Araştırma Makalesi
BibTex RIS Kaynak Göster

SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ

Yıl 2019, Cilt: 82 Sayı: 2, 116 - 122, 19.06.2019
https://doi.org/10.26650/IUITFD.422258

Öz

Amaç: Sendromik (SCS) ve non-sendromik kraniyosinostozlu (NSCS) olgularda, kraniyosinostoz tipleriyle ilişkilendirilmiş genlerde (FGFR1-3, TWIST1, MSX2, POR, FREM1 ve RAB23) mutasyonların araştırılması ve moleküler genetik tanı için akılcı bir akış şeması oluşturulması. Gereç ve Yöntem: İstanbul Üniversitesi, İstanbul Tıp Fakültesi, Tıbbi Genetik AD’da kromozom anomalisi dışlanmış, altısı prenatal ve 34’ü postnatal tanı alan, dokuzu NSCS ve 31’i SCS toplam 40 olgu ile 34 sağlıklı ebeveyn çalışmamıza dahil edildi. SCS’li olguların dokuzu Pfeiffer (PS), altısı Crouzon (CRS), beşi Apert (AS), yedisi Saethre-Chotzen (SaCS) ve dördü Muenke (MUS)/Saethre Chotzen (SaCS) idi. Kraniyosinostoz tipine göre mutasyonların en sık gözlendiği gen/ekzon bölgelerinden başlanarak, tüm gen ve ilişkili diğer genler aşamalı olarak Sanger dizileme yöntemi ile incelendi. Mutasyon saptanmayan olgularda incelenen genlerdeki büyük delesyon ve duplikasyonlar Multiplex Ligation-depended Probe Amplification (MLPA) yöntemi ile araştırıldı. Bulgular: Olgularımızın %50’sinde dizi analizi ile ve %2,5’unda MLPA yöntemi ile klinik bulguları destekleyen moleküler genetik sonuçlara ulaşıldı. Moleküler tanı oranı SCS grubunda %64,5, NSCS grubunda %11,1 oldu. Sonuç: Sendromik olgularda moleküler tanı oranı seri ortalamasının üzerinde idi. Birinci basamakta FGFR2 geni ekzon 7-8’de olası mutasyonlar dışlandıktan sonra, ikinci basamaktaki hedef ekzonlara (3, 5, 11, 14-17) ekzon 12 ve 13’ün ilavesi PS’de mutasyon saptama oranını %33 arttırdı. Çalışmamız, moleküler tanı alan ailelere özgün genetik danışma olanağı sağladı. CS olgularında izlenen akış şemasında Sanger dizileme ile 1. ve 2. basamak testlerden sonra mutasyon saptanmayan olguların yeni nesil dizileme tekniği ile klinik ekzom ve yüksek çözünürlüklü mikroarray çalışmasına alınmasının uygun olacağına karar verildi.

