Araştırma Makalesi
BibTex RIS Kaynak Göster

ARTIRILMIŞ GERÇEKLİK TABANLI NÖRONAVİGASYON SİSTEMİNİN NÖROŞİRÜRJİ EĞİTİMİNE ETKİSİ

Yıl 2025, Cilt: 88 Sayı: 1, 9 - 13, 31.01.2025
https://doi.org/10.26650/IUITFD.1598878

Öz

Amaç: Teknolojiyi cerrahi eğitime entegre etmek öğrenme deneyimlerini geliştirir. ArSurgeon yazılımına sahip Illumetry XR ekranı gibi uygun fiyatlı genişletilmiş gerçeklik (XR) ekipmanı, ameliyat öncesi MR ve BT taramalarının dijital bir ortamda segmentasyonuna olanak tanıyarak tümörlerin ve çevresindeki anatominin 3D görselleştirmelerini sunar. Bu, uzamsal oryantasyonu ve cerrahi vakaların anlaşılmasını geliştirerek nöroşirürji asistanlarına fayda sağlar.
Gereç ve Yöntem: Bu çalışmada sağ frontal kitle ve hipofiz adenomu olan iki hastanın preoperatif MR ve BT taramaları kullanıldı. Taramalar beyin, kitle ve vasküler yapıları izole etmek için segmentlere ayrıldı. 3D modeller MR ve BT verileriyle entegre edildi ve ArSurgeon yazılımı ile Illumetry XR ekranında incelendi. Cerrahi prosedürler kaydedildi ve beş dakikalık videolar halinde düzenlendi. Eğitim yılına göre iki gruba ayrılan 40 beyin cerrahisi asistanına taramalar ve 3D modeller verildi. Cerrahi videoyu izledikten sonra katılımcılar 20 maddelik bir anket doldurdu. Anket sonuçları IBM SPSS Statistics version 29.0. kullanılarak analiz edilmiştir.
Bulgular: Kırk katılımcının (28 erkek, 12 kadın) yarısı eğitimlerinin ilk üç yılında, yarısı ise 3-5 yıllık deneyime sahipti. AR tabanlı nöronavigasyon sistemi ortalama 8,4/10 motivasyon puanı, 7,6/10 kullanım kolaylığı puanı ve 7,9/10 ergonomik tasarım puanı almıştır. Katılımcılar ayrıca sistemin anatomik anlayış ve ustalığa katkısını 8,3/10 olarak değerlendirmiştir.
Sonuç: Çalışma, AR tabanlı nöronavigasyon sistemlerinin öğrencileri motive ederek ve anatomik bilgiyi geliştirerek cerrahi eğitimi etkili bir şekilde geliştirdiğini göstermektedir. Bununla birlikte, ergonomi ve tasarımdaki daha fazla iyileştirme, tıp eğitimindeki faydalarını artırabilir

Kaynakça

  • Davids J, Manivannan S, Darzi A, Giannarou S, Ashrafian H, Marcus HJ. Simulation for skills training in neurosurgery: a systematic review, meta-analysis, and analysis of progressive scholarly acceptance. Neurosurg Rev 2021;44(4):1853-67. [CrossRef] google scholar
  • Hey G, Guyot M, Carter A, Lucke-Wold B. Augmented Reality in Neurosurgery: A New Paradigm for Training. Medicina (Kaunas) 2023;59(10). [CrossRef] google scholar
  • Eckert M, Volmerg JS, Friedrich CM. Augmented reality in medicine: systematic and bibliographic review. JMIR Mhealth Uhealth 2019;7(4):e10967. [CrossRef] google scholar
  • Dhar P, Rocks T, Samarasinghe RM, Stephenson G, Smith C. Augmented reality in medical education: students’ experiences and learning outcomes. Med Educ Online 2021;26(1):1953953. [CrossRef] google scholar
  • Curran VR, Xu X, Aydin MY, Meruvia-Pastor O. Use of Extended Reality in Medical Education: An Integrative Review. Med Sci Educ 2023;33(1):275-86. [CrossRef] google scholar
  • Barteit S, Lanfermann L, Bârnighausen T, Neuhann F, Beiersmann C. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games 2021;9(3):e29080. [CrossRef] google scholar
  • Iop A, El-Hajj VG, Gharios M, de Giorgio A, Monetti FM, Edström E, et al. Extended Reality in Neurosurgical Education: A Systematic Review. Sensors (Basel) 2022;22(16):60-7. [CrossRef] google scholar
  • Sawaya R, Bugdadi A, Azarnoush H, Winkler-Schwartz A, Alotaibi FE, Bajunaid K, et al. Virtual reality tumor resection: the force pyramid approach. Oper Neurosurg (Hagerstown) 2018;14(6):686-96. [CrossRef] google scholar
  • Sawaya R, Alsideiri G, Bugdadi A, Winkler-Schwartz A, Azarnoush H, Bajunaid K, et al. Development of a performance model for virtual reality tumor resections. J Neurosurg 2018;131(1):192-200. [CrossRef] google scholar
  • Wise J. Life as a neurosurgeon. Bmj 2020;368:m395. [CrossRef] google scholar
  • Kazemzadeh K, Akhlaghdoust M, Zali A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Front Surg 2023;10:1241923. [CrossRef] google scholar
  • Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev 2017;40(4):537-48. [CrossRef] google scholar
  • Satoh M, Nakajima T, Watanabe E, Kawai K. Augmented reality in stereotactic neurosurgery: Current Status and Issues. Neurol Med Chir (Tokyo) 2023;63(4):137-40. [CrossRef] google scholar
  • Aydoseli A, Unal TC, Kardes O, Doguc O, Dolas I, Adiyaman AE, et al. An Early Warning System Using Machine Learning for the Detection of Intracranial Hematomas in the Emergency Trauma Setting. Turk Neurosurg 2022;32(3):459-65. [CrossRef] google scholar
  • Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg 2020;12(2):156-64. [CrossRef] google scholar
  • Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ 2017;10(6):549-59. [CrossRef] google scholar
  • Aasekjær K, Bj0rnâs B, Skivenes HK, Vik ES. Immersive Virtual Reality (VR) when learning anatomy in midwifery education: A pre-post pilot study. Eur J Midwifery 2024;8(August):48. [CrossRef] google scholar
  • Sinou N, Sinou N, Filippou D. Virtual Reality and Augmented Reality in Anatomy Education During COVID-19 Pandemic. Cureus 2023;15(2):e35170. [CrossRef] google scholar

IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING

Yıl 2025, Cilt: 88 Sayı: 1, 9 - 13, 31.01.2025
https://doi.org/10.26650/IUITFD.1598878

Öz

Objective: Integrating technology into surgical training enhances learning experiences. Affordable extended reality (XR) equipment, like the Illumetry XR screen with ArSurgeon software, allows segmentation of preoperative MRI and CT scans in a digital environment, presenting 3D visualisations of tumours and surrounding anatomy. This improves the spatial orientation and understanding of surgical cases, benefiting neurosurgery residents.
Material and Methods: This study utilized preoperative MRI and CT scans of two patients, one with a right frontal mass and the other with a pituitary adenoma. The scans were segmented to isolate the brain, mass, and vascular structures. The 3D models were integrated with MRI and CT data and examined on the Illumetry XR screen with ArSurgeon software. Surgical procedures were recorded and edited into 5-minute videos. Forty neurosurgery residents, split into two groups based on the training year, were provided with the scans and 3D models. After viewing the surgical video, the participants completed a 20-item survey. The survey results were analysed using IBM SPSS Statistics version 29.0.
Result: Among the 40 participants (28 male, 12 female), half were in the first three years of training, and half had 3-5 years of experience. The AR-based neuronavigation system received an average motivation score of 8.4/10, an ease of use rating of 7.6/10, and an ergonomic design rating of 7.9/10. Participants also rated the system’s contribution to anatomical understanding and mastery at 8.3/10.
Conclusion: The study showed that AR-based neuronavigation systems effectively enhance surgical education by motivating learners and improving anatomical knowledge. However, further
improvements in ergonomics and design could enhance their utility in medical training.

