ALLOJENİK KÖK HÜCRE NAKİLLERİNDE MİKROBİYOTA ETKİSİ
Yıl 2022,
, 296 - 304, 06.07.2022
Ekin Ece Gürer
,
Fatma Savran Oğuz
,
Sevgi Kalayoğlu-beşışık
,
Zerrin Aktaş
,
Zafer Gulbas
,
Mustafa Oral Öncül
Öz
Amaç: Çalışmamızda allo-hematopoetik kök hücre nakli (al- lo-HKHN) uygulanmış hastaların mikrobiyota analizleri yapılmıştır. Nakile ve tedavilere bağlı olarak değişen mikrobiyota florasının engrafman ve Graft-Versus-Host Hastalığı (GVHH) gelişimi ile ilişkisinin gösterilmesi amaçlanmıştır.
Gereç ve Yöntem: İstanbul Anadolu Sağlık Merkezi’nde allo-HKHN uygulanan toplam 25 yetişkin alıcı ve vericileri çalışmaya dahil edildi. Dışkı örnekleri, HR öncesi ve allo-HKHN sonrası toplamda 2 kez alınmıştır. Örnekler, nükleik asit izolasyonu yapıldıktan sonra, Çözünürlüklü Erime Analizi (HRM) ve Yeni Nesil Dizileme (YND) yöntemi ile analiz edilmiştir. Dizileme işlemi, Illumina MiSeq cihazı ile yapılmıştır. Taksonomik sınıflandırma için Bacteria Silva veri bankası ve analiz için QIIME 2 programları kullanılmıştır. İstatistiksel analizler ise R istatistiksel programlama dili ile gerçekleştirilmiştir.
Bulgular: Çalışmaya dahil edilen alıcılarda yaş ortalaması 46,24±14,86 (18-71) yıl, vericilerde 43,40±13,20 yıl (11-61) olarak saptandı. Hastalarda cinsiyet dağılımı; E/K: 15/10 vericilerde E/K: 17/8 idi. Alıcı ve verici kardeş HLA uyumu 10/10 idi. Allo-HKHN ile ilişkili GVHH oranı %16, relaps oranı ise %16 bulundu. Nakil öncesi ve sonrası Firmicutes ve Proteobacteria filumlarının önemli ölçüde değiştiği gözlendi. GVHH geliştiren ve ex olan hastalarda Entereccocus türlerinin sayısı daha fazla bulundu. Hastaların nakil öncesi ve engrafman sonrası örneklerinde çeşitlilik kaybının istatistiksel olarak anlamlı olduğu saptandı.Sonuç: Allo-KHN sonrası artan patojen bakteriler ile hastalığın şiddetlenmesi, intestinal flora izlemi ile GVHH koruma ve/veya tedavisinde yönlendirici olabileceğini göstermektedir. Kom- mensal bakterilerin çeşitliliğinin arttırılmasıyla beraber hastalığın prognozunu da olumlu yönde etkileyebileceğini düşündürmektedir.
Destekleyen Kurum
İSTANBUL ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ BİRİMİ
Kaynakça
- 1. Lederberg J, McCray AT. ‘Ome sweet ‘Omics - a genealogical treasury of words. Scientist 2001;15:(7)8. google scholar
- 2. Kho ZY, Laf SK. The human gut microbiome a potential controller of wellness and disease. Front Microbiol 2018;14:(9)1835. [CrossRef] google scholar
- 3. Chang C, Hayase E, Jeng RR. The role of microbiota in allogeneic hematopoietic stem cell transplantation. Expert Opin Biol Ther 2021;1(8):1121-31. [CrossRef] google scholar
- 4. Martin PJ, Schoch G, Fisher L, Byers V, Anasetti C, Appelbaum FR, et al. A retrospective analysis of therapy for acute graft-versus-host disease: initial treatment. Blood 1990;76(8):1464-72. [CrossRef] google scholar
- 5. Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol 1991;28(3):250-9. google scholar
- 6. Lin D, Hu B, Li P, Zhao Y, Xu Y, Wu D. Roles of the intestinal microbiota and microbial metabolites in acute GVHD. Exp Hematol Oncol 2021;27(1):49. [CrossRef] google scholar
- 7. Reja V, Kwok A, Stone G, Yang L, Missel A, Menzel C, et al. “ScreenClust: Advanced statistical software for supervised and unsupervised high resolution melting (HRM) analysis.” Methods 2010;50(4):10-4. [CrossRef] google scholar
- 8. Klindworth A, Pruesse E, Schweer T, Peplles J, Quast C, Hornet M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next generation sequencing based diversity studies. Nucleic Acids Res 2013;41(1):e1. [CrossRef] google scholar
- 9. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35(21):7188-96. [CrossRef] google scholar
- 10. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27(16):2194-200. [CrossRef] google scholar
- 11. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus- host disease. Biol Blood Marrow Transplant 2014;20(5):640-5. [CrossRef] google scholar
