Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD

Yıl 2022, , 192 - 196, 24.03.2022
https://doi.org/10.26650/IUITFD.962941

Öz

Objective: This study will evaluate the changes in the somatosensory temporal discrimination threshold (STDT) after focal muscle vibration. The hypothesis was that the STDT, which is related to the functions of basal ganglia and somatosensory cortex, would deteriorate during application of peripheral muscle vibration if it had indirect central effects. Materials and Methods: A total of fifteen healthy subjects (mean age 24.3±5.6;18-60) years) were prospectively included in the study. The researchers performed recordings of sensory threshold and the STDT on the second finger before, during, and after vibration in all subjects. A 100 Hz vibration was applied on the forearm flexor muscles for two minutes. The recordings were repeated four times: during, immediately after, one minute after, and three minutes after vibration. Results: The mean STDT was 95.0±30.0 ms in recordings before vibration. During vibration, the STDT was significantly longer (146.9±52.6 ms) as compared to previbration recordings. However, the STDT value reduced immediately after the vibration and returned to previbration levels at one minute recordings (p=0.001, Friedman test). Conclusion: The STDT value was longer during vibration. The longer STDT values during vibration suggest that the central effects of vibration can occur either directly or indirectly.

Kaynakça

  • 1. Hagbarth K, Eklund G. Tonic vibration reflexes (TVR) in spasticity. Brain Res 1966;2(2):201-3. [CrossRef]
  • 2. Eklund G, Hagbarth KE. Normal variability of tonic vibration reflexes in man. Exp Neurology 1966;16(1):80-92. [CrossRef]
  • 3. Mischi M, Cardinale M. The effects of a 28-Hz vibration on arm muscle activity during isometric exercise. Med Sci Sports Exerc 2009;41(3):645-53. [CrossRef]
  • 4. Ertekin C, Akçali D. Effect of continuous vibration on nociceptive flexor reflexes. J Neurol Neurosurg Psychiatry 1978;41(6):532-7. [CrossRef]
  • 5. Al-Chalabi M, Reddy V, Alsalman I. Neuroanatomy, Posterior Column (Dorsal Column). 2021 In: StatPearls. Treasure Island (FL): StatPearls Publishing; 202.
  • 6. De Gail P, Lance JW, Neilson PD. Differential effects on tonic and phasic reflex mechanisms produced by vibration of muscles in man. J Neurol Neurosurg Psychiatry 1966;29(1):1-11. [CrossRef]
  • 7. Gillies JD, Lance JW, Neilson PD, Tassinari CA. Presynaptic inhibition of the monosynaptic reflex by vibration. J Physiol 1969;205(2):329-39. [CrossRef]
  • 8. Aydın Ş, Kofler M, Bakuy Y, Gündüz A, Kızıltan ME. Effects of vibration on cutaneous silent period. Exp Brain Res 2019;237(4):911-18. [CrossRef]
  • 9. Rosenkranz K, Rothwell JC. Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol 2003;551(Pt 2):649-60. [CrossRef]
  • 10. Rocchi L, Suppa A, Leodori G, Celletti C, Camerota F, Rothwell J, et al. Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Front Neurol 2018;9:935. [CrossRef]
  • 11. Conte A, Rocchi L, Nardella A, Dispenza S, Scontrini A, Khan N, et al. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans. PLoS One 2012;7(3):e32979. [CrossRef]
  • 12. Conte A, Modugno N, Lena F, Dispenza S, Gandolfi B, Iezzi E, et al. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson’s disease. Brain 2010;133(9):2656-63. [CrossRef]
  • 13. Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord: spinal and corticospinal mechanisms of movement. Cambridge UK: Cambridge University Press 2012. [CrossRef]
  • 14. Freeman A, Johnson KO. Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model. J Physiol 1982;323(1):21- 41. [CrossRef]
  • 15. Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 1989;76(1):213-22. [CrossRef]
  • 16. Münte TF, Jöbges EM, Wieringa BM, Klein S, Schubert M, Johannes S, et al. Human evoked potentials to long duration vibratory stimuli: role of muscle afferents. Neurosci Lett 1996;216(3):163-6. [CrossRef]
  • 17. Hill BD, Blumenthal TD. Inhibition of acoustic startle using different mechanoreceptive channels. Percept Psychophys 2005;67(4):741-7. [CrossRef]
  • 18. Duclos C, Roll R, Kavounoudias A, Roll JP. Cerebral correlates of the “Kohnstamm phenomenon”: an fMRI study. Neuroimage 2007;15;34(2):774-83. [CrossRef]
  • 19. Gizewski ER, Koeze O, Uffmann K, de Greiff A, Ladd ME, Forsting M. Cerebral activation using a MR-compatible piezoelectric actuator with adjustable vibration frequencies and in vivo wave propagation control Neuroimage 2005;1;24(3):723-30. [CrossRef]
  • 20. Conte A, McGovern EM, Narasimham S, Beck R, Killian O, O’Riordan S, et al. Temporal discrimination: mechanisms and relevance to adult-onset dystonia. Front Neurol 2017;8:625. [CrossRef]
  • 21. Zanini S, Martucci L, Del Piero I, Restuccia D. Cortical hyperexcitability in healthy children: evidence from habituation and recovery cycle phenomena of somatosensory evoked potentials. Dev Med Child Neurol 2016;58(8):855-60. [CrossRef]
  • 22. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Progr Neurobiol 1996;50(4):381-425. [CrossRef]
  • 23. McDougall L, Kiernan D, Kiss ZH, Suchowersky O, Welsh TN. Abnormal surround inhibition does not affect asymptomatic limbs in people with cervical dystonia. Neurosci Lett 2015;604:7-11. [CrossRef]
  • 24. Yeomans J. Electrically evoked behaviors: axons and synapses mapped with collision tests. Behav Brain Res 1995;67(2):121-32. [CrossRef]

