Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 1 - 13, 30.12.2022
https://doi.org/10.46876/ja.1194972

Öz

Destekleyen Kurum

Iğdır Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

ZİF0720A16

Kaynakça

  • Aydin, A., Kurt, F., & Hürkan, K. (2021). Key aromatic amino acid players in soybean (Glycine max) genome under drought and salt stresses. Biocatalysis and Agricultural Biotechnology, 35, 102094.
  • Bakshi, M., Oelmuller, R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signaling and Behavior 9:e27700.
  • Barragan, V., Leidi, E.O. Andre ́s, Z., Rubio, L., De Luca, A., Fernandez, J.A., Cubero, B., Pardo, J.M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell Online 24: 1127–1142.
  • Bray, E.A., Bailey-Serres, J., Weretilnyk, E., (2000). Responses to abiotic stress. In: Buchanan, B.B., Gruissem, W., Jones, R.L. (Eds.), Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists, Waldorf, pp. 1158/1203.
  • Chawla, S., Jain, S., Jain, V. (2013). Salinity-induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology 22:27– 34.
  • Chi, C., Xu, X., Wang, M., Zhang, H., Fang, P., Zhou, J., ... & Yu, J. (2021). Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture research, 8.
  • Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E., ve Egley, G. H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154(3753), pp 1189-1190.
  • Cook, C. E., Whichard, L. P., Wall, M., Egley, G. H., Coggon, P., Luhan, P. A., ve McPhail, A. T. (1972). Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). Journal of the American Chemical Society, 94(17), pp 6198-6199.
  • Cuartero, J., ve Fernandez-Munoz, R., (1999). Tomato and salinity. Scienta Horticulture, 78: pp 83-125.
  • Dikilitaş, M., Karakaş, S., (2012). Behaviour of Plant Pathogens for Crops under Stress during the Determination of Physiol ogical, Biochemical and Molecular Approaches for Salt Stress Tolerance Chapter 16. Crop Production for Agricultural Improveme nt (Eds. Muhammad Ashraf), Springer Publ., Heidelberg, London, New York, pp 417-441.
  • Felipe de, M., Muhammad, Y. (2020). Agricolae: Statistical Procedures for Agricultural Research.R package version 1.4.0, https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae.
  • Gharsallah, C., Fakhfakh, H., Grubb, D., & Gorsane, F. (2016). Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants, 8.
  • Hauser, F., Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high Kþ/Naþ ratio in leaves during salinity stress. Plant Cell Environment 33:552–565.
  • Huang, S., Gao, Y., Liu, J., Peng, X., Niu, X., Fei, Z., Cao, S., Liu, Y. (2012). Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics 287:495–513.
  • Hürkan, K., Sezer, F., Özbilen, A., & Taşkın, K. M. (2018). Identification of reference genes for real-time quantitative polymerase chain reaction based gene expression studies on various Olive (Olea europaea L.) tissues. The Journal of Horticultural Science and Biotechnology, 93(6), 644-651. doi: 10.1080/14620316.2018.1427005 Journal of Agriculture 2022; 5 (2) 1-13 https://dergipark.org.tr/tr/pub/ja 12
  • Jiang, Y., Deyholos, M.K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology 69:91–105.
  • Karakaş, S., Çullu, M., & Dikilitaş, M. (2013). In vitro koşullarinda NaCl stresinin domates çeşitlerinin çimlenmesi üzerine fizyolojik ve biyokimyasal etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 17(4), 25- 33.
  • Karaoğlu, M., Yalçın, A.M. (2018). Toprak tuzluluğu ve Iğdır ovası örneği. Journal of Agriculture, 1(1), pp 27- 41.
  • Kıran, S., Özkay, F., Kuşvuran, Ş., Ellialtıoğlu, Ş. (2014). Tuz Stresine Tolerans Seviyesi Farklı Domates Genotiplerinin Kuraklık Stresi Koşullarında Bazı Özelliklerinde Meydana Gelen Değişimler. JAFAG. 31 (3), pp 41-48.
  • Kurt, F., Filiz, E., & Aydın, A. (2021). Genome-wide identification of serine acetyltransferase (SAT) gene family in rice (Oryza sativa) and their expressions under salt stress. Molecular Biology Reports, 48(9), 6277-6290.
  • Kurt, F., Filiz, E., & Aydın, A. (2022). Sulfite reductase (SiR) gene in rice (Oryza sativa): bioinformatics and expression analyses under salt and drought stresses. Journal of Plant Growth Regulation, 41(6), 2246-2260.
  • Liu, H., Yang, W., Liu, D., Han, Y., Zhang, A., Li, S. (2011). Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to os- motic stress tolerance in Arabidopsis. Molecular Biology Reporter 38:417–427.
  • Liu, H., Li, C., Yan, M., Zhao, Z., Huang, P., Wei, L., & Liao, W. (2022). Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. Journal of Plant Research, 135(2), 337-350.
  • Livak, K.J., Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402-8. doi: 10.1006/meth.2001.1262. PMID: 11846609.
  • Mostofa, M.G., Li, W., Nguyen, K.H., Fujita, M., Tran, L-SP. (2018). Strigolactones in plant adaptation to abiotic stresses: An emer ging avenue of plant research. Plant Cell Environ. 2018; 41: 2227-- 2243 https://doi.org/10.1111/pce.13364.
  • Okhovatian-Ardakani, A., Mehrabanian, M., Dehghani, F., Ak-Barzadeh, A., (2010). Salt tolerance evaluation and relative comp arison in cuttings of different pomegranate cultivars. Plant, Soil Environ 56: pp 176-185
  • Peng, X., Hu, Y., Tang, X., Zhou, P., Deng, X., Wang, H., Guo, Z. (2012). Constitutive expression of rice WRKY 30 gene increases the en- dogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498.
  • Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., & Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313, 856–862.
  • Revelle, W. (2022). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. R package version 2.2.9, https://CRAN.R-project.org/package=psych.
  • Saeed, W., Naseem, S., Ali, Z. (2017). Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. Front. Plant Sci. 8:1487. doi: 10.3389/fpls.2017.01487
  • Schluttenhofer, C., & Yuan, L. (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 167(2), 295-306.
  • Sun, L.J., Huang, L., Li, D.Y., Zhang, H.J., Song, F.M. (2014). Comprehensive expression analysis suggests overlapping of rice OsWRKY tran- scription factor genes during abiotic stress responses. Plant Physiology Journal 50:1651–1658.
  • Visentin, I., Pagliarani, C., Deva, E., Caracci, A., Turečková, V., Novák, O., ... & Cardinale, F. (2020). A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant, cell & environment, 43(7), 1613-1624.
  • Wang, J. Y., Tong, S. M., & Li, Q. L. (2013). Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochemical and biophysical research communications, 432(2), 262-267.
  • Yamada, Y., Nishida, S., Shitan, N., & Sato, F. (2020). Genome-wide identification of AP2/ERF transcription factor-encoding genes in California poppy (Eschscholzia californica) and their expression profiles in response to methyl jasmonate. Scientific reports, 10(1), 1-15.