Kaynakça

  • Davids J, Manivannan S, Darzi A, Giannarou S, Ashrafian H, Marcus HJ. Simulation for skills training in neurosurgery: a systematic review, meta-analysis, and analysis of progressive scholarly acceptance. Neurosurg Rev 2021;44(4):1853-67. [CrossRef] google scholar
  • Hey G, Guyot M, Carter A, Lucke-Wold B. Augmented Reality in Neurosurgery: A New Paradigm for Training. Medicina (Kaunas) 2023;59(10). [CrossRef] google scholar
  • Eckert M, Volmerg JS, Friedrich CM. Augmented reality in medicine: systematic and bibliographic review. JMIR Mhealth Uhealth 2019;7(4):e10967. [CrossRef] google scholar
  • Dhar P, Rocks T, Samarasinghe RM, Stephenson G, Smith C. Augmented reality in medical education: students’ experiences and learning outcomes. Med Educ Online 2021;26(1):1953953. [CrossRef] google scholar
  • Curran VR, Xu X, Aydin MY, Meruvia-Pastor O. Use of Extended Reality in Medical Education: An Integrative Review. Med Sci Educ 2023;33(1):275-86. [CrossRef] google scholar
  • Barteit S, Lanfermann L, Bârnighausen T, Neuhann F, Beiersmann C. Augmented, Mixed, and Virtual Reality-Based Head-Mounted Devices for Medical Education: Systematic Review. JMIR Serious Games 2021;9(3):e29080. [CrossRef] google scholar
  • Iop A, El-Hajj VG, Gharios M, de Giorgio A, Monetti FM, Edström E, et al. Extended Reality in Neurosurgical Education: A Systematic Review. Sensors (Basel) 2022;22(16):60-7. [CrossRef] google scholar
  • Sawaya R, Bugdadi A, Azarnoush H, Winkler-Schwartz A, Alotaibi FE, Bajunaid K, et al. Virtual reality tumor resection: the force pyramid approach. Oper Neurosurg (Hagerstown) 2018;14(6):686-96. [CrossRef] google scholar
  • Sawaya R, Alsideiri G, Bugdadi A, Winkler-Schwartz A, Azarnoush H, Bajunaid K, et al. Development of a performance model for virtual reality tumor resections. J Neurosurg 2018;131(1):192-200. [CrossRef] google scholar
  • Wise J. Life as a neurosurgeon. Bmj 2020;368:m395. [CrossRef] google scholar
  • Kazemzadeh K, Akhlaghdoust M, Zali A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Front Surg 2023;10:1241923. [CrossRef] google scholar
  • Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev 2017;40(4):537-48. [CrossRef] google scholar
  • Satoh M, Nakajima T, Watanabe E, Kawai K. Augmented reality in stereotactic neurosurgery: Current Status and Issues. Neurol Med Chir (Tokyo) 2023;63(4):137-40. [CrossRef] google scholar
  • Aydoseli A, Unal TC, Kardes O, Doguc O, Dolas I, Adiyaman AE, et al. An Early Warning System Using Machine Learning for the Detection of Intracranial Hematomas in the Emergency Trauma Setting. Turk Neurosurg 2022;32(3):459-65. [CrossRef] google scholar
  • Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg 2020;12(2):156-64. [CrossRef] google scholar
  • Moro C, Stromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ 2017;10(6):549-59. [CrossRef] google scholar
  • Aasekjær K, Bj0rnâs B, Skivenes HK, Vik ES. Immersive Virtual Reality (VR) when learning anatomy in midwifery education: A pre-post pilot study. Eur J Midwifery 2024;8(August):48. [CrossRef] google scholar
  • Sinou N, Sinou N, Filippou D. Virtual Reality and Augmented Reality in Anatomy Education During COVID-19 Pandemic. Cureus 2023;15(2):e35170. [CrossRef] google scholar
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm ARAŞTIRMA
Yazarlar

Aydın Aydoseli 0000-0002-4695-8295

Sefa Öztürk 0000-0001-5583-0384

Eren Andıç 0000-0002-2924-811X

Mustafa Selim Şahin 0000-0002-3626-8637

Tahir Kaplan 0009-0001-1321-5495

Çağatay Ündeğer 0009-0000-8330-9617

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 12 Aralık 2024
Kabul Tarihi 26 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 88 Sayı: 1

Kaynak Göster

APA Aydoseli, A., Öztürk, S., Andıç, E., Şahin, M. S., vd. (2025). IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING. Journal of Istanbul Faculty of Medicine, 88(1), 9-13. https://doi.org/10.26650/IUITFD.1598878
AMA Aydoseli A, Öztürk S, Andıç E, Şahin MS, Kaplan T, Ündeğer Ç. IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING. İst Tıp Fak Derg. Ocak 2025;88(1):9-13. doi:10.26650/IUITFD.1598878
Chicago Aydoseli, Aydın, Sefa Öztürk, Eren Andıç, Mustafa Selim Şahin, Tahir Kaplan, ve Çağatay Ündeğer. “IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING”. Journal of Istanbul Faculty of Medicine 88, sy. 1 (Ocak 2025): 9-13. https://doi.org/10.26650/IUITFD.1598878.
EndNote Aydoseli A, Öztürk S, Andıç E, Şahin MS, Kaplan T, Ündeğer Ç (01 Ocak 2025) IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING. Journal of Istanbul Faculty of Medicine 88 1 9–13.
IEEE A. Aydoseli, S. Öztürk, E. Andıç, M. S. Şahin, T. Kaplan, ve Ç. Ündeğer, “IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING”, İst Tıp Fak Derg, c. 88, sy. 1, ss. 9–13, 2025, doi: 10.26650/IUITFD.1598878.
ISNAD Aydoseli, Aydın vd. “IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING”. Journal of Istanbul Faculty of Medicine 88/1 (Ocak 2025), 9-13. https://doi.org/10.26650/IUITFD.1598878.
JAMA Aydoseli A, Öztürk S, Andıç E, Şahin MS, Kaplan T, Ündeğer Ç. IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING. İst Tıp Fak Derg. 2025;88:9–13.
MLA Aydoseli, Aydın vd. “IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING”. Journal of Istanbul Faculty of Medicine, c. 88, sy. 1, 2025, ss. 9-13, doi:10.26650/IUITFD.1598878.
Vancouver Aydoseli A, Öztürk S, Andıç E, Şahin MS, Kaplan T, Ündeğer Ç. IMPACT OF AUGMENTED REALITY-BASED NEURONAVIGATION ON NEUROSURGICAL EDUCATION AND TRAINING. İst Tıp Fak Derg. 2025;88(1):9-13.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61