KISA SÜRELİ VİBRASYON UYGULAMASININ SOMATOSENSORİYEL TEMPORAL DİSKRİMİNASYON EŞİĞİ ÜZERİNE ETKİSİ

Yıl 2022, , 192 - 196, 24.03.2022
https://doi.org/10.26650/IUITFD.962941

Öz

Amaç: Çalışmamızın amacı, fokal kas vibrasyonu sonrası somatosensoriyel temporal diskriminasyon eşiğindeki (STDT) değişiklikleri değerlendirmektir. Hipotezimiz, vibrasyonun dolaylı santral etkileri olması durumunda bazal ganglionlar ve somatosensoriyel korteks fonksiyonları ile ilgili olan STDT’nin, periferik kas vibrasyonu uygulaması sırasında STDT’de değişiklikler oluşabileceğiydi. Gereç ve Yöntem: Çalışmaya prospektif olarak toplam on beş sağlıklı birey (ortalama yaş 24,3±5,6 years; 18-60 years) dahil edildi. Tüm deneklerde vibrasyon öncesinde, sırasında ve hemen sonrasında işaret parmağında önce duyusal eşik ve sonrasında STDT ölçümleri gerçekleştirildi. Önkol fleksör kaslarına 100 Hz’den iki dakika süreyle vibrasyon uygulandı. Kayıtlar, vibrasyon sırasında, hemen sonrasında, bir dakika sonra ve üç dakika sonra olmak üzere dört kez tekrarlandı. Bulgular: Ortalama STDT değeri vibrasyon uygulanmadan önce 95,0±30,0 ms idi. Vibrasyon sırasında, STDT önceki kayıtlara kıyasla anlamlı olarak daha uzun olarak bulundu (146,9±52,6 ms). Ancak, vibrasyondan hemen sonra STDT değeri önemli ölçüde azaldı ve bir dakikalık kayıtta vibrasyon uygulanmadan önceki seviyelerine düştüğü gözlemlendi (p=0,001, Friedman testi). Sonuç: Çalışmamızda, STDT değeri vibrasyon sırasında daha uzun olarak bulunmuştur. Daha uzun süre olan STDT değeri, vibrasyon etkisi altında, doğrudan veya dolaylı olarak titreşim duyusunun merkezi etkisi olabileceği düşünülmüştür.

