İnceleme Makalesi
BibTex RIS Kaynak Göster

Yapay Zeka Destekli İnsan Kaynakları Yönetimi: Çalışan Deneyiminin Dönüşümü

Yıl 2025, Cilt: 6 Sayı: Özel Sayı, 123 - 142, 30.06.2025
https://doi.org/10.56203/iyd.1664458

Öz

Yapay zeka teknolojilerinin gelişimi, iş dünyasında köklü dönüşümlere yol açmış ve İnsan Kaynakları Yönetimi (İKY) de bu değişimlerden önemli ölçüde etkilenmiştir. Yapay zeka destekli uygulamaların İKY süreçlerine entegrasyonu, veri odaklı ve stratejik bir yapıya geçişi hızlandırmaktadır. Bu dönüşüm, bireysel ve kurumsal performansı artırarak verimliliği maksimize etmeyi amaçlamaktadır. İşletmeler, rekabet avantajı elde edebilmek için yenilikçi insan kaynakları stratejileri geliştirirken, yapay zekanın sağladığı otomasyon ve analitik yeteneklerden yararlanmaktadır. Bu makale, yapay zeka uygulamalarının insan kaynakları yönetimine entegrasyonunu ve bu sürecin çalışan deneyimi üzerindeki etkilerini ele almaktadır. Ayrıca, yapay zeka teknolojilerinin gelecekte İKY süreçlerinde oynayabileceği rol değerlendirilerek, dijital dönüşümün işgücü dinamikleri üzerindeki potansiyel etkileri tartışılmıştır.

