seismological Society of America, 107(3), 1-21. https://doi.org/10.1785/0120160198. google scholar
Jia, H., Lin, J. & Liu, J. (2019). Earthquake Fatalities Assessment Method Based on Feature Importance with Deep Learning and Random Forest Models. Sustainability, 11(10), 2727. https://doi. org/10.3390/su11102727. google scholar
Jia, H., Lin, J. & Liu, J. (2020). Bridge Seismic Damage Assessment Model Employing Artificial Neural Networks and the Random Forest Algorithm. Advances in Civil Engineering, Article ID 6548682. https://doi.org/10.1155/2020/6548682. google scholar
Sajan, K. C., Bhusal, A., Gautam, D. & Rupakhety, R. (2023). Earthquake damage and rehabilitation intervention prediction using machine learning. Engineering Failure Analysis, 144, 106949. https://doi.org/10.1016/j.engfailanal.2022.106949. google scholar
Karabacak, V., Özkaymak, Ç., Sözbilir, H., Tatar, O., Aktuğ, B., Özdağ, Ö.C., Çakir, R., Aksoy, E., Koçbulut, F. & Softa, M. (2023). The 2023 Pazarcık (Kahramanmaraş, Türkiye) earthquake (Mw 7.7): implications for surface rupture dynamics in the East Anatolian Fault Zone. Journal of the Geological Society, 180(3), jgs2023-020. https://doi.org/10.1144/jgs2023-020. google scholar
Karabulut, H., Güvercin, S.E., Hollingsworth J. & Konca, A.Ö. (2023). Long silence on the east anatolian fault zone (Southern Turkey) ended with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the eastern mediterranean region. Journal of the Geological Society, 180(3), jgs2023-021. https://doi.org/10.1144/jgs2023-021. google scholar
Karalar, M. & Çavuşli, M. (2020). Seismic effects of earthquake epicenter distance on the 3D damage performance of CG dams. Earthquakes and Structures, 18(2), 201-213. https://doi. org/10.12989/eas.2020.18.2.201. google scholar
Karasözen, E., Büyükakpınar, P., Ertuncay, D., Havazlı, E., & Oral, E. (2023). A call from early career Turkish scientists: seismic resilience is only feasible with “earthquake culture”. Seismica, 2(3). https:// doi.org/10.26443/seismica.v2i3.1012. google scholar
Kassem, M.M. & Mohamed Nazri, F. (2023). Integrated approach between seismic resilience and vulnerability indexes with regularity index for vertical irregularity planar frames risk assessment. Bulletin of Earthquake Engineering, 21, 1903-1941. https://doi.org/10.1007/ s10518-022-01588-5. google scholar
Kazemi, F., Asgarkhani, N. & Jankowski, R. (2023). Machine learning-based assessment of seismic fragility and vulnerability in reinforced concrete structures. Soil Dynamics and Earthquake Engineering, 166, 107761. https://doi.org/10.1016/j.soildyn.2023.107761. google scholar
Korkmaz, H. (2006). Relationship Between Ground Conditions and Earthquake Effect In Antakya. Turkish Journal of Geographical Sciences, 4(2), 49-66. https://doi.org/10.1501/Cogbil_0000000066. google scholar
Kurcer, A., Elmacı, H., Özdemir, E., Güven, C., Güler, T., Avcu, İ., Olgun, Ş., Avcı, H., Aydoğan, H., Yüce, A., Çetin, F.E., Ayrancı, A., Akyol, Z.S.Ö., Altuntaş, G., Demirörs, U., Karayazı, O., Bayrak, A. & Özalp, S. (2023). 06 Şubat 2023 Pazarcık (Kahramanmaraş) Depremi (Mw 7,8) Saha Gözlemleri ve Değerlendirmeler. MTA Genel Müdürlüğü, Rapor No: 14138, 187 s., Ankara. google scholar
Lee, S.J., Liu, T.Y. & Lin, T.C. (2024). Abnormal clear superheat rupture with discontinuous jumping propagation during the 2023 Türkiye M7.8 earthquake. Communications Earth & Environment, 5, 331. https://doi.org/10.1038/s43247-024-01481-w. google scholar
Li, S.Q. (2023). Comparison of empirical structural vulnerability prediction models considering typical earthquakes. Structures, 49, 377-401. https://doi.org/10.1016/j.istruc.2023.01.130. google scholar