Synthetic Strigolactone Regulates Some Stress Related Genes and Transcription Factors on Tomato (Lycopersium esculentum L.)

Yıl 2022, , 1 - 13, 30.12.2022
https://doi.org/10.46876/ja.1194972

Öz

Türkiye meets about 7% of the world tomato production. The most severe effects of climate change are seen in agriculture. The increase of salinity in agricultural lands reduces the usable area and affects the growth, development and yield of the products grown. The salinity problem in the Iğdır Plain, which has a microclimate feature, causes the region to not be used at full capacity and to obtain sufficient yield from the products grown. The aim of this study is to determine the effects of synthetic strigolactone GR24-rac against salinity at the gene level in H-2274 tomato cultivar grown under saline conditions for the first time. In the experiments carried out for this purpose, the effects GR24-rac applied at 10 nM and 100 nM doses to H-2274 tomatoes grown at 150 mM salt concentration were determined at the gene level. The mRNA levels of the genes encoding the stress enzymes catalase, superoxide dismutase and glutathione reductase and the transcription factors SlWRKY31, ERF84, LeNHX1, HKT1;2 were determined by Real-Time Quantitative Polymerase Chain Reaction. Results showed that GR24-rac application controlled the regulation of genes and transcription factors and helps the plant to cope with high concentration salt. We concluded that the data obtained as a result of the study will open a new avenue for researchers to increase the tolerance to salinity in tomatoes.