Kaynakça

  • Aguinis, H. (2019). Performance management (4th ed.). Chicago Business Press.
  • Akturan, A. (2024). Yapay zekânın işletme yönetimi ve liderlik üzerindeki etkileri: Bir literatür incelemesi. Sinop Üniversitesi Sosyal Bilimler Dergisi, 8(2), 1305–1348. https://doi.org/10.30561/sinopusd.1554856
  • Al, B. (2024). Uzaktan ve hibrit çalışma modellerinde liderliğin dönüşümü: Dijital liderlik ve sanal ekip yönetimi üzerine bibliyometrik bir analiz. Sosyal Bilimler Metinleri, 2024(2), 121–140.
  • Allen, T. D., Golden, T. D., & Shockley, K. M. (2015). How effective is telecommuting? Assessing the status of our scientific findings. Psychological Science in the Public Interest, 16(2), 40–68. https://doi.org/10.1177/1529100615593273
  • Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.
  • Autor, D. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3
  • Avolio, B. J., Walumbwa, F. O., & Weber, T. J. (2009). Leadership: Current theories, research, and future directions. Annual Review of Psychology, 60, 421–449.
  • Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In Learning analytics (pp. 61–75). Springer.
  • Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews. Review of General Psychology, 1(3), 311–320. https://doi.org/10.1037/1089-2680.1.3.311
  • Bersin, J. (2018). The future of work: The new rules of HR in the digital age. Deloitte Insights.
  • Bersin, J. (2020). The employee experience: Culture, engagement, and beyond. Deloitte Insights.
  • Bessen, J. E. (2018). AI and Jobs: The Role of Demand. NBER Working Paper No. 24235. https://doi.org/10.3386/w24235
  • Black, J. S., & van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it? Business Horizons, 63(2), 215–226.
  • Bohnet, I. (2016). How to take the bias out of interviews. Harvard Business Review, 94(4), 62–67.
  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company.
  • Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N., & Trench, M. (2017). Artificial intelligence: The next digital frontier? McKinsey Global Institute.
  • Burke, M. J., Sarpy, S. A., Smith-Crowe, K., Chan-Serafin, S., Salvador, R. O., & Islam, G. (2011). Relative effectiveness of worker safety and health training methods. American Journal of Public Health, 101(6), 1006–1016.
  • Chamorro-Premuzic, T., Winsborough, D., Sherman, R. A., & Hogan, R. (2016). New talent signals: Shiny new objects or a brave new world? Industrial and Organizational Psychology: Perspectives on Science and Practice, 9(3), 621–640. https://doi.org/10.1017/iop.2016.6
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
  • Deloitte. (2019). Global human capital trends. Deloitte University Press.
  • Deloitte. (2020). The Future of Work in Technology. Deloitte Insights.
  • Demirci, B., Atsan, M., Çetinkaya, S., & Öğüt, E. (2022). Dijitalleşmenin insan kaynakları yönetimi uygulamalarına etkisi. Uluslararası Yönetim Akademisi Dergisi, 5(1), 214–226. https://doi.org/10.33712/mana.1063643
  • Dersan Tonbil, D., & Yavuz Aksakal, N. (2024). İşe alım, temin-seçim süreçlerinde yapay zekâ ve teknolojilerinin kullanımı: Nitel bir araştırma. İstanbul Ticaret Üniversitesi Girişimcilik Dergisi, 7(15), 38–56.
  • Düzgün, M. S., & Marşap, P. D. A. (2018). Performans değerlendirme ve ücret uygulamalarına ilişkin algının iş tatmini ve örgütsel bağlılığa etkisi bir uygulama. Yönetim Ve Ekonomi Dergisi, 25(3), 787–810. https://doi.org/10.18657/yonveek.440326
  • Edmondson, A. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350–383.
  • Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169–200. https://doi.org/10.1080/02699939208411068
  • Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17(2), 124–129. https://doi.org/10.1037/h0030377
  • Elendu, C., Amaechi, D. C., Okatta, A. U., Amaechi, E. C., Elendu, T. C., Ezeh, C. P., & Elendu, I. D. (2024). The impact of simulation-based training in medical education: A review. Medicine (Baltimore), 103(27).
  • Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin's Press.
  • Evans, G. W., & Johnson, D. (2000). Stress and open-office noise. Journal of Applied Psychology, 85(5), 779–783.
  • Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Vayena, E. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689–707.
  • Frey, C. and Osborne, M. (2017) The Future of Employment: How Susceptible Are Jobs to Computerization? Technological Forecasting & Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
  • Gallardo-Gallardo, E., Dries, N., & González-Cruz, T. F. (2013). What is the meaning of ‘talent’ in the world of work? Human Resource Management Review, 23(4), 290–300. https://doi.org/10.1016/j.hrmr.2013.05.002
  • Gensler. (2016). U.S. workplace survey: Key findings. Gensler Research Institute.
  • Gerçek, M. (2022). İKY'de güncel bir yaklaşım: Çalışan deneyimi kavramının bibliyometrik analizi. Optimum Ekonomi ve Yönetim Bilimleri Dergisi, 9(2), 206–228.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Grawitch, M. J., Ballard, D. W., & Erb, K. R. (2015). To be or not to be (stressed): The critical role of a psychologically healthy workplace in effective stress management. Stress and Health, 33(5), 650–658. https://doi.org/10.1002/smi.2754
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
  • Jurafsky, D., & Martin, J. H. (2020). Speech and language processing (3rd ed.). Pearson.
  • Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of Environmental Psychology, 15(3), 169–182.
  • Kırkpınar, S., & İşcan, Ö. F. (2018). Liderlik tarzlarının iş tatmini ve örgütsel bağlılığa etkileri. Hacettepe Sağlık İdaresi Dergisi, 21(1), 65–85.