Kaynakça

  • . Tunçbilek G. Kraniyofasiyal cerrahinin temel prensipleri. Hacettepe Tıp Dergisi 2009;40(1):33-44.
  • 2. Slater BJ, Lenton KA, Kwan MD, Gupta DM, Wan DC, Longaker MT. Cranial sutures: A brief review. Plast Reconstr Surg 2008;121(4):170e-8e.
  • 3. Boulet SL, Rasmussen SA, Honein MA. A population-based study of craniosynostosis in metropolitan Atlanta, 19892003. Am J Med Genet A 2008;146A(8):984-91.
  • 4. Johnson D, Wilkie AO. Craniosynostosis. Eur J Hum Genet 2011;19(4):369-76.
  • 5. Önal Ç. Çocukta Baş Muayenesi. TND Pediatrik Nöroflirürji Öğretim ve Eğitim Grubu Bülteni 2008;(3):15-8.
  • 6. Boyadjiev SA, Consortium IC. Genetic analysis of nonsyndrornic craniosynostosis. Orthod Craniofac Res 2007;10(3):129-37.
  • 7. Cohen MM, MacLean RE. Craniosynostosis : Diagnosis, evaluation, and management. 2nd ed. New York: Oxford University Press; 2000; 454.
  • 8. Kimonis V, Gold JA, Hoffman TL, Panchal J, Boyadjiev SA. Genetics of craniosynostosis. Semin Pediatr Neurol 2007;14(3):150-61.
  • 9. Çeltikçi E, Börcek AÖ, Baykaner MK. Kraniyosinostozlar. Türk Nöroşirürji Dergisi 2013;23(2):132-7.
  • 10. Twigg SR, Wilkie AO. A Genetic-Pathophysiological Framework for Craniosynostosis. Am J Hum Genet 2015;97(3):359-77.
  • 11. Levi B, Wan DC, Wong VW, Nelson E, Hyun J, Longaker MT. Cranial Suture Biology: From Pathways to Patient Care. J.J Craniofac Surg 2012;23(1):13-9.
  • 12. Slaney SF, Oldridge M, Hurst JA, Moriss-Kay GM, Hall CM, Poole MD, et al. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am J Hum Genet 1996;58(5):923-32.
  • 13. Hoefkens MF, Vermeij-Keers C, Vaandrager JM. Crouzon syndrome: Phenotypic signs and symptoms of the postnatally expressed subtype. J Craniofac Surg 2004;15(2):233-40;41-2.
  • 14. Kress W, Schropp C, Lieb G, Petersen B, Busse-Ratzka M, Kunz J, et al. Saethre-Chotzen syndrome caused by TWIST 1 gene mutations: Functional differentiation from Muenke coronal synostosis syndrome. Eur J Hum Genet 2006;14(1):39-48.
  • 15. Jabs EW, Muller U, Li X, Ma L, Luo W, Haworth IS, et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993;75(3):443-50.
  • 16. Azoury SC, Reddy S, Shukla V, Deng CX. Fibroblast Growth Factor Receptor 2 (FGFR2) Mutation Related Syndromic Craniosynostosis. Int J Biol Sci 2017;13(12):1479-88. 17. Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, et al. Diversity and function of mutations in p450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet 2005;76(5):729-49.
  • 18. Vissers LE, Cox TC, Maga AM, Short KM, Wiradjaja F, Janssen IM, et al. Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice. PLoS Genet 2011;7(9):e1002278.
  • 19. Wilkie AO, Byren JC, Hurst JA, Jayamohan J, Johnson D, Knight SJ, et al. Prevalence and complications of singlegene and chromosomal disorders in craniosynostosis. Pediatrics 2010;126(2):e391-400.
  • 20. Freitas EC, Nascimento SR, de Mello MP, Gil-da-Silva-Lopes VL. Q289P mutation in FGFR2 gene causes Saethre-Chotzen syndrome: some considerations about familial heterogeneity. Cleft Palate Craniofac J 2006;43(2):142-7.
  • 21. Park J, Park OJ, Yoon WJ, Kim HJ, Choi KY, Cho TJ, et al. Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis. J Cell Biochem 2012;113(2):45764.
  • 22. Kelleher FC, O’Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 2013;34(10):2198-205.
  • 23. Guillemot F, Zimmer C. From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 2011;71(4):574-88.
  • 24. Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, et al. Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann Oncol 2014;25(3):552-63.
  • 25. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006;281(23):15694-700.
  • 26. Coutu DL, Galipeau J. Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging (Albany NY) 2011;3(10):920-33.
  • 27. Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005;16(2):107-37.
  • 28. Martinez-Abadias N, Heuze Y, Wang Y, Jabs EW, Aldridge K, Richtsmeier JT. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. PLoS One 2011;6(10):e26425.
  • 29. Sarah F. Slaney MO, Jane A. Hurst, Gillian M. Morriss-Kay, Christine M. Hall, Michael D. Poole, Andrew 0. M. Wilkie. 1996 Slaney, Differential Effects of FGFR2 Mutations on Syndactyly and Cleft Palate in Apert Syndrome. Am J Hum Genet 58:923-932, 1996.
  • 30. Paznekas WA, Cunningham ML, Howard TD, Korf BR, Lipson MH, Grix AW, et al. Genetic heterogeneity of SaethreChotzen syndrome, due to TWIST and FGFR mutations. Am J Hum Genet 1998;62(6):1370-80.
  • 31. Justice CM, Yagnik G, Kim Y, Peter I, Jabs EW, Erazo M, et al. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat Genet 2012;44(12):1360-4.
  • 32. Twigg SR, Vorgia E, McGowan SJ, Peraki I, Fenwick AL, Sharma VP, et al. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 2013;45(3):308-13.
  • 33. Sharma VP, Fenwick AL, Brockop MS, McGowan SJ, Goos JA, Hoogeboom AJ, et al. Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat Genet 2013;45(3):304-7.
  • 34. Lee E, Le T, Zhu Y, Elakis G, Turner A, Lo W, et al. A craniosynostosis massively parallel sequencing panel study in 309 Australian and New Zealand patients: Findings and recommendations. Genetics In Medicine, 2017.