Li, S.Q., Chen, Y.S., Liu, H.B. & Del Gaudio, C. (2023). Empirical seismic vulnerability assessment model of typical urban buildings. Bulletin of Earthquake Engineering, 21, 2217-2257. https://doi. org/10.1007/s10518-022-01585-8. google scholar
Liu, C., Lay, T., Wang, R., Taymaz, T., Xie, Z., Xiong, X., Irmak, T.S., Kahraman, M. & Erman, C. (2023). Complex multi-fault rupture and triggering during a 2023 earthquake doublet in southeastern Türkiye. Nature Communications 14, 5564. https://doi.org/10.1038/ s41467-023-41404-5. google scholar
Maden, S. (2023). February 6, 2023, Earthquakes in Kahramanmaraş and an Overview of Earthquake Journalism in Turkey: An Interview with Prof. Dr. Süleyman İrvan. Etkileşim, 11, 406-420. https://doi. org/10.32739/etkilesim.2023.6.11.202. google scholar
Mai, P.M., Aspiotis, T., Aquib, T.A., Cano, E.V, Castro-Cruz, D., Espindola-Carmona, A., Li, B., Li, X., Liu, J., Matrau, R., Nobile, A., Palgunadi, K.H., Ribot, M., Parisi, L., Suhendi, C., Tang, Y., Yalcin, B., Avşar, U., Klinger, Y. & Jönsson, S. (2023). Destructive earthquake doublet of 6 February 2023 in south-central Türkiye and northwestern Syria: initial observations and analyses. The Seismic Record, 3(2), 105-115. https://doi.org/10.1785/0320230007. google scholar
Mangalathu, S., Sun, H., Nweke, C.C., Yi Z. & Burton, H. V. (2020). Classify earthquake damage to buildings using machine learning. Earthquake Spectra, 36(1), 183-208. https://doi.org/10.1177/8755293019878137. google scholar
Mavrouli, M., Mavroulis, S., Lekkas E. & Tsakris, A. (2023). Emerging health crisis in Turkey and Syria after the earthquake disaster of 6 February 2023: risk factors, prevention, and management of infectious diseases. Healthcare, 11(7), 1022. https://doi.org/10.3390/ healthcare11071022. google scholar
Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbilen, S., Valkaniotis, S., Irmak, T. S., Eken, T., Erman, C., Özkan, B., Dogan AH. & Altuntaş, C. (2023). Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica, 2(3). https://doi. org/10.26443/seismica.v2i3.387. google scholar
METU DMAM (2023). February 6, 2023 Kahramanmaraş-Pazarcık Mw=7.7 and Elbistan Mw=7.6 Earthquakes Preliminary Assessment Report (Report No: METU/EERC 2023-01). https://eerc.metu.edu. tr/tr/system/files/documents/DMAM_2023_Kahramanmaras-Pazarcik_ve_Elbistan_Depremleri_Raporu_TR_final.pdf. google scholar
MEUCC. (2023a). Damage Assessment Search. https://hasartespit.csb. gov.tr/. google scholar
MEUCC. (2023b, February 23). Minister Kurum announced 98% of the demolished buildings were constructed before 1999. Sabah. https:// www.sabah.com.tr/gundem/2023/02/23/bakan-kurum-acikladi-yikilan-binalarin-yuzde-98i-1999-oncesine-ait. google scholar
Mertol, H. C. (2023). Explanation of the Problems in Reinforced Concrete Buildings Observed in the February 6th, 2023 Earthquakes with a Hierarchical Triangle. Journal of the Institute of Science and Technology, 13(4), 2717-2729. https://doi.org/10.21597/jist.1263348. google scholar
MTA (2002). 1:500.000 Scaled Turkish Geology Map Series. https:// www.mta.gov.tr/v3.0/hizmetler/500bas. google scholar
Okuwaki, R., Yagi, Y., Taymaz, T. & Hicks, S. P. (2023). Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet. Geophysical Research Letters, 50, e2023GL103480. https://doi.org/10.1029/2023GL103480. google scholar
Özel, G., Türkan, S., Ünal, C. (2022). Tubitak 2237-A evaluation of statistical modeling methods and applications training in natural sciences. Bilge International Journal of Science and Technology Research, 6(1), 20-28. http://doi.org/10.30516/bilgesci.1037043. google scholar
Özşahin E. & Eroğlu, İ. (2019). Impact of local soil conditions on earthquake sensitivity in Erzincan City. Journal of Natural Hazards and Environment, 5(1), 41-57. https://doi.org/10.21324/dacd.428012. google scholar