- 12. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014;124(7):1174-82. [CrossRef] google scholar
- 13. Chiusolo P, Metafuni E, Sterbini PF, Giammarco S, Masucci L, Leone G, et al. Gut microbiome changes after stem cell transplantation. Blood 2015;126(23):1953. [CrossRef] google scholar
- 14. Jones WR, Hardin WJ, Davis JT, Hardy JD. Intramural hematoma of the duodenum: a review of the literature and case report. Ann Surg 1971;173(4):534-44. [CrossRef] google scholar
- 15. van Bekkum DW and Schotman E. Protection from haemopoietic death by shielding versus grafting of bone-marrow. Comparative Study Int J Radiat Biol Relat Stud Phys Chem Med 1974;25(4):361-72. [CrossRef] google scholar
- 16. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 2012;209(5):903. [CrossRef] google scholar
- 17. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 2016;17(5):505-13. [CrossRef] google scholar
- 18. Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Review Lancet 2009;373(9674):1550-61. [CrossRef] google scholar
- 19. Ganapathy V, Thangaraju M, Prasad PD, Pamela MM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Current Opinion in Pharmacology 2013;13(6):869-74. [CrossRef] google scholar
- 20. Biagi E, Zama D, Nastasi C, Consolandi C, Fiori J, Rampelli S, et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant 2014;50(7):992-8. [CrossRef] google scholar
- 21. Taur Y, Jenq RR, Ubeda C, van den Brink M, Pamer EG. Role of intestinal microbiota in transplantation outcomes. Best Pract. Res. Clin. Haematol 2015;28(2-3):155-61. [CrossRef] google scholar
- 22. Stein-Thoeringer CK, Nichols KB, Lazrak A, Docampo MD, Slingerland AE, Slingerland JB, et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science 2019;366(6469):1143-9. [CrossRef] google scholar
- 23. Evans ES. Coping with Candida infection. Proc Am Thorac Soc 2010;7(3):197-203. [CrossRef] google scholar
- 24. Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit Care Med 2017;45(2):337-47. [CrossRef] google scholar
GUT MICROBIOTA EFFECTS IN HEMATOPOIETIC STEM CELL TRANSPLANT PATIENTS
Yıl 2022,
, 296 - 304, 06.07.2022
Ekin Ece Gürer
,
Fatma Savran Oğuz
,
Sevgi Kalayoğlu-beşışık
,
Zerrin Aktaş
,
Zafer Gulbas
,
Mustafa Oral Öncül
Öz
Objective: In our study, we analyzed gut microbiota in allo-HSCT patients and aimed to evaluate the relationship of gut microbio- ta with transplant complications, mainly GVHD.
Materials and Methods: A total of 25 adult recipients and donors who underwent allo-HSCT at Istanbul Anadolu Medical Center were included in the study. Stool samples were collected twice, before chemotherapy regimen and after allo-HSCT. Samples were analyzed by High Melting (HRM) Analysis and Next Generation Sequencing (NGS) methods after nucleic acid isolation. Sequencing was done with Illumina MiSeq. Bacteria Silva database was used for taxonomic classification and QIIME 2 programs were used for analysis. Statistical analyses were carried out with the R statistical programming language.
Results: Twenty-five allo-HKHN recipients were included in the study. The mean age was 46.24±14.86 years in recipients and 43.40±13.20 years in donors. Gender distribution was M/F: 15/10 in patients and M/F: 17/8 in donors. Recipient and donor sibling HLA match was 10/10. The rate of GVHD associated with Allo-HSCT was 16%, and the relapse rate was 16%. It was observed that the Firmicutes and Proteobacteria phyla changed significantly before and after transplantation. The number of Entereccocus species was found to be higher in patients who developed GVHD and died. The loss of diversity was found to be statistically significant in the pre-transplant and post-engraftment samples of the patients. Conclusion: Gut microbiota diversity may guide the monitor- ing of GVHD and also may be manipulated for the treatment of GVHD. It is thought that increasing the diversity of commensal bacteria can also positively affect the prognosis of the disease.