  • Kovanović, V., Gašević, D., Joksimović, S., Hatala, M., & Adesope, O. (2015). Analytics of communities of inquiry: Effects of learning technology use on cognitive presence in asynchronous online discussions. The Internet and Higher Education, 27, 74–89. https://doi.org/10.1016/j.iheduc.2015.06.002
  • Langer, M., König, C. J., & Papathanasiou, M. (2019). Highly automated job interviews: Acceptance under the influence of stakes. International Journal of Selection and Assessment, 27(3), 217–234. https://doi.org/10.1111/ijsa.12246
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
  • London, M., & Smither, J. W. (2002). Feedback orientation, feedback culture, and the longitudinal performance management process. Human Resource Management Review, 12(1), 81–100. https://doi.org/10.1016/S1053-4822(01)00043-2
  • Marler, J. H., & Boudreau, J. W. (2017). An Evidence-Based Review of HR Analytics. The International Journal of Human Resource Management, 28, 3–26.
  • McKinsey & Company. (2020). The future of work after COVID-19. McKinsey Global Institute.
  • Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1–35.
  • Milkovich, G. T., & Newman, J. M. (2016). Compensation (12th ed.). McGraw-Hill Education.
  • Morgan, J. (2017). The employee experience advantage: How to win the war for talent by giving employees the workspaces they want, the tools they need, and a culture they can celebrate. Wiley.
  • Neal, A., & Griffin, M. A. (2006). A study of the lagged relationships among safety climate, safety motivation, safety behavior, and accidents at the individual and group levels. Journal of Applied Psychology, 91(4), 946–953.
  • Noe, R. A. (2017). Employee training and development (7th ed.). McGraw-Hill Education.
  • OECD. (2019). The Future of Work: Employment Outlook 2019. OECD Publishing.
  • O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group.
  • Plaskoff, J. (2017). Employee experience: The new human resource management approach. Strategic HR Review. Emerald Publishing. https://doi.org/10.1108/SHR-12-2016-0108
  • PwC. (2025). 2025 AI Business Predictions. PwC Research.
  • Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210. https://doi.org/10.5465/amr.2018.0072
  • Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence. MIT Sloan Management Review and The Boston Consulting Group.
  • Rosen, M. A., Salas, E., Wilson, K. A., et al. (2008). Measuring team performance in simulation-based training: Adopting best practices for healthcare. Simulation in Healthcare: Journal of the Society for Simulation in Healthcare, 3(1), 33–41. https://doi.org/10.1097/sih.0b013e3181626276
  • Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.
  • Salas, E., Tannenbaum, S. I., Kraiger, K., & Smith-Jentsch, K. A. (2012). The science of training and development in organizations: What matters in practice. Psychological Science in the Public Interest, 13(2), 74–101.
  • Schein, E. H. (2010). Organizational culture and leadership (4th ed.). Jossey-Bass.
  • Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30–40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
  • Smith, B. (2020). Tools and Weapons: The Promise and the Peril of the Digital Age. Penguin Press.
  • Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.09
  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
  • Tabassam, A., Yaqoob, G., Cuong, V. H., Syed, M., Shahzadi, A., & Asghar, F. (2023). The ethical implication of using artificial intelligence in hiring and promotion decisions. Journal of Management & Educational Research Innovation (JOMERI), 1(2), 1–15. https://doi.org/10.5281/zenodo.10066900
  • Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42.
  • Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence. Knopf.
  • Tempelaar, D. T., Rienties, B., & Giesbers, B. (2015). In search for the most informative data for feedback generation: Learning analytics in a data-rich context. Computers in Human Behavior, 47, 157–167. https://doi.org/10.1016/j.chb.2014.05.037
  • Tharenou, P., Saks, A. M., & Moore, C. (2007). A review and critique of research on training and organizational-level outcomes. Human Resource Management Review, 17(3), 251–273. https://doi.org/10.1016/j.hrmr.2007.07.004
  • Toyoda, R., Russo-Abegão, F., & Glassey, J. (2022). VR-based health and safety training in various high-risk engineering industries: A literature review. International Journal of Educational Technology in Higher Education, 19, 42.
  • Tunay, N. (2019). Personel güçlendirmenin çalışanların iş tatmini, performansı ve örgütsel bağlılığına etkileri: Türk sigorta sektörü örneği. Maliye Ve Finans Yazıları, 112, 241–258. https://doi.org/10.33203/mfy.533120
  • Ulrich, D. (1997). Human resource champions: The next agenda for adding value and delivering results. Harvard Business School Press.
  • Upadhyay, A. K., & Khandelwal, K. (2018). Applying artificial intelligence: Implications for recruitment. Strategic HR Review, 17(5), 255–258.
  • World Economic Forum. (2020). The Future of Jobs Report 2020. WEF.
  • Wright, P. M., & McMahan, G. C. (1992). Theoretical perspectives for strategic human resource management. Journal of Management, 18(2), 295–320. https://doi.org/10.1177/014920639201800205
  • Yüksel Nalbantoglu, S., & Köse, M. (2021). Sürdürülebilir insan kaynakları yönetimi için çalışan deneyimi uygulamaları. Business Economics and Management Research Journal, 4(2), 70–80.
  • Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.