Proje Numarası

ZİF0720A16

Kaynakça

  • Aydin, A., Kurt, F., & Hürkan, K. (2021). Key aromatic amino acid players in soybean (Glycine max) genome under drought and salt stresses. Biocatalysis and Agricultural Biotechnology, 35, 102094.
  • Bakshi, M., Oelmuller, R. (2014). WRKY transcription factors: Jack of many trades in plants. Plant Signaling and Behavior 9:e27700.
  • Barragan, V., Leidi, E.O. Andre ́s, Z., Rubio, L., De Luca, A., Fernandez, J.A., Cubero, B., Pardo, J.M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell Online 24: 1127–1142.
  • Bray, E.A., Bailey-Serres, J., Weretilnyk, E., (2000). Responses to abiotic stress. In: Buchanan, B.B., Gruissem, W., Jones, R.L. (Eds.), Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists, Waldorf, pp. 1158/1203.
  • Chawla, S., Jain, S., Jain, V. (2013). Salinity-induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology 22:27– 34.
  • Chi, C., Xu, X., Wang, M., Zhang, H., Fang, P., Zhou, J., ... & Yu, J. (2021). Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture research, 8.
  • Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E., ve Egley, G. H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154(3753), pp 1189-1190.
  • Cook, C. E., Whichard, L. P., Wall, M., Egley, G. H., Coggon, P., Luhan, P. A., ve McPhail, A. T. (1972). Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). Journal of the American Chemical Society, 94(17), pp 6198-6199.
  • Cuartero, J., ve Fernandez-Munoz, R., (1999). Tomato and salinity. Scienta Horticulture, 78: pp 83-125.
  • Dikilitaş, M., Karakaş, S., (2012). Behaviour of Plant Pathogens for Crops under Stress during the Determination of Physiol ogical, Biochemical and Molecular Approaches for Salt Stress Tolerance Chapter 16. Crop Production for Agricultural Improveme nt (Eds. Muhammad Ashraf), Springer Publ., Heidelberg, London, New York, pp 417-441.
  • Felipe de, M., Muhammad, Y. (2020). Agricolae: Statistical Procedures for Agricultural Research.R package version 1.4.0, https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae.
  • Gharsallah, C., Fakhfakh, H., Grubb, D., & Gorsane, F. (2016). Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants, 8.
  • Hauser, F., Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high Kþ/Naþ ratio in leaves during salinity stress. Plant Cell Environment 33:552–565.
  • Huang, S., Gao, Y., Liu, J., Peng, X., Niu, X., Fei, Z., Cao, S., Liu, Y. (2012). Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics 287:495–513.
  • Hürkan, K., Sezer, F., Özbilen, A., & Taşkın, K. M. (2018). Identification of reference genes for real-time quantitative polymerase chain reaction based gene expression studies on various Olive (Olea europaea L.) tissues. The Journal of Horticultural Science and Biotechnology, 93(6), 644-651. doi: 10.1080/14620316.2018.1427005 Journal of Agriculture 2022; 5 (2) 1-13 https://dergipark.org.tr/tr/pub/ja 12
  • Jiang, Y., Deyholos, M.K. (2009). Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology 69:91–105.
  • Karakaş, S., Çullu, M., & Dikilitaş, M. (2013). In vitro koşullarinda NaCl stresinin domates çeşitlerinin çimlenmesi üzerine fizyolojik ve biyokimyasal etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 17(4), 25- 33.
  • Karaoğlu, M., Yalçın, A.M. (2018). Toprak tuzluluğu ve Iğdır ovası örneği. Journal of Agriculture, 1(1), pp 27- 41.
  • Kıran, S., Özkay, F., Kuşvuran, Ş., Ellialtıoğlu, Ş. (2014). Tuz Stresine Tolerans Seviyesi Farklı Domates Genotiplerinin Kuraklık Stresi Koşullarında Bazı Özelliklerinde Meydana Gelen Değişimler. JAFAG. 31 (3), pp 41-48.
