Geçtiğimiz son on yılda, Derin Öğrenme, bilhassa Evrişimsel Sinir Ağları (Convolutional Neural Network), Makine Öğrenmesi ve Derin Sinir Ağları’nın en hızlı büyüyen alanıdır. Birçok Derin Sinir Ağı arasında, günümüzde Evrişimsel Sinir Ağları görüntü analizi ve sınıflandırma amaçları için kullanılan ana araçların başında gelmektedir. Evrişimsel Sinir Ağı tabanlı modeller, yüz tanıma görevlerinde yüksek başarı performansı sergilemektedirler. İlgili modellerin başarı performansının yüksek olması oluşturulan mimariye ve tercih edilen hiper-parametrelere bağlıdır. Ek olarak, modellerin eğitildikleri veri setinin boyutu performans üzerinde büyük etkiye sahiptir. Bu çalışmada ana amacımız, afin dönüşümü (affine transform) yöntemi ile veri artırma işlemini gerçekleştirmek ve bu veri artırma tekniğinin Evrişimsel Sinir Ağlarına dayalı yüz tanıma sistemine etkisini analiz etmektir. Evrişimsel Sinir Ağlarına dayalı yüz tanıma sistemi Destek Vektör Makineleri ve K-En Yakın Komşu sınıflandırma algoritmaları ile uygulanmış, devamına iki algoritmanın performansı karşılaştırılmıştır. Çalışmamızda bütün deneyler Labeled Faces in the Wild (LFW) veri seti üzerinde gerçekleşmiştir. Elde edilen sonuçlar, uygulanan veri artırma tekniğinin, yüz doğrulama işlemi için %1.8 oranında, yüz sınıflandırma işlemi için %2.2 (Destek Vektör Makineleri) ve %2.5 (K-En Yakın Komşu) oranında artış sergilediği gözlemlenmiştir. Gerçekleşen bütün deneyler sonunda, yüz tanıma sistemi doğrulama işleminde %94.4 oranında doğruluk elde etmiştir. Sınıflandırma işlemlerinde ise sistem, Destek Vektör Makineleri algoritması uygulanarak %97.1, K-En Yakın Komşu algoritması uygulanarak ise %96.3 oranında başarı performansı elde etmiştir.
Derin öğrenme Evrişimsel Sinir Ağları yüz tanıma veri artırma
In the last decade, Deep Learning particulary Convolutional Neural Networks is the fastest growing area of Machine Learning and Deep Neural Networks. Amongs the many Deep Neural Networks, Convolutional Neural Networks are one of the main tools used for image analysis and classification tasks. Convolutional Neural Network-based models performs high performance in face recognition tasks. The performance of the relevant models depends on their architecture and hyper-parameters. In addition, the size of the dataset in which the models are trained has a large impact on performance. Main goal of this study is to perform data augmentation based affine transform method and to analyze the effect of this data enhancement technique on face recognition system based on Convolutional Neural Networks. Face recognition system based on Convolutional Neural Networks was performed using Support Vector Machines and K-Nearest Neighbor classification algorithms. Following, the performance of the two algorithms was compared. All experiments in our study were carried out on the Labeled Faces in the Wild (LFW) dataset. Obtained results demonstrates that applied data augmentation technique increase the performance of face recognition system, in face verification task for 1.8%, whereas for classification task 2.2% for Support Vector Machines and 2.5% for K-Nearest Neighbor. Finnaly, face recognition system achieved 94.4% accuracy in verification phase, 97.1% (Support Vector Machines) and 96.3% (K-Nearest Neighbor) for classification task.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2021 |
Gönderilme Tarihi | 15 Şubat 2021 |
Kabul Tarihi | 17 Mart 2021 |
Yayımlandığı Sayı | Yıl 2021 Cilt: 3 Sayı: 1 |
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.