AI-Powered Human Resources Management: The Transformation of Employee Experience

Yıl 2025, Cilt: 6 Sayı: Özel Sayı, 123 - 142, 30.06.2025
https://doi.org/10.56203/iyd.1664458

Öz

The advancement of artificial intelligence (AI) technologies has led to profound transformations in the business world, significantly impacting Human Resource Management (HRM). The integration of AI-powered applications into HRM processes accelerates the transition to a data-driven and strategic structure. This transformation aims to enhance both individual and organizational performance while maximizing efficiency. To gain a competitive advantage, businesses are developing innovative human resources strategies and leveraging the automation and analytical capabilities provided by AI. This article examines the integration of AI applications into human resource management and their impact on the employee experience. Additionally, it explores the potential role of AI technologies in the future of HRM and discusses the possible effects of digital transformation on workforce dynamics.

Kaynakça

  • Aguinis, H. (2019). Performance management (4th ed.). Chicago Business Press.
  • Akturan, A. (2024). Yapay zekânın işletme yönetimi ve liderlik üzerindeki etkileri: Bir literatür incelemesi. Sinop Üniversitesi Sosyal Bilimler Dergisi, 8(2), 1305–1348. https://doi.org/10.30561/sinopusd.1554856
  • Al, B. (2024). Uzaktan ve hibrit çalışma modellerinde liderliğin dönüşümü: Dijital liderlik ve sanal ekip yönetimi üzerine bibliyometrik bir analiz. Sosyal Bilimler Metinleri, 2024(2), 121–140.
  • Allen, T. D., Golden, T. D., & Shockley, K. M. (2015). How effective is telecommuting? Assessing the status of our scientific findings. Psychological Science in the Public Interest, 16(2), 40–68. https://doi.org/10.1177/1529100615593273
  • Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565.
  • Autor, D. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3–30. https://doi.org/10.1257/jep.29.3.3
  • Avolio, B. J., Walumbwa, F. O., & Weber, T. J. (2009). Leadership: Current theories, research, and future directions. Annual Review of Psychology, 60, 421–449.
  • Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In Learning analytics (pp. 61–75). Springer.
  • Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews. Review of General Psychology, 1(3), 311–320. https://doi.org/10.1037/1089-2680.1.3.311
  • Bersin, J. (2018). The future of work: The new rules of HR in the digital age. Deloitte Insights.
  • Bersin, J. (2020). The employee experience: Culture, engagement, and beyond. Deloitte Insights.
  • Bessen, J. E. (2018). AI and Jobs: The Role of Demand. NBER Working Paper No. 24235. https://doi.org/10.3386/w24235
  • Black, J. S., & van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it? Business Horizons, 63(2), 215–226.
  • Bohnet, I. (2016). How to take the bias out of interviews. Harvard Business Review, 94(4), 62–67.
  • Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company.
  • Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N., & Trench, M. (2017). Artificial intelligence: The next digital frontier? McKinsey Global Institute.
  • Burke, M. J., Sarpy, S. A., Smith-Crowe, K., Chan-Serafin, S., Salvador, R. O., & Islam, G. (2011). Relative effectiveness of worker safety and health training methods. American Journal of Public Health, 101(6), 1006–1016.
  • Chamorro-Premuzic, T., Winsborough, D., Sherman, R. A., & Hogan, R. (2016). New talent signals: Shiny new objects or a brave new world? Industrial and Organizational Psychology: Perspectives on Science and Practice, 9(3), 621–640. https://doi.org/10.1017/iop.2016.6
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
  • Deloitte. (2019). Global human capital trends. Deloitte University Press.
  • Deloitte. (2020). The Future of Work in Technology. Deloitte Insights.
  • Demirci, B., Atsan, M., Çetinkaya, S., & Öğüt, E. (2022). Dijitalleşmenin insan kaynakları yönetimi uygulamalarına etkisi. Uluslararası Yönetim Akademisi Dergisi, 5(1), 214–226. https://doi.org/10.33712/mana.1063643
  • Dersan Tonbil, D., & Yavuz Aksakal, N. (2024). İşe alım, temin-seçim süreçlerinde yapay zekâ ve teknolojilerinin kullanımı: Nitel bir araştırma. İstanbul Ticaret Üniversitesi Girişimcilik Dergisi, 7(15), 38–56.