Özşahin, E. & Kaymaz, Ç.K. (2013). An Example for the Evaluation of Disaster Culture: Antakya City. In: Cemal Geneş (Eds.), Proceedings of the 2nd Turkish Earthquake Engineering and Seismology Conference (pp. 1-8), Turkish Earthquake Engineering Society. https://www.tdmd.org.tr/pdf/TDMSK039.pdf. google scholar
Özşahin, E. (2010). Discussion of Geographical Survey In Respect of Geomorphologic Characteristics And Natural Risks In Antakya (Hatay). Balıkesir University the Journal of Social Sciences Institute, 13(23), 1-16. https://dergipark.org.tr/tr/download/article-file/857049. google scholar
Papazafeiropoulos, G. & Plevris, V. (2023). Kahramanmaraş-Gaziantep, Türkiye Mw 7.8 earthquake on February 6, 2023: strong ground motion and building response estimations. Buildings, 13(5), 1194. https://doi.org/10.3390/buildings13051194. google scholar
Peek-Asa, C., Ramirez, M., Seligson, H. & Shoaf, K. (2003). Seismic, structural, and individual factors associated with earthquake-related injury. Injury Prevention, 9, 62-66. https://injuryprevention.bmj. com/content/injuryprev/9/1/62.full.pdf. google scholar
Pourghasemi, H.R., Pouyan, S., Bordbar, M., Golkar F. & Clague, J. J. (2023). Flood, landslides, forest fires, and earthquake susceptibility maps using machine learning techniques and their combination. Natural Hazards, 116, 3797-3816. https://doi.org/10.1007/s11069-023-05836-y. google scholar
Qu, Z., Wang, F., Chen, X., Wang X. & Zhou, Z. (2023). Rapid report of seismic damage to hospitals during the 2023 Turkey earthquake sequences. Earthquake Research Advances, 100234. https://doi. org/10.1016/j.eqrea.2023.100234.100234. google scholar
Rashidian, V. & Baise, L. G. (2020). Regional efficacy of a global geospatial liquefaction model. Engineering Geology, 272, 105644. https://doi.org/10.1016/j.enggeo.2020.105644. google scholar
Sadeghi, J., Oghabi, M., Sarvari, H., Sabeti, M.S., Kashefi, H., Chan, D.W.M. & Lotfata, A. (2023). Hybrid risk assessment approach for assessing earthquake risks in worn-out urban fabrics: a case study in Iran. International Journal of Disaster Resilience in the Built Environment, 14(2), 193-211. https://doi.org/10.1108/IJDRBE-09-2021-0128. google scholar
Reitman, N.G., Briggs, R.W., Barnhart, W.D., Hatem, A.E., Thompson Jobe, J.A., DuRoss, C.B., Gold, R.D., Mejstrik, J.D., Collett, C., Koehler, R.D. & Akçiz, S. (2023). Rapid Surface Rupture Mapping from Satellite Data: The 2023 Kahramanmaraş, Turkey (Türkiye), Earthquake Sequence. The Seismic Record, 3(4), 289-298. https:// doi.org/10.1785/0320230029. google scholar
SBB (2023). 2023 Kahramanmaraş and Hatay Earthquakes Report. Presidency of the Republic of Turkey, Presidency of Strategy and Budget. https://www.sbb.gov.tr/wp-content/uploads/2023/03/2023-Kahramanmaras-ve-Hatay-Depremleri-Raporu.pdf. google scholar
Selçuk, L. & Aydın, H. (2012). Effect of quaternary alluvium on strong ground motion: 2011 Van earthquakes. Journal of Geological Engineering, 36(2), 75-98. https://dergipark.org.tr/en/pub/jmd/ issue/28181/295927. google scholar
Sengör, A.M.C. & Yazıcı, M. (2020). The etiology of the geotectonic evolution of Turkey. Mediterranean Geoscience Reviews, 2, 327339. https://doi.org/10.1007/s42990-020-00039-0. google scholar
Sengör, A.M.C., Gorur, N. & Saroglu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K., & Christie-Blick, N. (Eds)., Strike-slip Faulting and Basin Formation. Society of Economic Paleontologists and Mineralogists, Special Publication 37, Tulsa, OK. google scholar
Sönmez, M.E. (2014). An analysis of earthquake damage risk based on geographic ınformation system (GIS) as example: Zeytinburnu (Istanbul). Turkish Geographical Review, 56, 11-22. https:// dergipark.org.tr/tr/pub/tcd/issue/21225/227787. google scholar