Kaynakça

  • 1. Hagbarth K, Eklund G. Tonic vibration reflexes (TVR) in spasticity. Brain Res 1966;2(2):201-3. [CrossRef]
  • 2. Eklund G, Hagbarth KE. Normal variability of tonic vibration reflexes in man. Exp Neurology 1966;16(1):80-92. [CrossRef]
  • 3. Mischi M, Cardinale M. The effects of a 28-Hz vibration on arm muscle activity during isometric exercise. Med Sci Sports Exerc 2009;41(3):645-53. [CrossRef]
  • 4. Ertekin C, Akçali D. Effect of continuous vibration on nociceptive flexor reflexes. J Neurol Neurosurg Psychiatry 1978;41(6):532-7. [CrossRef]
  • 5. Al-Chalabi M, Reddy V, Alsalman I. Neuroanatomy, Posterior Column (Dorsal Column). 2021 In: StatPearls. Treasure Island (FL): StatPearls Publishing; 202.
  • 6. De Gail P, Lance JW, Neilson PD. Differential effects on tonic and phasic reflex mechanisms produced by vibration of muscles in man. J Neurol Neurosurg Psychiatry 1966;29(1):1-11. [CrossRef]
  • 7. Gillies JD, Lance JW, Neilson PD, Tassinari CA. Presynaptic inhibition of the monosynaptic reflex by vibration. J Physiol 1969;205(2):329-39. [CrossRef]
  • 8. Aydın Ş, Kofler M, Bakuy Y, Gündüz A, Kızıltan ME. Effects of vibration on cutaneous silent period. Exp Brain Res 2019;237(4):911-18. [CrossRef]
  • 9. Rosenkranz K, Rothwell JC. Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol 2003;551(Pt 2):649-60. [CrossRef]
  • 10. Rocchi L, Suppa A, Leodori G, Celletti C, Camerota F, Rothwell J, et al. Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Front Neurol 2018;9:935. [CrossRef]
  • 11. Conte A, Rocchi L, Nardella A, Dispenza S, Scontrini A, Khan N, et al. Theta-burst stimulation-induced plasticity over primary somatosensory cortex changes somatosensory temporal discrimination in healthy humans. PLoS One 2012;7(3):e32979. [CrossRef]
  • 12. Conte A, Modugno N, Lena F, Dispenza S, Gandolfi B, Iezzi E, et al. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson’s disease. Brain 2010;133(9):2656-63. [CrossRef]
  • 13. Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord: spinal and corticospinal mechanisms of movement. Cambridge UK: Cambridge University Press 2012. [CrossRef]
  • 14. Freeman A, Johnson KO. Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model. J Physiol 1982;323(1):21- 41. [CrossRef]
  • 15. Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res 1989;76(1):213-22. [CrossRef]
  • 16. Münte TF, Jöbges EM, Wieringa BM, Klein S, Schubert M, Johannes S, et al. Human evoked potentials to long duration vibratory stimuli: role of muscle afferents. Neurosci Lett 1996;216(3):163-6. [CrossRef]
  • 17. Hill BD, Blumenthal TD. Inhibition of acoustic startle using different mechanoreceptive channels. Percept Psychophys 2005;67(4):741-7. [CrossRef]
  • 18. Duclos C, Roll R, Kavounoudias A, Roll JP. Cerebral correlates of the “Kohnstamm phenomenon”: an fMRI study. Neuroimage 2007;15;34(2):774-83. [CrossRef]
  • 19. Gizewski ER, Koeze O, Uffmann K, de Greiff A, Ladd ME, Forsting M. Cerebral activation using a MR-compatible piezoelectric actuator with adjustable vibration frequencies and in vivo wave propagation control Neuroimage 2005;1;24(3):723-30. [CrossRef]
  • 20. Conte A, McGovern EM, Narasimham S, Beck R, Killian O, O’Riordan S, et al. Temporal discrimination: mechanisms and relevance to adult-onset dystonia. Front Neurol 2017;8:625. [CrossRef]
  • 21. Zanini S, Martucci L, Del Piero I, Restuccia D. Cortical hyperexcitability in healthy children: evidence from habituation and recovery cycle phenomena of somatosensory evoked potentials. Dev Med Child Neurol 2016;58(8):855-60. [CrossRef]
  • 22. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Progr Neurobiol 1996;50(4):381-425. [CrossRef]
  • 23. McDougall L, Kiernan D, Kiss ZH, Suchowersky O, Welsh TN. Abnormal surround inhibition does not affect asymptomatic limbs in people with cervical dystonia. Neurosci Lett 2015;604:7-11. [CrossRef]
  • 24. Yeomans J. Electrically evoked behaviors: axons and synapses mapped with collision tests. Behav Brain Res 1995;67(2):121-32. [CrossRef]
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm ARAŞTIRMA
Yazarlar

Ahmet Hakan Ok 0000-0002-8665-9708

Arda Kaya 0000-0002-9596-7681

Aysegul Gunduz 0000-0003-2365-0850

Meral Kızıltan 0000-0003-0538-3736

Yayımlanma Tarihi 24 Mart 2022
Gönderilme Tarihi 5 Temmuz 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ok, A. H., Kaya, A., Gunduz, A., Kızıltan, M. (2022). THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD. Journal of Istanbul Faculty of Medicine, 85(2), 192-196. https://doi.org/10.26650/IUITFD.962941
AMA Ok AH, Kaya A, Gunduz A, Kızıltan M. THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD. İst Tıp Fak Derg. Mart 2022;85(2):192-196. doi:10.26650/IUITFD.962941
Chicago Ok, Ahmet Hakan, Arda Kaya, Aysegul Gunduz, ve Meral Kızıltan. “THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD”. Journal of Istanbul Faculty of Medicine 85, sy. 2 (Mart 2022): 192-96. https://doi.org/10.26650/IUITFD.962941.
EndNote Ok AH, Kaya A, Gunduz A, Kızıltan M (01 Mart 2022) THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD. Journal of Istanbul Faculty of Medicine 85 2 192–196.
IEEE A. H. Ok, A. Kaya, A. Gunduz, ve M. Kızıltan, “THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD”, İst Tıp Fak Derg, c. 85, sy. 2, ss. 192–196, 2022, doi: 10.26650/IUITFD.962941.
ISNAD Ok, Ahmet Hakan vd. “THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD”. Journal of Istanbul Faculty of Medicine 85/2 (Mart 2022), 192-196. https://doi.org/10.26650/IUITFD.962941.
JAMA Ok AH, Kaya A, Gunduz A, Kızıltan M. THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD. İst Tıp Fak Derg. 2022;85:192–196.
MLA Ok, Ahmet Hakan vd. “THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD”. Journal of Istanbul Faculty of Medicine, c. 85, sy. 2, 2022, ss. 192-6, doi:10.26650/IUITFD.962941.
Vancouver Ok AH, Kaya A, Gunduz A, Kızıltan M. THE EFFECT OF SHORT-TERM VIBRATION ON SOMATOSENSORY TEMPORAL DISCRIMINATION THRESHOLD. İst Tıp Fak Derg. 2022;85(2):192-6.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61