  • Düzgün, M. S., & Marşap, P. D. A. (2018). Performans değerlendirme ve ücret uygulamalarına ilişkin algının iş tatmini ve örgütsel bağlılığa etkisi bir uygulama. Yönetim Ve Ekonomi Dergisi, 25(3), 787–810. https://doi.org/10.18657/yonveek.440326
  • Edmondson, A. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350–383.
  • Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169–200. https://doi.org/10.1080/02699939208411068
  • Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17(2), 124–129. https://doi.org/10.1037/h0030377
  • Elendu, C., Amaechi, D. C., Okatta, A. U., Amaechi, E. C., Elendu, T. C., Ezeh, C. P., & Elendu, I. D. (2024). The impact of simulation-based training in medical education: A review. Medicine (Baltimore), 103(27).
  • Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin's Press.
  • Evans, G. W., & Johnson, D. (2000). Stress and open-office noise. Journal of Applied Psychology, 85(5), 779–783.
  • Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Vayena, E. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 28(4), 689–707.
  • Frey, C. and Osborne, M. (2017) The Future of Employment: How Susceptible Are Jobs to Computerization? Technological Forecasting & Social Change, 114, 254–280. https://doi.org/10.1016/j.techfore.2016.08.019
  • Gallardo-Gallardo, E., Dries, N., & González-Cruz, T. F. (2013). What is the meaning of ‘talent’ in the world of work? Human Resource Management Review, 23(4), 290–300. https://doi.org/10.1016/j.hrmr.2013.05.002
  • Gensler. (2016). U.S. workplace survey: Key findings. Gensler Research Institute.
  • Gerçek, M. (2022). İKY'de güncel bir yaklaşım: Çalışan deneyimi kavramının bibliyometrik analizi. Optimum Ekonomi ve Yönetim Bilimleri Dergisi, 9(2), 206–228.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
  • Grawitch, M. J., Ballard, D. W., & Erb, K. R. (2015). To be or not to be (stressed): The critical role of a psychologically healthy workplace in effective stress management. Stress and Health, 33(5), 650–658. https://doi.org/10.1002/smi.2754
  • Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
  • Jurafsky, D., & Martin, J. H. (2020). Speech and language processing (3rd ed.). Pearson.
  • Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of Environmental Psychology, 15(3), 169–182.
  • Kırkpınar, S., & İşcan, Ö. F. (2018). Liderlik tarzlarının iş tatmini ve örgütsel bağlılığa etkileri. Hacettepe Sağlık İdaresi Dergisi, 21(1), 65–85.
  • Kovanović, V., Gašević, D., Joksimović, S., Hatala, M., & Adesope, O. (2015). Analytics of communities of inquiry: Effects of learning technology use on cognitive presence in asynchronous online discussions. The Internet and Higher Education, 27, 74–89. https://doi.org/10.1016/j.iheduc.2015.06.002
  • Langer, M., König, C. J., & Papathanasiou, M. (2019). Highly automated job interviews: Acceptance under the influence of stakes. International Journal of Selection and Assessment, 27(3), 217–234. https://doi.org/10.1111/ijsa.12246
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
  • London, M., & Smither, J. W. (2002). Feedback orientation, feedback culture, and the longitudinal performance management process. Human Resource Management Review, 12(1), 81–100. https://doi.org/10.1016/S1053-4822(01)00043-2
  • Marler, J. H., & Boudreau, J. W. (2017). An Evidence-Based Review of HR Analytics. The International Journal of Human Resource Management, 28, 3–26.
  • McKinsey & Company. (2020). The future of work after COVID-19. McKinsey Global Institute.
  • Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1–35.
  • Milkovich, G. T., & Newman, J. M. (2016). Compensation (12th ed.). McGraw-Hill Education.
  • Morgan, J. (2017). The employee experience advantage: How to win the war for talent by giving employees the workspaces they want, the tools they need, and a culture they can celebrate. Wiley.
  • Neal, A., & Griffin, M. A. (2006). A study of the lagged relationships among safety climate, safety motivation, safety behavior, and accidents at the individual and group levels. Journal of Applied Psychology, 91(4), 946–953.
  • Noe, R. A. (2017). Employee training and development (7th ed.). McGraw-Hill Education.
  • OECD. (2019). The Future of Work: Employment Outlook 2019. OECD Publishing.
  • O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing Group.