MOLECULAR ANALYSIS OF FGFR1-3, TWIST1, MSX2, POR, FREM1 AND RAB23 GENES IN SYNDROMIC AND NON-SYNDROMIC CRANIOSYNOSTOSIS CASES

Yıl 2019, Cilt: 82 Sayı: 2, 116 - 122, 19.06.2019
https://doi.org/10.26650/IUITFD.422258

Öz

Objective: Craniosynostosis (CS) associated genes (FGFR1-3, TWIST1, MSX2, POR, FREM1 and RAB23) were investigated in order to determine the mutation rates and establish an effective flow chart for molecular genetic diagnosis for syndromic (SCS) and non-syndromic craniosynostosis (NSCS). Material and Method: A total of 40 cases, including six prenatal cases, with normal karyotypes, and 34 parents were investigated in the Medical Genetics Department of Istanbul Medical Faculty. The clinical diagnosis was NSCS in 9, Pfeiffer in 9 (PS), Crouzon in 6 (CRS), Apert in 5 (AS), Saethre-Chotzen in 7 (SaCS) and Muenke/Saethre Chotzen in 4 (MUS/SaCS) of the cases. According to the clinical diagnosis, the hot spot mutation sites of genes/exons were screened initially and the whole gene and other genes were progressively examined by Sanger sequencing. The Multiplex Ligation-Depended Probe Amplification (MLPA) technique was applied to detect deletions/duplications. Results: Molecular results were achieved in 50% of cases by sequencing and in 2.5% by MLPA. Molecular diagnosis rate was 64.5% in SCSs and 11.1% in NSCSs. Conclusion: Molecular diagnosis rate was higher in the SCS than in the NSCS group. Including exons 12 and 13 to target exons (3, 5, 11, 14-17) of FGFR2 gene increases the mutation rate by 33% in the second step of the molecular investigation in PS cases. Genetic counseling with the families following molecular diagnosis is important. Our results supported the fact that CS cases with un-identified pathogenic variants in the first and second steps of the algorithmic chart, should be followed by clinical exome and high resolution microarray techniques.