  • Kurt, F., Filiz, E., & Aydın, A. (2021). Genome-wide identification of serine acetyltransferase (SAT) gene family in rice (Oryza sativa) and their expressions under salt stress. Molecular Biology Reports, 48(9), 6277-6290.
  • Kurt, F., Filiz, E., & Aydın, A. (2022). Sulfite reductase (SiR) gene in rice (Oryza sativa): bioinformatics and expression analyses under salt and drought stresses. Journal of Plant Growth Regulation, 41(6), 2246-2260.
  • Liu, H., Yang, W., Liu, D., Han, Y., Zhang, A., Li, S. (2011). Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to os- motic stress tolerance in Arabidopsis. Molecular Biology Reporter 38:417–427.
  • Liu, H., Li, C., Yan, M., Zhao, Z., Huang, P., Wei, L., & Liao, W. (2022). Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. Journal of Plant Research, 135(2), 337-350.
  • Livak, K.J., Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402-8. doi: 10.1006/meth.2001.1262. PMID: 11846609.
  • Mostofa, M.G., Li, W., Nguyen, K.H., Fujita, M., Tran, L-SP. (2018). Strigolactones in plant adaptation to abiotic stresses: An emer ging avenue of plant research. Plant Cell Environ. 2018; 41: 2227-- 2243 https://doi.org/10.1111/pce.13364.
  • Okhovatian-Ardakani, A., Mehrabanian, M., Dehghani, F., Ak-Barzadeh, A., (2010). Salt tolerance evaluation and relative comp arison in cuttings of different pomegranate cultivars. Plant, Soil Environ 56: pp 176-185
  • Peng, X., Hu, Y., Tang, X., Zhou, P., Deng, X., Wang, H., Guo, Z. (2012). Constitutive expression of rice WRKY 30 gene increases the en- dogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498.
  • Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., & Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313, 856–862.
  • Revelle, W. (2022). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University, Evanston, Illinois. R package version 2.2.9, https://CRAN.R-project.org/package=psych.
  • Saeed, W., Naseem, S., Ali, Z. (2017). Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. Front. Plant Sci. 8:1487. doi: 10.3389/fpls.2017.01487
  • Schluttenhofer, C., & Yuan, L. (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 167(2), 295-306.
  • Sun, L.J., Huang, L., Li, D.Y., Zhang, H.J., Song, F.M. (2014). Comprehensive expression analysis suggests overlapping of rice OsWRKY tran- scription factor genes during abiotic stress responses. Plant Physiology Journal 50:1651–1658.
  • Visentin, I., Pagliarani, C., Deva, E., Caracci, A., Turečková, V., Novák, O., ... & Cardinale, F. (2020). A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant, cell & environment, 43(7), 1613-1624.
  • Wang, J. Y., Tong, S. M., & Li, Q. L. (2013). Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance. Biochemical and biophysical research communications, 432(2), 262-267.
  • Yamada, Y., Nishida, S., Shitan, N., & Sato, F. (2020). Genome-wide identification of AP2/ERF transcription factor-encoding genes in California poppy (Eschscholzia californica) and their expression profiles in response to methyl jasmonate. Scientific reports, 10(1), 1-15.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Kaan Hürkan 0000-0001-5330-7442

Proje Numarası ZİF0720A16
Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 26 Ekim 2022
Kabul Tarihi 22 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Hürkan, K. (2022). Synthetic Strigolactone Regulates Some Stress Related Genes and Transcription Factors on Tomato (Lycopersium esculentum L.). Journal of Agriculture, 5(2), 1-13. https://doi.org/10.46876/ja.1194972