  • Plaskoff, J. (2017). Employee experience: The new human resource management approach. Strategic HR Review. Emerald Publishing. https://doi.org/10.1108/SHR-12-2016-0108
  • PwC. (2025). 2025 AI Business Predictions. PwC Research.
  • Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210. https://doi.org/10.5465/amr.2018.0072
  • Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping business with artificial intelligence. MIT Sloan Management Review and The Boston Consulting Group.
  • Rosen, M. A., Salas, E., Wilson, K. A., et al. (2008). Measuring team performance in simulation-based training: Adopting best practices for healthcare. Simulation in Healthcare: Journal of the Society for Simulation in Healthcare, 3(1), 33–41. https://doi.org/10.1097/sih.0b013e3181626276
  • Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed.). Pearson.
  • Salas, E., Tannenbaum, S. I., Kraiger, K., & Smith-Jentsch, K. A. (2012). The science of training and development in organizations: What matters in practice. Psychological Science in the Public Interest, 13(2), 74–101.
  • Schein, E. H. (2010). Organizational culture and leadership (4th ed.). Jossey-Bass.
  • Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30–40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
  • Smith, B. (2020). Tools and Weapons: The Promise and the Peril of the Digital Age. Penguin Press.
  • Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and Guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.09
  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
  • Tabassam, A., Yaqoob, G., Cuong, V. H., Syed, M., Shahzadi, A., & Asghar, F. (2023). The ethical implication of using artificial intelligence in hiring and promotion decisions. Journal of Management & Educational Research Innovation (JOMERI), 1(2), 1–15. https://doi.org/10.5281/zenodo.10066900
  • Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42.
  • Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence. Knopf.
  • Tempelaar, D. T., Rienties, B., & Giesbers, B. (2015). In search for the most informative data for feedback generation: Learning analytics in a data-rich context. Computers in Human Behavior, 47, 157–167. https://doi.org/10.1016/j.chb.2014.05.037
  • Tharenou, P., Saks, A. M., & Moore, C. (2007). A review and critique of research on training and organizational-level outcomes. Human Resource Management Review, 17(3), 251–273. https://doi.org/10.1016/j.hrmr.2007.07.004
  • Toyoda, R., Russo-Abegão, F., & Glassey, J. (2022). VR-based health and safety training in various high-risk engineering industries: A literature review. International Journal of Educational Technology in Higher Education, 19, 42.
  • Tunay, N. (2019). Personel güçlendirmenin çalışanların iş tatmini, performansı ve örgütsel bağlılığına etkileri: Türk sigorta sektörü örneği. Maliye Ve Finans Yazıları, 112, 241–258. https://doi.org/10.33203/mfy.533120
  • Ulrich, D. (1997). Human resource champions: The next agenda for adding value and delivering results. Harvard Business School Press.
  • Upadhyay, A. K., & Khandelwal, K. (2018). Applying artificial intelligence: Implications for recruitment. Strategic HR Review, 17(5), 255–258.
  • World Economic Forum. (2020). The Future of Jobs Report 2020. WEF.
  • Wright, P. M., & McMahan, G. C. (1992). Theoretical perspectives for strategic human resource management. Journal of Management, 18(2), 295–320. https://doi.org/10.1177/014920639201800205
  • Yüksel Nalbantoglu, S., & Köse, M. (2021). Sürdürülebilir insan kaynakları yönetimi için çalışan deneyimi uygulamaları. Business Economics and Management Research Journal, 4(2), 70–80.
  • Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Strateji, Yönetim ve Örgütsel Davranış (Diğer)
Bölüm Literatür Taraması
Yazarlar

Mertcan Çeri 0000-0002-0949-5818

Altan Doğan 0000-0002-0370-2513

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 24 Mart 2025
Kabul Tarihi 17 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: Özel Sayı

Kaynak Göster

APA Çeri, M., & Doğan, A. (2025). Yapay Zeka Destekli İnsan Kaynakları Yönetimi: Çalışan Deneyiminin Dönüşümü. İzmir Yönetim Dergisi, 6(Özel Sayı), 123-142. https://doi.org/10.56203/iyd.1664458

Makalenizi sisteme yüklemeden önce mutlaka şablon'lardan ve yazım kurallarından faydalanınız. Yazım kurallarına uygun olmayan çalışmaların hakem süreci başlatılmayacaktır.