Kaynakça

  • . Tunçbilek G. Kraniyofasiyal cerrahinin temel prensipleri. Hacettepe Tıp Dergisi 2009;40(1):33-44.
  • 2. Slater BJ, Lenton KA, Kwan MD, Gupta DM, Wan DC, Longaker MT. Cranial sutures: A brief review. Plast Reconstr Surg 2008;121(4):170e-8e.
  • 3. Boulet SL, Rasmussen SA, Honein MA. A population-based study of craniosynostosis in metropolitan Atlanta, 19892003. Am J Med Genet A 2008;146A(8):984-91.
  • 4. Johnson D, Wilkie AO. Craniosynostosis. Eur J Hum Genet 2011;19(4):369-76.
  • 5. Önal Ç. Çocukta Baş Muayenesi. TND Pediatrik Nöroflirürji Öğretim ve Eğitim Grubu Bülteni 2008;(3):15-8.
  • 6. Boyadjiev SA, Consortium IC. Genetic analysis of nonsyndrornic craniosynostosis. Orthod Craniofac Res 2007;10(3):129-37.
  • 7. Cohen MM, MacLean RE. Craniosynostosis : Diagnosis, evaluation, and management. 2nd ed. New York: Oxford University Press; 2000; 454.
  • 8. Kimonis V, Gold JA, Hoffman TL, Panchal J, Boyadjiev SA. Genetics of craniosynostosis. Semin Pediatr Neurol 2007;14(3):150-61.
  • 9. Çeltikçi E, Börcek AÖ, Baykaner MK. Kraniyosinostozlar. Türk Nöroşirürji Dergisi 2013;23(2):132-7.
  • 10. Twigg SR, Wilkie AO. A Genetic-Pathophysiological Framework for Craniosynostosis. Am J Hum Genet 2015;97(3):359-77.
  • 11. Levi B, Wan DC, Wong VW, Nelson E, Hyun J, Longaker MT. Cranial Suture Biology: From Pathways to Patient Care. J.J Craniofac Surg 2012;23(1):13-9.
  • 12. Slaney SF, Oldridge M, Hurst JA, Moriss-Kay GM, Hall CM, Poole MD, et al. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am J Hum Genet 1996;58(5):923-32.
  • 13. Hoefkens MF, Vermeij-Keers C, Vaandrager JM. Crouzon syndrome: Phenotypic signs and symptoms of the postnatally expressed subtype. J Craniofac Surg 2004;15(2):233-40;41-2.
  • 14. Kress W, Schropp C, Lieb G, Petersen B, Busse-Ratzka M, Kunz J, et al. Saethre-Chotzen syndrome caused by TWIST 1 gene mutations: Functional differentiation from Muenke coronal synostosis syndrome. Eur J Hum Genet 2006;14(1):39-48.
  • 15. Jabs EW, Muller U, Li X, Ma L, Luo W, Haworth IS, et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993;75(3):443-50.
  • 16. Azoury SC, Reddy S, Shukla V, Deng CX. Fibroblast Growth Factor Receptor 2 (FGFR2) Mutation Related Syndromic Craniosynostosis. Int J Biol Sci 2017;13(12):1479-88. 17. Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, et al. Diversity and function of mutations in p450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet 2005;76(5):729-49.
  • 18. Vissers LE, Cox TC, Maga AM, Short KM, Wiradjaja F, Janssen IM, et al. Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice. PLoS Genet 2011;7(9):e1002278.
  • 19. Wilkie AO, Byren JC, Hurst JA, Jayamohan J, Johnson D, Knight SJ, et al. Prevalence and complications of singlegene and chromosomal disorders in craniosynostosis. Pediatrics 2010;126(2):e391-400.
  • 20. Freitas EC, Nascimento SR, de Mello MP, Gil-da-Silva-Lopes VL. Q289P mutation in FGFR2 gene causes Saethre-Chotzen syndrome: some considerations about familial heterogeneity. Cleft Palate Craniofac J 2006;43(2):142-7.
  • 21. Park J, Park OJ, Yoon WJ, Kim HJ, Choi KY, Cho TJ, et al. Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis. J Cell Biochem 2012;113(2):45764.
  • 22. Kelleher FC, O’Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 2013;34(10):2198-205.
  • 23. Guillemot F, Zimmer C. From cradle to grave: the multiple roles of fibroblast growth factors in neural development. Neuron 2011;71(4):574-88.
  • 24. Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, et al. Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann Oncol 2014;25(3):552-63.
  • 25. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 2006;281(23):15694-700.
  • 26. Coutu DL, Galipeau J. Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging (Albany NY) 2011;3(10):920-33.
  • 27. Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005;16(2):107-37.
  • 28. Martinez-Abadias N, Heuze Y, Wang Y, Jabs EW, Aldridge K, Richtsmeier JT. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. PLoS One 2011;6(10):e26425.
  • 29. Sarah F. Slaney MO, Jane A. Hurst, Gillian M. Morriss-Kay, Christine M. Hall, Michael D. Poole, Andrew 0. M. Wilkie. 1996 Slaney, Differential Effects of FGFR2 Mutations on Syndactyly and Cleft Palate in Apert Syndrome. Am J Hum Genet 58:923-932, 1996.
  • 30. Paznekas WA, Cunningham ML, Howard TD, Korf BR, Lipson MH, Grix AW, et al. Genetic heterogeneity of SaethreChotzen syndrome, due to TWIST and FGFR mutations. Am J Hum Genet 1998;62(6):1370-80.
  • 31. Justice CM, Yagnik G, Kim Y, Peter I, Jabs EW, Erazo M, et al. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat Genet 2012;44(12):1360-4.
  • 32. Twigg SR, Vorgia E, McGowan SJ, Peraki I, Fenwick AL, Sharma VP, et al. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet 2013;45(3):308-13.
  • 33. Sharma VP, Fenwick AL, Brockop MS, McGowan SJ, Goos JA, Hoogeboom AJ, et al. Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat Genet 2013;45(3):304-7.
  • 34. Lee E, Le T, Zhu Y, Elakis G, Turner A, Lo W, et al. A craniosynostosis massively parallel sequencing panel study in 309 Australian and New Zealand patients: Findings and recommendations. Genetics In Medicine, 2017.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm ARAŞTIRMA
Yazarlar