Kaynakça
- 1. Lederberg J, McCray AT. ‘Ome sweet ‘Omics - a genealogical treasury of words. Scientist 2001;15:(7)8. google scholar
- 2. Kho ZY, Laf SK. The human gut microbiome a potential controller of wellness and disease. Front Microbiol 2018;14:(9)1835. [CrossRef] google scholar
- 3. Chang C, Hayase E, Jeng RR. The role of microbiota in allogeneic hematopoietic stem cell transplantation. Expert Opin Biol Ther 2021;1(8):1121-31. [CrossRef] google scholar
- 4. Martin PJ, Schoch G, Fisher L, Byers V, Anasetti C, Appelbaum FR, et al. A retrospective analysis of therapy for acute graft-versus-host disease: initial treatment. Blood 1990;76(8):1464-72. [CrossRef] google scholar
- 5. Sullivan KM, Agura E, Anasetti C, Appelbaum F, Badger C, Bearman S, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol 1991;28(3):250-9. google scholar
- 6. Lin D, Hu B, Li P, Zhao Y, Xu Y, Wu D. Roles of the intestinal microbiota and microbial metabolites in acute GVHD. Exp Hematol Oncol 2021;27(1):49. [CrossRef] google scholar
- 7. Reja V, Kwok A, Stone G, Yang L, Missel A, Menzel C, et al. “ScreenClust: Advanced statistical software for supervised and unsupervised high resolution melting (HRM) analysis.” Methods 2010;50(4):10-4. [CrossRef] google scholar
- 8. Klindworth A, Pruesse E, Schweer T, Peplles J, Quast C, Hornet M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next generation sequencing based diversity studies. Nucleic Acids Res 2013;41(1):e1. [CrossRef] google scholar
- 9. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35(21):7188-96. [CrossRef] google scholar
- 10. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27(16):2194-200. [CrossRef] google scholar
- 11. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus- host disease. Biol Blood Marrow Transplant 2014;20(5):640-5. [CrossRef] google scholar
- 12. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014;124(7):1174-82. [CrossRef] google scholar
- 13. Chiusolo P, Metafuni E, Sterbini PF, Giammarco S, Masucci L, Leone G, et al. Gut microbiome changes after stem cell transplantation. Blood 2015;126(23):1953. [CrossRef] google scholar
- 14. Jones WR, Hardin WJ, Davis JT, Hardy JD. Intramural hematoma of the duodenum: a review of the literature and case report. Ann Surg 1971;173(4):534-44. [CrossRef] google scholar
- 15. van Bekkum DW and Schotman E. Protection from haemopoietic death by shielding versus grafting of bone-marrow. Comparative Study Int J Radiat Biol Relat Stud Phys Chem Med 1974;25(4):361-72. [CrossRef] google scholar
- 16. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 2012;209(5):903. [CrossRef] google scholar
- 17. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 2016;17(5):505-13. [CrossRef] google scholar
- 18. Ferrara JLM, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Review Lancet 2009;373(9674):1550-61. [CrossRef] google scholar
- 19. Ganapathy V, Thangaraju M, Prasad PD, Pamela MM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Current Opinion in Pharmacology 2013;13(6):869-74. [CrossRef] google scholar
- 20. Biagi E, Zama D, Nastasi C, Consolandi C, Fiori J, Rampelli S, et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant 2014;50(7):992-8. [CrossRef] google scholar
- 21. Taur Y, Jenq RR, Ubeda C, van den Brink M, Pamer EG. Role of intestinal microbiota in transplantation outcomes. Best Pract. Res. Clin. Haematol 2015;28(2-3):155-61. [CrossRef] google scholar
- 22. Stein-Thoeringer CK, Nichols KB, Lazrak A, Docampo MD, Slingerland AE, Slingerland JB, et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science 2019;366(6469):1143-9. [CrossRef] google scholar
- 23. Evans ES. Coping with Candida infection. Proc Am Thorac Soc 2010;7(3):197-203. [CrossRef] google scholar
- 24. Alverdy JC, Krezalek MA. Collapse of the microbiome, emergence of the pathobiome, and the immunopathology of sepsis. Crit Care Med 2017;45(2):337-47. [CrossRef] google scholar