Stein, R.S., Toda, S., Özbakir, A. D., Sevilgen, V., Gonzalez-Huizar, H., Lotto, G. & Sevilgen, S. (2023). Interactions, stress changes, mysteries, and partial forecasts of the 2023 Kahramanmaraş, Türkiye earthquakes. Temblor. http://doi.org/10.32858/temblor.299. google scholar
Şen, S. (2023). The effects of the Kahramanmaraş earthquakes on the economy. The Journal of Diplomacy and Strategy, 4, 1-55. https:// dergipark.org.tr/en/download/article-file/3049226. google scholar
Şen Z. (2011). Supervised fuzzy logic modelling for building earthquake hazard assessment. Expert Systems With Applications, 38, 1456414573. https://doi.org/10.1016/j.eswa.2011.05.026. google scholar
Şengezer, B., Ansal A. & Bilen, Ö. (2008). Evaluation of parameters affecting earthquake damage using decision tree techniques. Natural Hazards, 47, 547-568. https://doi.org/10.1007/s11069-008-9238-2. google scholar
Şenol, C. (2023). Turkey from the Perspective of the Kahramanmaraş Earthquakes (2023). In Assoc. Prof. Dr. Doğa Başar SARIIPEK, 5th International Palandoken Scientific Studies Congress Congress Book (ss.699-711). https://www.isarconference.org/_files/ ugd/6dc816_89d95311c142494bb9313d95eaa3c4e6.pdf. google scholar
Taftsoglou, M., Valkaniotis, S., Papathanassiou G. & Karantanellis, E. (2023a). Satellite Imagery for Rapid Detection of Liquefaction Surface Manifestations: A Case Study of Türkiye-Syria 2023 Earthquakes. Remote Sensing, 15(17), 4190. https://doi.org/10.3390/rs15174190. google scholar
Taftsoglou, M., Valkaniotis, S., Karantanellis, E., Goula E. & Papathanassiou. (2023b). Preliminary mapping of liquefaction phenomena triggered by the February 6, 2023 M7.7 earthquake, Türkiye/Syria, based on remote sensing data. Zenodo. https://doi. org/10.5281/zenodo.7668401. google scholar
Taştan, B. & Aydınoğlu, A.Ç. (2015). Requirement analysis to determine hazard and vulnerability in multiple disaster risk management. Marmara Geographical Review, 31, 366-397. https://doi. org/10.14781/mcd.83405. google scholar
Tan, O. & Taymaz, T. (2006). Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. Special Paper of the Geological Society of America, 409, 531-578. https://doi.org/10.1130/2006.2409(25). google scholar
Taymaz, T., Ganas, A., Yolsal-Çevikbilen, S., Vera, F., Eken, T., Erman, C., Keleş, D., Kapetanidis, V., Valkaniotis, S., Karasante, I., Tsironi, V., Gaebler, P., Melgar D. & Öcalan, T. (2021). Source mechanism and rupture process of the 24 January 2020 MW 6.7 Doganyol-Sivrice earthquake obtained from seismological waveform analysis and space geodetic observations in the East Anatolian Fault Zone (Turkey). Tectonophysics, 804, 228745. https://doi.org/10.1016/j. tecto.2021.228745. google scholar
Tokgöz, H. & Bayraktar, H. (2015). In determining buildings risk of Duzce-Kaynasli district Using Street scanning methods. Düzce University Journal of Science & Techology, 3(1), 107-116. https:// dergipark.org.tr/en/pub/dubited/issue/4809/66236?publisher=duzce. google scholar
U.S. Geological Survey (2023a). M 7.8 Pazarcik earthquake, Kahramanmaras earthquake sequence, Turkey (Türkiye) on February 6, 2023. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive. google scholar
U.S. Geological Survey (2023b). M 7.5 - Elbistan earthquake, Kahramanmaras earthquake sequence, Turkey (Türkiye) on February 6, 2023. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive. google scholar
Utkucu, M., Durmuş, H., Uzunca, F. & Nalbant, S. (2023). Evaluation of the February 6, 2023 Gaziantep (Mw=7.7) and Elbistan (Mw=7.5) Earthquakes. Sakarya University Disaster Management Application and Research Center and Department of Geophysical Engineering. http://www.aym.sakarya.edu.tr/wp-content/uploads/Rapor_Son.pdf. google scholar