Volkan Karaman 0000-0001-8777-3548

Güven Toksoy

Birsen Karaman Bu kişi benim

Hülya Kayserili Karabey Bu kişi benim

Seher Başaran Bu kişi benim

Umut Altunoğlu Bu kişi benim

Şahin Avcı

Zehra Oya Uyguner Bu kişi benim

Yayımlanma Tarihi 19 Haziran 2019
Gönderilme Tarihi 9 Mayıs 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 82 Sayı: 2

Kaynak Göster

APA Karaman, V., Toksoy, G., Karaman, B., Kayserili Karabey, H., vd. (2019). SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ. Journal of Istanbul Faculty of Medicine, 82(2), 116-122. https://doi.org/10.26650/IUITFD.422258
AMA Karaman V, Toksoy G, Karaman B, Kayserili Karabey H, Başaran S, Altunoğlu U, Avcı Ş, Uyguner ZO. SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ. İst Tıp Fak Derg. Haziran 2019;82(2):116-122. doi:10.26650/IUITFD.422258
Chicago Karaman, Volkan, Güven Toksoy, Birsen Karaman, Hülya Kayserili Karabey, Seher Başaran, Umut Altunoğlu, Şahin Avcı, ve Zehra Oya Uyguner. “SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ”. Journal of Istanbul Faculty of Medicine 82, sy. 2 (Haziran 2019): 116-22. https://doi.org/10.26650/IUITFD.422258.
EndNote Karaman V, Toksoy G, Karaman B, Kayserili Karabey H, Başaran S, Altunoğlu U, Avcı Ş, Uyguner ZO (01 Haziran 2019) SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ. Journal of Istanbul Faculty of Medicine 82 2 116–122.
IEEE V. Karaman, G. Toksoy, B. Karaman, H. Kayserili Karabey, S. Başaran, U. Altunoğlu, Ş. Avcı, ve Z. O. Uyguner, “SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ”, İst Tıp Fak Derg, c. 82, sy. 2, ss. 116–122, 2019, doi: 10.26650/IUITFD.422258.
ISNAD Karaman, Volkan vd. “SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ”. Journal of Istanbul Faculty of Medicine 82/2 (Haziran 2019), 116-122. https://doi.org/10.26650/IUITFD.422258.
JAMA Karaman V, Toksoy G, Karaman B, Kayserili Karabey H, Başaran S, Altunoğlu U, Avcı Ş, Uyguner ZO. SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ. İst Tıp Fak Derg. 2019;82:116–122.
MLA Karaman, Volkan vd. “SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ”. Journal of Istanbul Faculty of Medicine, c. 82, sy. 2, 2019, ss. 116-22, doi:10.26650/IUITFD.422258.
Vancouver Karaman V, Toksoy G, Karaman B, Kayserili Karabey H, Başaran S, Altunoğlu U, Avcı Ş, Uyguner ZO. SENDROMİK VE NON-SENDROMİK KRANİYOSİNOSTOZ OLGULARINDA FGFR1-3, TWIST1, MSX2, POR, FREM1 VE RAB23 GENLERİNİN MOLEKÜLER ANALİZİ. İst Tıp Fak Derg. 2019;82(2):116-22.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61