Uyanık, O. (2015). Predicting Heavy Earthquake Damage Areas and Importance of Macro and Microzoning for Urban Planning. Suleyman Demirel University Journal of Natural and Applied Science 19(2), 24-38. https://dergipark.org.tr/tr/pub/sdufenbed/ issue/20807/222263. google scholar
Yalçın, H., Gülen L. & Utkucu, M. (2013). Active fault database and assessment of earthquake hazards in Turkey and surrounding regions. Yerbilimleri, 34(3), 141-168. https://dergipark.org.tr/tr/ pub/yerbilimleri/issue/13653/165234. google scholar
Yıldız, A. (2023). Geographical analysis of assembly areas before and after the 06 February 2023 Kahramanmaraş earthquakes and earthquake park proposal: Antakya and its surroundings. (Master Thesis). Hatay Mustafa Kemal University Institute of Social Sciences, Hatay. google scholar
Yılmaz, A. (2012). Disaster related problems in Turkey. Manas Journal of Social Studies, 1(1), 61-81. https://dergipark.org.tr/tr/pub/mjss/ issue/40475/484882. google scholar
Yön, B., Sayin, E. & Onat, O. (2017). Earthquakes and Structural Damages. Chapter:13, Earthquakes - Tectonics, Hazard and Risk Mitigation, InTech, 319-339, https://doi.org/10.5772/65425. google scholar
Zhang, Y., Tang, X., Liu, D., Taymaz, T., Eken, T., Guo, R., Zheng, Y., Wang J. & Sun, H. (2023). Geometric control of cascading rupture of the 2023 Kahramanmaraş earthquake doublet. Nature Geoscience, 16, 1054-1060. https://doi.org/10.1038/s41561-023-01283-3. google scholar
Özşahin, E., & Öztürk, M. (2024). Evaluation of Parameters Affecting Earthquake Damage Using a GIS-based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye. Journal of Geography(49), 43-63. https://doi.org/10.26650/JGEOG2024-1432062
AMA
Özşahin E, Öztürk M. Evaluation of Parameters Affecting Earthquake Damage Using a GIS-based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye. Journal of Geography. Aralık 2024;(49):43-63. doi:10.26650/JGEOG2024-1432062
Chicago
Özşahin, Emre, ve Mikayil Öztürk. “Evaluation of Parameters Affecting Earthquake Damage Using a GIS-Based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye”. Journal of Geography, sy. 49 (Aralık 2024): 43-63. https://doi.org/10.26650/JGEOG2024-1432062.
EndNote
Özşahin E, Öztürk M (01 Aralık 2024) Evaluation of Parameters Affecting Earthquake Damage Using a GIS-based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye. Journal of Geography 49 43–63.
IEEE
E. Özşahin ve M. Öztürk, “Evaluation of Parameters Affecting Earthquake Damage Using a GIS-based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye”, Journal of Geography, sy. 49, ss. 43–63, Aralık 2024, doi: 10.26650/JGEOG2024-1432062.
ISNAD
Özşahin, Emre - Öztürk, Mikayil. “Evaluation of Parameters Affecting Earthquake Damage Using a GIS-Based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye”. Journal of Geography 49 (Aralık 2024), 43-63. https://doi.org/10.26650/JGEOG2024-1432062.
JAMA
Özşahin E, Öztürk M. Evaluation of Parameters Affecting Earthquake Damage Using a GIS-based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye. Journal of Geography. 2024;:43–63.
MLA
Özşahin, Emre ve Mikayil Öztürk. “Evaluation of Parameters Affecting Earthquake Damage Using a GIS-Based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye”. Journal of Geography, sy. 49, 2024, ss. 43-63, doi:10.26650/JGEOG2024-1432062.
Vancouver
Özşahin E, Öztürk M. Evaluation of Parameters Affecting Earthquake Damage Using a GIS-based Random Forests Machine Learning Model: The Case of the 6 February 2023 Kahramanmaras Earthquakes in Türkiye. Journal of Geography. 2024(49):43-6.